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PATTERNS IN EIGENVALUES:

THE 70TH JOSIAH WILLARD GIBBS LECTURE


PERSI DIACONIS 

Abstract. Typical large unitary matrices show remarkable patterns in their 
eigenvalue distribution. These same patterns appear in telephone encryption, 
the zeros of Riemann’s zeta function, a variety of physics problems, and in the 
study of Toeplitz operators. This paper surveys these applications and what 
is currently known about the patterns. 

Introduction 

This paper surveys what we know about the distribution of the eigenvalues of 
typical large unitary matrices. The topic occurs naturally in problems of statistics, 
physics and number theory. The mathematical interconnections are also fascinating, 
and it is hard to escape the feeling that there is something unseen to be discovered. 

To keep the paper within bounds, the following classical compact groups will be 
featured: 

On the n× n real matrices M such that MMT = id. 
Un the n× n complex matrices M such that MM∗ = id. 
Sn the n× n permutation matrices. 

“Typical elements” are studied by using Haar measure. This is a probability 
measure P on a group G which is translation invariant: for any measurable set A 
in G and any element M in G 

P (A) =  P (MA). 

For the symmetric group, we all have an intuitive feel for what it means to pick 
a permutation at random, at least via shuffling cards. For the other groups this 
is less familiar. The following method for picking a group element at random may 
help. 

Consider the orthogonal group On. Here is a simple algorithm: fill out an empty 
n× n array with independent picks from the standard Gaussian bell-shaped curve. 
Then perform the Gram-Schmidt algorithm on this array: normalize the first row to 
have norm one, take the first row out of the second row and normalize to have norm 
one, and so on. This constructs an orthogonal matrix which is Haar distributed. 

2
Put more formally, put product measure on Rn with each factor having density 

2 2 
e−x /2/

√
2π. The Gram-Schmidt algorithm gives a map T from almost all of Rn 

onto On. The image of the product measure is Haar measure. 
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. 

Figures 1-4: Five realizations for n = 100 from Haar measure on On, Un, Sn, and  
independent uniform points. 

2 
dx . . . dxi 1 

This is easy to prove and understand. Each row of the original array has density 
1
2proportional to e− x . This  measure  on  Rn is invariant under orthog­n

onal transformations. By inspection, T (MX) =  MT (X) where  X is the original 
array. Hence, P (MT (X) ∈ A) =  P (T (MX) ∈ A) =  P (T (X) ∈ A). A more an­
alytical proof can be found in Eaton [40]. Perhaps more convenient: if an n × n 
matrix of independent Gaussian entries is input to the QR algorithm, the resulting 
orthogonal piece is Haar distributed. See [32] for a survey of constructions of Haar 
measure. 

The same construction works for the unitary group Un using the usual complex 

2
inner product. Here the original entries of the array are chosen as independent, 
standard, complex Gaussian variables with density e−|z| /π on C. 

For any of the groups On, Un, Sn in its standard matrix representation, any ele-
iθ1ment is diagonalizable with all eigenvalues on the unit circle. Call these {e , . . . ,  

eiθn }. The main question to be studied is: pick MεG from Haar measure; how are 
{eiθ1 , . . . , eiθn } distributed? To begin our study, Figures 1 through 3 show eigenval­
ues for five independent realizations from On, Un, Sn when n = 100. Also shown for 
comparison are five realizations of 100 points chosen uniformly and independently 
on the unit circle. 

Figures 1 and 2 are similar. Each shows sets of 100 points neatly arranged 
around the unit circle. There are slight variations, but the points are close to 1/100 
apart. A careful look shows the eigenvalues for On come in complex conjugate 
pairs. In contrast, Figure 4 shows that completely random points have much greater 
variability than the eigenvalues of random matrices. Figure 3 corresponds to the 
symmetric group. It shows neatly arranged points with varying densities. The rest 
of this paper presents a fairly detailed theoretical understanding of these and more 
subtle patterns. Before this, let us pose a basic question. 

WHO CARES? 
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There are many questions; why study these? The next four sections of the 
paper offer motivation; the eigenvalues appear in applied problems of telephone 
encryption (Section One) and in routine statistical work (Section Two). They 
appear in the mathematical understanding of the zeros of Riemann’s zeta function 
(Section Three). They also have remarkable internal properties suggesting study 
for their own sake (Section Four). 

Section Five gives a general picture for understanding and proving things about 
unitary eigenvalues. This uses tools of representation theory. Section Six gives 
pointers to the literature on topics not covered: other ensembles, free probability, 
de Finetti-type theorems, largest eigenvalues and much else. 

As an applied mathematician who is not a physicist, connecting my interests to 
Gibbs’ legacy seemed like an impossible task. Despite my limitations, mathemat­
ical physics runs throughout random matrix theory. The physics of the telephone 
drives the analysis of Section One. Particle scattering directly connects physics and 
random matrices. Szegö’s strong limit theorem was proved in answer to a question 
of Onsager on Ising phase transitions. The first rigorous proof of the equivalence of 
ensembles for Gibbs’ measures can also be understood as a part of random matrix 
theory. Physics illuminates much of mathematics. We hope for the converse. 

I thank my coauthors—Dan Bump, Steve Evans and Mehrdad Shahshahani— 
along with my students—Joe Blitzstein, Marc Coram, Jason Fulman, Eric Rains 
and Kelly Wieand—for their contributions to this work. Thanks, too, to my ran­
dom matrix friends—Percy Deift, Kurt Johansson, Alexei Borodin, Neil O’Connell, 
Andre Okunkov, Craig Tracy and Harold Widom. 

1. Telephone encryption 

My interest in random orthogonal matrices began with an applied problem in 
telephone encryption. While it is well understood how to cryptographically scram­
ble up bits, telephone encryption must make the scrambling commensurate with 
the physics of the telephone and be done rapidly enough to permit normal con­
versation. One scheme due to Aaron Wyner [85] digitized speech into 8-bit blocks 
and treated these as real numbers. Vectors of 256 such blocks can be encrypted 
by rotating with a 256 × 256 random orthogonal matrix. This scrambled vector is 
transmitted, and the receiver decrypts the message by multiplying by the inverse 
matrix. Keeping the length of the signal constant is crucial to practical encryption 
of speech. 

All of this requires a stream of random orthogonal matrices. The Gram-Schmidt 
procedure previously described takes order n3 steps to generate an n × n matrix. 
After all, the rows above the ith have to be removed by an inner product of length 
n. The number of operations is thus of order 

n

in = 0(n 3). 
i=1 

When n = 256, putting in the constants, this algorithm takes approximately 16×106 

operations and is simply too slow to allow natural speech on the telephone. 
Neil Sloane suggested that perhaps approximately random orthogonal matrices 

would be practically as good. He suggested forming an approximately random 
element of On by multiplying a few random reflections: matrices of the form I −
2uuT with u chosen uniformly on the unit sphere. One can multiply a matrix by 
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a reflection in order n2 operations. This raised the following problem: how many 
reflections are required to have an approximately uniform product? Preliminary 
work with Shahshahani [30], brilliantly completed by Rosenthal [83] and Porod 
[79] 1, shows that 2 n log n products are necessary and suffice to achieve approximate 
uniformity. The lower bound of this theorem proceeds as follows: consider a single 
product I − 2uuT . Why isn’t this random on its own? For one thing, it fixes an 
n − 1 dimensional subspace. Similarly, the product of k reflections fixes an n − k 
dimensional subspace. Thus if k is not large enough, the trace of the product will 
be large. This raises the question, how large will the trace of a uniformly chosen 
element of On typically be? We have finally arrived at an eigenvalue question. 

Consider a uniformly chosen matrix MεOn. Its diagonal entries are small num­
bers (about size √

n 
1 ), and different rows should not be too dependent. The basic 

central limit theorem of probability says that if you add up a large number of 
approximately independent random numbers, the sum should be approximately 

2
distributed like the bell-shaped curve e−x /2/

√
2π. Mallows and I were able to 

prove this: 

Theorem. Let M be chosen uniformly in On. Then, as n tends to ∞, 

(1.1) 
2x /2e−t

0,P{tr M ≤ x} −  dt√
2π 

→
−∞ 

uniformly in x. 

This result will be extended and refined in later sections. It implies that no 
matter how large n is, the trace of a random orthogonal matrix is less than three 

n log n+cn random reflections are required to make the trace this small 

Returning to the original telephone encryption problem, the bounds show that 

1 
2 

in absolute value with high probability. Using character theory, it is not hard to 
show that 
under the convolution measure. 

1 n log n + cn reflections suffice to be close to random. If all that is wanted is the 2 
image of a vector following a product of reflections, this is available at cost of order 
n2 log n (it takes order n steps to multiply a vector by a reflection). This gives 
a substantial speedup. In summary, for this example, the eigenvalues of random 
orthogonal matrices came in the back door as a tool for proving lower bounds on 
running times in an applied problem. 

2. Statistics and eigenvalues 

The earliest manifestations of random matrix theory may be the fluctuation 
theory of correlations. Statisticians frequently analyze high dimensional data by 
looking at covariance matrices and their eigen-decompositions into principal com­
ponents. To explain by example [67], consider the scores of 100 pupils on 5 math 
exams through the term. If the ith students’ scores are Xi = (Xi1, . . . , Xi5), then 

5� the data matrix X is the 100 × 5 matrix  with the  Xi as rows. It is natural to look 

at linear functions of the scores, say, γ Xi = γj Xij . The norm one vector γ∗ ·
j=1 

which maximizes the variance of the hundred numbers γ X1, . . . , γ ·X100 is called ·
the first principal component of X . The vector γ∗∗ maximizing variance subject to 
orthogonality to γ∗ is the second principal component, and so on. In the example, 
the first principal component is approximately the average of the five scores, while 
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the second principal component is approximately the difference between the aver­
age of the first two tests and the last three tests. Histograms of the data on these 
first two principal component directions might well be used to assign final grades 
and assess the progress of the class. If we are to look at the patterns in γ∗ and γ∗∗, 
it is natural to ask about their stability. If the data had come out slightly different, 
would the inferences change much? 

It is not hard to see that the principal components are the eigenvectors of a 
suitably scaled version of the 5 × 5 covariance matrix XT X . The variance of the 
data projected onto the maximizing eigendirections are the eigenvalues. If the 
data is a sample from a larger population or modelled as stochastic in other ways, 
understanding fluctuations of the eigenanalysis is random matrix theory. 

In general, n × p data matrices are considered with rows which are indepen­
dent samples from some fixed population. R. A. Fisher and J. Wishart found the 
sampling distribution of XT X when the population is Gaussian. In the 1930’s, 
Wilks, Hsu, Girshick and others derived the joint distribution of the eigenvalues 
and eigenvectors for the Gaussian case. Anderson [5] and Muirhead [70] give a 
normal approximation for the eigenvalues when n is large and p is fixed for general 
distributions for X . The mathematical development, largely due to Alan James, 
is intimately linked to zonal polynomials, the spherical functions associated to the 
action of the orthogonal group O(p) on the positive definite matrices. See [65] for 
details and references. 

Modern statistical work, as applied in areas such as data mining or search en­
gines, deals also with cases with p large. The empirical distribution of the bulk 
of eigenvalues of covariance matrices was studied by Marcenko–Pastur [66]. They 
showed that if n, p ↑ ∞ with n/p → γ, then  

1
(2.1)	

p 
{#e.v. ≤ nt} → G(t) 

with G a distribution function having density 
γ � 

(b − t)(t − a), a  ≤ t ≤ b, a = (1  − γ 
1
2 )2, b  = (1  +  γ 

1
2 )2 .(2.2) g(t) =  

2πt 
These distributions vary considerably in shape with γ. 

Following work of Johansson, Johnstone [58] derived the fluctuation theory of the 
extreme eigenvalues for the Gaussian case. He showed that the largest eigenvalue 
�1 satisfies 

(2.3)	
�1 − µnp 

F1
σnp 

⇒

where denotes weak ∗ convergence, ⇒

1 1 
µnp = (

√
n − 1 +  

√
p)2, σnp = (

√
n − 1 +  

√
p) √ + √

p 

1
3 

(2.4) 
n − 1 

and F1 is the Tracy-Widom distribution 

(2.5)	 F1(s) =  e−
1
2 

2∞ q(x)+(x−s)q
s 

(x)dx , 

where q solves the Painlevé Π  equation  

(2.6) q�� = xq(x) +  2q 3(x), q(x) ∼ Ai(x) as  .x →∞

1 
3 

Here the scaling is non-classical – the standard deviation grows with sample size as 
n . Johnstone has shown that this approximation is useful for n as small as ten. 
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Much of the mathematical work on eigenvalues in statistics was done for Gauss­
ian random variables. Because of the orthogonal invariance of Gaussian vectors, 
the mathematical development is closely related to the orthogonal group. Useful 
surveys of available results for Gaussian and more general populations appear in 
Bai [8] and Muirhead [70]. 

3. Connections with the Riemann zeta function 

There is a surprising, unexplained connection between the eigenvalues of random 
matrices and the zeros of Riemann’s zeta function. We give a brief fresh look at 
this from a statistical point of view, following joint work with Marc Coram [24]. 
Pointers to the large literature are given at the end of the section. 

For complex s with re(s) > 1 the Riemann zeta function is defined by 
∞ � �� 1	 −11

(3.1)	 ζ(s) =  
ns 

= Πp 1 −
ps 

n=1 

where the product is over all primes. The zeta function can be continued to the 
whole complex plane with a simple pole at s = 1. Riemann showed that knowledge 
of the zeros of ζ(s) would give information about the distribution of primes. It is 
known that, except for “trivial zeros” at −2,−4,−6, . . . ,  all the zeros are in the 
critical strip 0 < re(s) ≤ 1. Riemann showed that the number of zeros in the strip 
with imaginary parts between zero and T is 

T T
(3.2) N(T ) =  log

2πe 
+ 0(log  T ) as  T →∞.

2π 

This means that the zeros get denser higher up with local density log 2
T
π 

.T re(s) =  1 2 

at height 
. The Riemann hypothesis says that all the zeros are on the critical line 
We next connect the zeros in a neighborhood of the strip at height T to the eigen­

values of typical unitary matrices in Un. To have the same density of eigenvalues as 
zeros, following an idea of Keating and Snaith [60], [61], choose n=̇ log  2

T
π . In  the  

data to be described below, 50, 000 zeros starting at the 1020 zero are considered. 
=.15 × 1020 and n ˙ ˙Here T ˙ = log  2

T
π =42. To compare the zeros with eigenvalues, 

we wrap blocks of 42 zeros around the unit circle. More precisely, given zeros 
Z1, Z2, . . . , ZN of the form Zj = 1 + iτj with τ1 . . . < τj . . . < τN , form spacing σj = 2 
τj+1 − τj . Split the spacings into disjoint groups of size n + 1. Each group of 
spacings σ1, . . . , σn is mapped onto the unit circle by taking xj = exp(2πi( Δj )) for Δn 

1 ≤ j ≤ n, where  Δj = 
�j	 σn and U is a uniform random variable on [0, 2π]n=1 

chosen independently for each group. 
When N = 50, 000 and n = 42 this gives about 50, 000/43 ̇=1190 different 

wrapped data sets. The claim is that these data sets are distributed like the eigen­
values of matrices chosen from Haar measure on the unitary group U42. This  
well-posed hypothesis was exhaustively tested in [24]. We present a few of the re­
sults here, but the bottom line is that the wrapped zeta data passes virtually all 
the tests thrown at it. 

One approach to testing goodness of fit of the wrapped zeta data to unitary 
eigenvalues is to look at the trace. As explained in the section above 

2(3.3) Pn |TrM ≥ t → e−t uniformly in t as n →∞.| 
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Figure 5. Zeta data Figure 6. Null data 

Figures 5-6: On the left, a histogram of 1190 zeta-function-based 
norm-squared “traces” with the standard exponential density func­
tion superimposed. On the right, a histogram of 1190 independent 
standard exponential random variables. 

For application to the zeta data, n = 42. Work of Johansson, described in fact 
two of Section Four below, shows that the exponential approximation in (3.3) is 
remarkably good. 

Figure 5 shows a histogram of the 1190 “traces” based on the wrapped zeta data 
with the exponential density imposed. To help the reader calibrate, Figure 6 shows 
a sample from a true exponential distribution. The two pictures seem interchange­
able. More formal tests also show the traces match the exponential distribution 
remarkably closely. 

A second test may be based on strange correlations found by Kelly Wieand [96], 
[97]. For 0 < a  < b ≤ 2π let Xab(M) be the number of eigenvalues of M satisfying 
a <  θj < b. Because of the neat distribution of eigenvalues, this random quantity 
has expected value n(b− a)/2π. Wieand shows that 

(3.4) Yab = 
Xab 

−n(b−a)/2π 

log n/π2 
⇒ N(0, 1). 

Thus the fluctuations are at a logarithmic level, and the normalized error follows 
the bell-shaped normal distribution. To understand the limiting process, Wieand 
calculated the correlation between Yab, Ycd. She found that in the large n limit 

Corr(Yab , Ycd) → 

⎧ ⎪⎨ ⎪⎩ 
0 if  ∂(a, b) ∩ ∂(c, d) =  0  
1 if b = c2− 

+ 1 if a = c2 

These are strange correlations. They say that if [a, b] contains [c, d] properly, 
then Yab, Ycd are approximately independent, while if the two intervals share a sin­

1gle endpoint, the limiting variables have correlation ±
found this surprising. (At first I did not think these correlations were positive def­
inite!) In retrospect, the limiting variables make perfect sense. Suppose each point 
θ on the circle is assigned an independent Gaussian variable Zθ with mean zero and 

2 . Experienced probabilists 
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Figure 7. Correlations for 0, π 
4 and + π 

4θ, θ . Solid line is the 
theoretical curve for Haar measure on Un. The circles depict the 
empirical correlations calculated from wrapped zeta data. 

variance . Assign the interval [a, b] to  Zb − Za. These variables have the correla­
tions reported above. Clearly, if the intervals have distinct endpoints, the variables 

1 
2 

Zb −Za and Zd −Zc are independent, while for example: E(Zb −Za)(Zd −Zb) =  −
This being observed, the obvious question is, where is the “white noise” Zθ 

1 
2 . 

hidden in random matrices? A lovely, simple answer was given by Hughes et al. 
[53]. They showed that for each θ, with  M chosen uniformly in Un, 

iθ(3.5) Zn = im log DET (e − M)/ log n/π2 
θ 

has a limiting normal distribution with the limits being independent for different θ. 
Thus the log characteristic polynomial is approximately normal. Using the principle 
of the argument, they showed that Wieand’s results follow. 

With all of this background, let us ask if we can find these strange correlations 
hidden in the zeros of the zeta function. To begin with, Wieand’s results are large 
n limits and here n = 42. A finite sample correlation was calculated by Bump-
Diaconis [20], with uniform approximation available through Bump-Diaconis-Keller 
[21]. The correlations for intervals (0, π 

4 θ, π 
4), ( +θ) are shown in Figure 7. Of course, 

when θ = 0, the correlation is one. As θ varies, the correlation drops, and when 
(so the intervals share an endpoint) it is −

Also shown are the empirical correlations based on the wrapped zeta data. We 

π 
4 

1 
2θ = . 

again see a striking match. The work with Coram reports extensive further testing 
of both specific features and an omnibus test. The upshot is a remarkable fit be­
tween the zeta data and the unitary eigenvalues. The only question to be answered 
now is, where is the operator? 

The first connections between zeta zeros and random matrix theory were drawn 
by Hugh Montgomery following a conversation with Freeman Dyson. Montgomery 
suggested (and roughly proved) that the pair correlations – chance of finding a zero 
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at distance x from a first zero – should match up with the pair correlations of the 
eigenvalues of stochastic Hermitian matrices (GUE) after suitable density adjust­
ment to make the mean spacing one in both cases. Odlyzko [71], [72] carried out a 
remarkable study of data from consecutive zeros and eigenvalues. Marvelous new 
methods were invented for accurate computation of zeros far up. Michael Berry 
posited remarkable correction terms to the Dyson-Montgomery 2-point correla­
tions, and Odlyzko was able to show an amazing match to zeta data. Much of this 
work is carefully reviewed in Conrey [22], Berry and Keating [12] and Katz-Sarnak 
[59]. In particular, the last authors suggest that random matrix theory works for 
general families of L-functions. Keating and Snaith [60], [61] opened a new chap­
ter by suggesting unambiguously that the characteristic polynomial Z(M, θ) =  
n

(1 − eiθj −θ) was a useful surrogate for the zeta function. They showed that mo-
j=1 

ments of the zeta function along the critical line matched moments of Z(M, θ) over  
Un and, in joint work with several sets of coauthors (see e.g. [23]), make remark­
able predictions about zeta behavior which matches data and number theoretic 
heuristics. This has led number theorists to ask even more detailed questions of 
probabilists. For example, to understand the biggest gap between zeros, one would 
like to understand the biggest gap between unitary eigenvalues. This is open at 
this writing. 

4. Five surprising facts 

Another reason for studying the eigenvalues is that the mathematics is surpris­
ing and beautiful. The joint probability density for the eigenvalues of a Haar-
distributed random matrix in Un is well known as the Weyl denominator formula, 

1
(4.1) f2(θ1, . . . , θn) =  

(2π)nn! 
|e iθj − e iθk |2 . 

j<k 

This is a probability density on (0, 2π)n with respect to product Lebesgue mea­
sure. See [47] for the classical derivation. Alas, this elegant, explicit formula is not 
of much use in understanding the distribution of eigenvalues. All one can see is 
that f2 tends to zero as θj and θk approach each other, so the eigenvalues tend to 
repel. Physicists write the product as 

(4.2) e−βH(θ1...θn) with β = 2, H  = − log |e iθj − e iθk |
j<k 

and invoke statistical physics intuition for a “Coulomb Gas” of n repelling electrical 
particles around a circle. 

The following theorems make some of this intuition precise, but show there are 
many surprises hidden in the simple formula (4.1). 

Fact One: The eigenvalues are very neatly spaced (but slightly random). This can be 
seen visually in Figure 2. To interpret the mathematical statement below, note two 
things: First, the sum of n complex numbers equally spaced around the unit circle 
is zero. Second, the sum of n complex numbers put on the unit circle at random 
(independently and uniformly) is of order 

√
n. This follows from the classical central 

limit theorem of probability theory. In joint work with Mallows [29] we proved: 
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Theorem. For M chosen from Haar measure, n large and any ball B ⊆ C, 
2 e −|z|

(4.3) P{Tr(M) ∈ B} ∼  dz. 
πB 

Here the trace is not divided by 
√

n, so the eigenvalues practically cancel out. 
If Br is the ball in C centered at zero with radius r, the right side of (4.3) equals 

2
1 − e−r . 

I still find it mysterious, looking at (4.1) and asking how the cancellation occurs. 
Of course, things do not cancel perfectly. Wieand’s theorem described in Section 
Three above shows that the number of eigenvalues in a fixed interval of the unit 
circle is n times the interval’s length, plus fluctuations of order 

√
log n. 

Fact Two: The traces are amazingly close to Gaussian. Consider the error term in 
the Gaussian approximation to the trace at (4.3). Johansson [56] proved: 

Theorem. There are universal constants c, σ > 0 such that 

dz 
c 

nσn
≤ 

2 e −|z|
P{Tr M ∈ B} −  

πB 

uniformly in Borel sets B. 

People used to the usual error terms in probability find this result fantastic; for 
the classical central limit theorem for the sum of n points randomly put on the unit 
circle, the error is of order n. Here, the error is super-exponential. 

Two closely related findings: 
(a) The moments of the trace equal the normal moments 

2 e −|z|a bM)b dM = z z̄|(4.4) (Tr M)a Tr ( ¯ dz. | | |
π 

The equality (4.4) for all integers a, b smaller than n is joint work with Colin 
Mallows, which is discussed at length in Section Five below. 

(b) An analogous result is proved for the trace of a random permutation matrix. 

Theorem. For Π, a uniformly chosen permutation matrix 
2n 

P {Tr Π ε B} − P (B)| ∼|
(n + 1)!  

1
(4.5) with P (B) =  1/i! for B ⊆ {1, 2, 3, . . .}. 

e 
i∈B 

In summary, the first thoughts suggesting a Gaussian limit for the trace were 
that the trace is the sum of a lot of small, approximately uncorrelated random 
terms. While this is true, there is some mysterious global constraint that forces the 
high order contact with the Gaussian law. 

Fact Three: Higher order traces go from order to chaos. In investigating the fine 
structure of the eigenvalues, traces of higher powers are studied. In joint work with 
Shahshahani [32] discussed in Section Five below, we proved: 

Theorem. For M chosen from Haar measure on Un, for  j fixed and n ↑ ∞, 

P{Tr(M j) ∈ B} → P{ j Z  ∈ B} 

with Z a standard complex Gaussian variable. 
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As j increases, 
√

jZ becomes more spread out. Eric Rains [80] proved that a 
kind of phase transition occurs for j ≥ n. 

Theorem. Let M be chosen from Haar measure on Un. For any n, and  any  j ≥ n, 
the eigenvalues of M j are exactly distributed as n points chosen independently and 
uniformly on the unit circle. 

. I find the contrast between facts one, 
two and three unsettling. I still have no mental picture that explains how these 
can all hold. I have tried to think about generating Haar-distributed eigenvalues 
by putting down n uniform points independently and taking appropriate nth roots. 
Rains’ result can be demystified slightly by computation: 

M no Mn 

1 
n 

Thus high powers of have structure in their eigenvalues. The trace of 
is approximately Gaussian, but with error 

The joint mixed moments of the eigenvalues of M j are � n

eijθk (bk −ak ) f2(θ1, . . . , θk) dθ1, . . . , dθn. 
k=1 

Expanding f2 from (4.1) as a polynomial, we see that for j ≥ n we get zero unless 
bk = ak for 1 ≤ k ≤ n. These are just the joint mixed moments for independent 
uniform points. 

Rains [80] proved similar results for all the classical compact Lie groups. There is 
a subtlety here. Take the orthogonal group O2n. The eigenvalues come in conjugate 
pairs, and this is preserved for powers. Rains shows that for suitably large j the 
eigenvalues of M j are exactly distributed as n random points and their conjugates. 

Some light on these strange doings follows from work of Forrester-Rains [42], 
Haake [49] and Rains [81]. For simplicity, consider M chosen from Haar measure 
on U2n. They  prove  that  for  all  n, the eigenvalues of M2 are exactly distributed 
as the union of two independent sets of eigenvalues from M1, M2 chosen from Haar 
measure on Un. Similarly, the eigenvalues of M3 ∈ U3n are exactly distributed as 
the union of eigenvalues of M1, M2, M3 independently chosen in Un. Their final 
result has no divisibility requirements and applies for all powers j. It  shows  that  
the eigenvalues of Mn ∈ Un are exactly distributed as independent points from U1. 

These extra facts compound the mystery. 

Fact Four : Neat marginals. 

The foundations of random matrix theory were laid out in a great series of papers 
by Dyson [38], [39], who labeled the unitary ensemble CUE (Compact Unitary 
Ensemble). Dyson showed that the marginal distribution of n eigenvalues has a 
neat form. Physicists call these “n-point correlations” for mysterious historical 
reasons (they are not correlations!). Thus f2 from (4.1), which could be written 
f2 

n, is  the  n-point distribution. Informally, f2 
k(θ1, . . . , θk) is the probability density 

for an eigenvalue in dθ1, dθ2, . . . , dθk from a Haar-distributed matrix in Un. The  
elegant fact (due to Dyson) is a simple, closed-form formula: 

f2 
k(θ1 . . . θk) =  DET  

sin(n(θa − θb)) 1 ≤ a, b ≤ k.
sin(θa − θb) � �2 

sin n(θ1−θ2)For example, f1 = Constant, f2 = 1  − sin(θ1−θ2) 
. 

Maachi [63], [64] created a general theory for point processes with k-point dis­
tributions having determinental form. See Daley-Verre-Jones [25] for a concise and 
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very readable treatment of point processes and Macchi’s work. Soshnikov [88] gives 
a marvelous survey showing how surprisingly many ensembles admit neat determi­
nental forms, and how a wide variety of limit theorems can be proved from these 
forms. Following work of Macchi, Diaconis-Evans [34] survey developments where 
determinants are replaced by permanents or immanents. 

Fact Five: The Toeplitz connection. 

I find the following connection surprising. Shahshahani and I proved that if M 
is chosen from Haar measure on Un, the trace of successive powers has limiting 
Gaussian distributions. As n →∞, for any fixed k and Borel sets B1, . . . , Bk 

k

(4.6) P (TrM ∈ B1, . . . , TrMk P ( j Z  ∈ Bj ) 
� 

)B∈ k → 
j=1 

with Z a standard complex Gaussian variable. 
In a seemingly very different sphere, G. Szegö derived the limiting asymptotics 

for the eigenvalues of Toeplitz matrices. This is a rich subject, and I will not 
try to develop it in detail. Böttcher and Silbermann [17] is a remarkably good 
introduction. Briefly, a Toeplitz matrix is an n × n matrix with complex entries 
which are constant down the main diagonals, such as ⎤⎡ ⎢⎢⎣ 

a b c d  
e a  b c  
f e  a  b  
g f  e  a  

⎥⎥⎦ 
Szegö determined the asymptotics of the determinants of a sequence of Toeplitz � 2π 

g(j−k) where  ̂ 1 imθ) dθmatrices Tn(g) constructed with (j, k) entry  ̂ g(m) =  2π g(e
0 

is the Fourier transform of a function on the unit circle. 

Theorem (Strong-Szegö). 
∞

−∞ 

Then 

f̂ (k)iθ ) =  e f (e iθ ) 2with (4.7) Let g(e k < ∞|| | | . 

f̂(0)+ k=1 f (k)f (−k)k+o(1)∞nDET Tn(g) =  e . 

Szegö’s theorem has dozens of variations and applications from time series and 
electrical engineering to the first proof of phase transitions in the Ising model. 

oGrenander-Szeg¨ [48] is a classical, readable overview of this material, as is Chap­
ter Five in Böttcher-Silbermann [17]. 

The point of the present presentation is that (4.6) and (4.7) seem completely 
unconnected, and yet they are easily equivalent. The key connection is a classical 
determinant identity of Heine and Szegö. 

f (e iθ ),Proposition. For f as above and g = e

1 
� 2π � 2π n

f (e iθj ) iθa iθb− e 2 dθ1 . . . dθn = Tn(g).(4.8) | |e e. . .
(2π)n 

0 0 j=1 1≤ a≤ b≤ n 
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It is not hard to see this directly; expand the determinant on the right side as a 
sum of products of n terms. Each term is a Fourier transform, and so the product 
is an n-fold integral of the same form as the left side. Recognizing a Vandermonde 
and elementary manipulations complete the proof. Alternatively, in joint work with 
Bump [20], we have shown that (4.8) follows from the classical Jacobi-Trudi identity 
of symmetric function theory. 

With (4.8) established we can now see the equivalence of (4.6) and (4.7). Begin 
with (4.6). This is a limit theorem for the traces. Passing to Fourier transforms, 
let 

k

f(e iθ) =  aj cos(jθ) +  bj sin(jθ). 
j=1 

iθ1 iθnThen, for M ∈ Un with eigenvalues e , . . . , e

n
iθj ).a1re Tr(M) +  b1im Tr(M) +  . . .  + ak re Tr(Mk) +  bkim Tr(Mk) =  f(e


j=1


We will use aj , bj as transform variables. Noting next that the transform of a 
Gaussian variable 

√
jZ = 

√
j(X + iY ) is  

2 j√
j(ax+by)−x −y 2 dxdy 

4 (a 2+b2)e = e ,
π 

we see that the limiting normality of (4.6) is equivalent to convergence of the trans­
forms ⎛ ⎞ 

1 � 
f (e iθ1 ) 

� k
2 + b2 

j )⎠(2π)n 

� 
. . .  

� n

e |e iθj −e iθk |2 dθ1 . . . dθn → exp 
� j

.⎝ 
4
(aj 

j=1 1≤j<k≤n j=1 

o’s theorem for the trigonometric polynomial f . Thus Szeg¨This is just Szeg¨ o’s 
theorem implies (4.6). Conversely, (4.6) shows the Fourier transforms converge, 
and so Szegö’s theorem holds for trigonometric polynomials. It is not hard to pass 
to the limit and derive the result for general f . 

There are many proofs of Szegö’s theorem in the references above. Johansson 
[55] gives a careful development of the asymptotic analysis required to go from 
polynomials to more general functions. 

The present approach leads to straightforward generalizations in two directions. 
First, the limiting normality of traces of powers for other groups such as On or 
SP2n gives Szegö-type theorems for determinants with entries the coefficients of 
expansions in Jacobi polynomials. To be fair, these are classically known [52]. A 
second generalization was determined in joint work with Bump [20]. This gives 
asymptotics for the determinants of Toeplitz minors. These seem new, but closely 
related work has been done by Tracy-Widom [94]. 

Here is a simple example. Let λ be a partition of m. Define the Toeplitz minor 

n (g) =  det (ˆT λ g(λi − i + j)1≤i, j≤n. 

Then, for λ fixed and n →∞, and  g = ef as in (4.7) 
∞

T λ 
n (g)/Tn(g) ∼ 

1 
x λ(σ) (kf̂(k))γn (σ). 

m! 
k=1σ∈Sm 
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Here the sum is over the symmetric group Sm, xλ(σ) is the irreducible character 
associated to λ, and  γn(σ) is the number of cycles of length k in σ. The minor 
T λ 

n (g) is obtained from the original Toeplitz matrix by striking the first λ1 columns, 
keeping the first row but striking the next λ1 − λ2 rows, keeping the next row and 
so on. For example, when λ = (1) the minor is obtained by striking the first column 
and the second row, and the right side is f̂(1). It seems strange that characters 
appear. See [20] for extensions. 

A third benefit of the present approach: it offers some explanation for the form 
∞

kf̂(k)f̂(−k) in the Szegö corrections. The k appears because var (Mk) =  k. 
k=1 

I do not want to leave this area without pointing to a beautiful related devel­
opment due to Estelle Basor. She has derived the limit theory for the spectrum of 
a variety of operators of Hankel, Toeplitz and mixed-type in sweeping generality. 
Her results are paired with Gaussian limit theorems of the same flavor as those of 
this section. A readable survey with extensive references is in [10], [11].

I do not feel we understand the parallel between (4.6) and (4.7). The determinant 
identity seems like a magic trick! 

5. A general approach 

A general approach to studying unitary eigenvalues has gradually been devel­
oped. This begins in joint work with Mallows [29] and Shahshahani [32]. The 
present refined account was developed with Steve Evans [33]. 

For Mn ∈ Un with eigenvalues {eiθj }, let  Ξn be the measure on the unit circle 
T which puts mass one at each eigenvalue. We may study Ξn via linear, quadratic, 

f̂j e
ijθ . . . ,  functionals. Thus if f : T C has Fourier expansion f(eiθ ) =→ 

j∈Z 

n

(5.1) Ξn(f) =  f(e iθj ) =  nf̂0 + 
∞

f̂j Tr(M j
n).n) +  

∞
f̂−j Tr(M j 

j=1 j=1 j=1 

The key to studying such functionals is an explicit formula for the joint mixed 
moments of the traces. It was proved in joint work with Evans and Shahshahani. 

Proposition. (a) Consider a = (a1, . . . , ak) and b = (b1, . . . , bk) with aj , bj ∈ 
{0, 1, 2, . . .}. Let  Z1, Z2, . . . , Zn be independent standard complex normal random 
variables. 

k k


Then, for n ≥ max ( jaj , jbj )

1 1 � k� k

n)aj (TrM j
bj � 

(trM j
n) dMn = δab jaj aj ! 

Un j=1 j=1 

k

= E ( jZj )aj ( jZ̄ 
j )bj . 

j=1 

n) Tr(Mk(b) For any j, k, Tr(M j
n )dMn = δjk min (j, k). 

The proof of this proposition is basic Schur-Weyl duality. First, introduce 
the power sum symmetric functions Pj (x1, . . . , xn) =  xj + . . .  + xj and for µ an1 � ajpartition of some integer K with ai parts equal to i, let  Pµ = j Pj . Since  
TrM j = Pj (eiθ1 , . . . , eiθn ), the left side in (a) is  < Pµ, Pν > for the inner product n 
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given by integration over Un. The power sums form a basis for the homogeneous 
symmetric polynomials of degree K in x1, . . . , xn. A second basis is given by the 
Schur functions sλ. All needed properties are in MacDonald [65] or Stanley [89]. 
The two key properties for present purposes are: 

(5.2) Orthogonality: �sλ, sτ � = δλτ δ�(λ)≤n for any partitions λ, τ with �(λ) the  
number of parts in λ. 

(5.3) Schur-Weyl Duality: For any partition µ of K, 

Pµ = χλ sλµ

λ�K 

where the sum is over partitions of K, and  χλ is the irreducible character of the µ 

symmetric group SK associated with λ on the µth conjugacy class. 
Using these formulae we simply compute: If µ is a partition of K and ν is a 

partition of L, 

χτ�Pµ, Pν � = χλ sλ, r sτµ

τ �L � λ�K 

µ τ δ(�(λ) ≤ n).= δKL χλχλ 

λ�K 

When K ≤ n, all partitions of K appear and the second orthogonality relation 
for characters shows our expression equals 

K

δKLδµν jaj aj ! =  δab jaj aj ! 
j=1 

This last equals the joint mixed moments of 
√

jZj by an easy calculation. This 
proves (a). To prove (b), observe that the calculation above gives, for any j, k, 

n)Tr(MkTr(M j
n )dMn = δjn |χλ 

(j)|2δ(�(λ) ≤ n). 
λ�j 

Here χλ is the character of a j-cycle. These are explicitly known. They are zero (j) 

unless λ is a hook shape and (−1)�(λ)−1 if λ is a hook shape. Now (b) follows. 
The proposition shows that Tr(M j 

n) behaves asymptotically like 
√

jZj , and  one  
can then plug into Fourier series expansions. My work with Evans exploits this 
carefully for a variety of functionals. Of course, care is needed in bounding the tail 
of these sums and that is where (b) comes  in.  

1 
2 
2 

Here is one carefully stated example: 
f̂jdenote the space of functions f in L2(T ) such that � f �2 1

2 
= 2Let H j| <| | |

j∈Z 
1
2 
2 

1
2 ; H2zjFor example, f(z) =  is precisely the functions such that ∈ H∞.� 

f̂(n)
√

nZn converges almost surely, where Zn 

plex Gaussian variables. 
are independent, standard, com­

1
2 
2 with f̂i(0) = 0, 1 ≤ i ≤ k, then the random 

jointly normal, centered 
Proposition. If f1, f2, . . . , fk ∈ H 
vector (Ξn(f1), . . . , Ξn(fk)) converges in distribution to a 
random vector (V1, V2, . . . , Vk) with E(VaVb) =< fa, fb > 1

2 
. 
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This proposition shows there is a limiting Gaussian field indexed by H 
1
2 
2 naturally 

associated with unitary eigenvalues. As discussed in Diaconis-Evans [33], [35], the 

Hilbert space H 
1
2 
2 of “ 1 differentiable functions” or functions of “finite energy” 2 

appears in many contexts, and it is natural to seek an explanation for its appearance 
here. This is lacking at present. 

Let PMn (Z) =  det(Mn − Iz) be the characteristic polynomial of Mn ∈ Un. Then  
n

P � /PMn = (z − eiθj )−1 = 
∞

Tr(M j 
n)zj . From the proposition, this random Mn


j=1 j=1


power series converges in distribution to the random analytic function 
∞

G(z) =  jZj z
j |z| < 1 

j=1 

where the Zj are independent, standard Gaussian random variables. With a bit 
more work, one can check that this convergence occurs in the space of continuous 
C-valued functions on {z ∈ C : z < 1} in the topology of uniform convergence on | |
compacts. 

Random analytic functions like G have been intensely studied, and one can show 
that G takes all values in C infinitely, often with probability one. More precise 
statements are in [33]. Figure 8 shows a plot of the size of P � /PMn for a single  Mn 

random choice of Mn when n = 100. The zeros show up as the tree-like shape, and 
the original eigenvalues show up as the crosses on the unit circle. Figure 9 shows 
a similar plot of G(z). Similar tree-like shapes appear when the plots are based on 
the zeta zeros as explained in Section Three. 

This section shows how functions of the eigenvalues can be studied using traces. 
The method works for non-smooth functions such as the number of eigenvalues in 
an interval and for functions of several eigenvalues. 

There are other approaches available as well. Soshnikov [86] gives a determinen­
tal expression for the Laplace transform of a linear statistic and uses it to derive 
Gaussian limits such as the proposition above. Hughes and Rudnick [54] use Sosh-
nikov’s method to derive non-Gaussian limit theorems for the number of eigenvalues 
in intervals of length 1/n. 

Adler and Van Moerbeke [1], [2], [3] have studied the eigenvalues by studying the 
joint Laplace transform of the traces of all powers. They show the transform satisfies 
a hierarchy of non-linear equations with Virasoro constraints, similar to the well-
studied Toda lattice. This puts them into the well-studied territory of integrable 
systems, and some of the remarkable tools developed there can be used to get novel 
asymptotics and even simple recursions for quantities, like the distribution of the 
length of the longest increasing sequence in a random permutation. 

The eigenvalues can also be studied by looking at the joint distribution of the 
coefficients of the characteristic polynomial. This is instituted in Haake [49]. Of 
course, the coefficients are just the elementary symmetric functions in the eigen­
values, and the traces are the power sum symmetric functions. Change of basis 
formulae between these two sets of symmetric functions give some information. For 
example, Alex Gamburd and I have shown that the kth moment of the jth coeffi­
cient equals the number of k × k “magic squares” with all row and column sums 
equal to j. Nonetheless, the coefficients of the characteristic polynomial are less 
tractable than the traces – the limiting distribution of e.g., the middle coefficient, 
is not known at this writing. 
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Figure 8. A realization of P � /PMn for Mn drawn from Haar on Mn 

Un and n = 100 is depicted here. The grayscale indicates the tanh 
of the absolute value of real part of this function. 
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Figure 9. A realization of the random analytic function G(z) 
(truncated to 1000 terms) is depicted here. The grayscale indicates 
the tanh of the absolute value of real part of this function. 
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6. Some topics not covered 

I want to point readers to three rich, related areas. The first “enumeration” sets 
the present topic in a much broader context: study a group through understanding 
what “typical elements” look like. The second “free probability” is a growing set of 
tools to answer questions like: “Suppose you know the eigenvalues of each of two 
symmetric matrices. For typical matrices, what can you say about the eigenvalues 
of their sum?” The third topic describes a different application of random matrix 
theory to de Finetti’s theorem in statistics and the equivalence of ensembles. To 
keep with the title of this section, the treatment is brief. 

6.1. Enumeration. One way of understanding a group is to ask about the prop­
erties of typical elements. For the symmetric group Sn this is actively developed 
as the subject of permutation enumeration. Thus consider the following questions: 

Pick w ∈ Sn at random: 
•	 How many fixed points does w have? 
•	 How many cycles? 
•	 What is the length of the longest cycle?


What is the order of w (smallest k so wk = 1)? 
• 

All of these questions only depend on w through its conjugacy class – they 
are invariant under irrelevant relabeling. The results are given in terms of the 
proportions of permutations: 

•	 P {FP (w) =  j} = 1 1 + O 2n 

Monmort (1708) � e j! � n! 

P # cycles−(log n) ≤ x 
� x 

e−t2/2 dt• √
log n 

→ −∞ 
√

2π 
Goncharov (1942) 

.AV length of longest cycle is cn with c = .624... Shepp-Lloyd (1966) 
log order(w)−(log n)2/2P 3 ≤ x 

� x 2/2 dt Erdös-Turan (1965) • 
((log n)/3) 2 

→ −∞ e
−t √

2π 

These theorems give a good feel for the behavior of typical permutations. Related 
questions also arise in practical statistical problems [28] and in the analysis of the 
running time of computer algorithms. The results on the length of the longest cycle 
explain the fluctuations in the density of Figure 3 above. 

As an abstraction, let G be a finite or compact group. Pick g ∈ G from the 
uniform distribution. One may ask for the limiting distribution of the conjugacy 
class containing g. All of the problems discussed in the bulk of this paper are of 
this type. Indeed, two unitary matrices are conjugate if and only if they have the 
same eigenvalues. Of course, put this bald way, the question seems strange. It is 
an empirical fact that the general question seems to lead to elegant mathematics 
which has surprisingly useful consequences. A marvelous survey, making just these 
points and verifying them on finite groups of Lie type, is given in Fulman [43]. 

With all this evidence, what are you waiting for? Go get a group you’d like to 
learn about and try a simple case. 

6.2. Eigenvalues of typical conjugates. How are the eigenvalues of a sum of 
symmetric matrices related to the eigenvalues of the summands? Of course, the 
traces add up, and an amazing host of further inequalities are satisfied. The exact 
determination of these inequalities is a great achievement of modern mathematics. 
Fulton [44] gives an inspiring account. These theorems give extreme or worst case 
bounds. 
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The calculus of free probability may be presented as the typical case answer. 
Thus let Σ1, Σ2 be real symmetric matrices with eigenvalues {λ1

� , . . .  , λ�n}, 
1 , . . . , λ

��{λ�� n}. Conjugate Σ1 and Σ2 by randomly chosen orthogonal matrices. The 
eigenvalues of the sum will now be random, and their distribution can be described 
via the free convolution of λ� and λ��. Here is a specific example drawn from the 
splendid introduction of Biane [13]. Let n = 2m be even. Choose an m-dimensional 
subspace at random (uniformly) and let Σ1 be the matrix for projection onto this 
subspace. Thus, Σ1 has m zero eigenvalues and m eigenvalues equal to one. Let 
Σ2 be independently formed in a similar way. How are the eigenvalues of Σ1 + Σ2 

distributed? Free probability shows that for large n, 
x# e.v.(Σ1 + Σ2) 1 

P 
n 

≤ x → 
0 π 

� 
t(1 − t) 

dt. 

This striking result is the tip of a remarkable set of results and tools which are 
rapidly becoming a major area of probability and functional analysis. 

Free probability was created by Dan Voiculescu to answer questions in Von Neu­
mann algebras. It is not known if the Von Neumann algebras associated to the free 
groups on 2-generators and on 3-generators are isomorphic. Voiculescu hoped to in­
troduce an entropy-like invariant to distinguish these cases. Voiculescu’s summary 
[95] is replete with many pointers to the huge emerging literature. 

6.3. Beyond eigenvalues. The eigenvalues capture the coordinate-free aspects of 
a matrix. A different set of properties is captured by the actual matrix entries. 
Consider the following result: 

Theorem (E. Borel). Pick Γ from the uniform distribution on the orthogonal group 
On. Then  

P {
√

n Γ11 ≤ x} →  
x 

2
e−t /2dt. 

−∞ 

Borel [15] proved the result in studying “Equivalence of Ensembles” in statistical 
mechanics. There, the “microcanonical distribution” is a suitable uniform distri­
bution U(dx) on the constant energy surface {x ∈ RN : H(x) =  h∗}. One  can  
predict properties by calculating averages as f(x)U(dx). Maxwell, Boltzmann 
and Gibbs also considered a canonical measure Uβ(dx) =  Z−1e−βH(x)dx on RN 

with β chosen so H(x)Uβ(dx) =  h∗. The equivalence of ensembles asserts that 
(under conditions) 

f(x) U(dx) � f(x) Uβ(dx), 

2 2when N is large. Borel took the simplest case: H(x) =  x + + xN . Then the 1 · · ·
microcanonical measure becomes uniform on the sphere, and the canonical measure 
becomes product Gauss measure. Taking f to be a continuous function depending 
only on x1 and using the fact that the first row of a random orthogonal matrix 
is Haar-distributed show that the stated theorem on matrices gives a version of 
equivalence of ensembles. 

Borel himself, followed by Paul Levy and others, extended the result to functions 
depending on many coordinates. In joint work with D’Aristotle, Eaton, Freedman, 
Lauritzan and Newman, this result has been extended and applied to give a va­
riety of results in mathematical statistics [7], [36], [37]. The results show that in 
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a suitable sense, the entries {
√

n Γi,j } are jointly distributed as independent stan­
dard Gaussian variables. While this is true in a suitable sense (arbitrary linear 
combinations), it is not true for the eigenvalues. The eigenvalues of Γ ∈ On lie 
on the unit circle. The eigenvalues of a matrix of independent Gaussian variables 
fill out the disc with radius 

√
n uniformly, with order 

√
n on the real axis [8], [41]. 

Determining the right class of functions for equivalence of ensembles is still an open 
problem. 

The behavior of the matrix entries under conjugation by a random unitary matrix 
has been studied by Pickrell [78], Olshansky-Vershik [77], and Borodin-Olshansky 
[16]. Their interest is in the representation theory of the injective limit U(∞). 
Results are often proved by passage to the limit from U(n). Their elegant results 
are too rich to state completely, but for a broad class of examples, the resulting 
conjugation is approximately a constant times the identity when the dimension is 
large. 

6.4. Topics really not covered. The present paper is based on my Gibbs Lecture 
but incorporates a few recent developments. The field of random matrix theory has 
had an explosive growth. Much of this has been on the distribution of the largest 
eigenvalue of random symmetric or Hermitian matrices. There have been many 
fine surveys. The work of Baik-Deift-Johansson on an integrable systems approach 
to largest eigenvalues and the longest increasing subsequence of a random permu­
tation is surveyed in [27]. The work of Tracy-Widom on a wide variety of random 
matrix results and applications using Painlevé transcendents is surveyed in [90], 
[91] and [92], [93]. The work of Adler-Van Moerbeke linking random matrices to 
Virasoro algebras and much else is surveyed in [3]. For work of Okounkov, con­
necting random matrices and random permutations through Riemann surfaces, see 
[75]. A wonderful connection between classical queuing theory, tableaux combina­
torics and random matrix theory has been developed by Bougerol-Jeulin [18] and 
by O’Connell-Yor [74]. I have not really touched on the physical applications of 
random matrix theory, though Mehta [68] and Bohigas et al. [14] give extensive 
pointers. Similarly, I lament not describing the many interactions with algebraic 
combinatorics. See [4], [43], [51]. Many of the results stated here for unitary matri­
ces are “universal”, applying to many other matrix ensembles (just as the central 
limit theorem): see Tracy-Widom [93] for an overview of the many great results. I 
have focused on eigenvalues of unitary or Hermitian matrices. There are remark­
able probabilistic theorems for non-Hermitian matrices. See [8] and [45], [46] for 
pointers. 

I hope I have given a picture of a thriving zoo with a wealth of novel findings 
that touch many areas of pure and applied mathematics. 
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Inst. Henri Poincaré, 1987, 23, 397–423. MR 88f:60072 

[37] Diaconis, P.; Eaton, M.; Lauritzan, S., Finite deFinetti Theorems in Linear Models and 
Multivariate Analysis. Scand. Jour. Statist. 1992, 19, 289–315. MR 94g:60065 

[38] Dyson, F., Statistical Theory of the Energy Levels of Complex Systems, I, II, III. J. Math. 
Phys. 1962, 3, 140–156, 157–165, 166–175. MR 26:1111, MR 26:1112, MR 26:1113 

[39] Dyson, F., Correlations Between Eigenvalues of a Random Matrix. Comm. Math. Phys. 1970, 
19, 235–250. MR 43:4398 

[40] Eaton, M., Multivariate Statistics; Wiley: New York, 1983. MR 86i:62086 
[41] Edelman, A.; Kostlan, E.; Shub, M., How Many Eigenvalues of a Random Matrix Are Real? 

Jour. Amer.  Math. Soc.  1994, 7, 297–267. MR 94f:60053 
[42] Forrester, P.; Rains, E., Inter-Relationships Between Orthogonal, Unitary and Symplectic 

Matrix Ensembles. MSRI Publications 2001, 40, 171–207. MR 2002h:82008 
[43] Fulman, J., Random Matrix Theory Over Finite Fields. Bull. Amer. Math. Soc. 2002, 39, 

51–86. MR 2002i:60012 
[44] Fulton, W., Eigenvalues, Invariant Factors, Highest Weights and Schubert Calculus. Bull. 

Amer. Math. Soc. 2000, 37, 209–249. MR 2001g:15023 
[45] Fyodorov, Y.; Khoruzhenko, B.; Sommers, H., Universality in the Random Matrix Spectra in 

the Regime of Weak Non-Hermiticity. Ann. Inst. Henri Poincar´ eorique 1998,e: Physique Th´

68, 440–489. MR 99i:60080


[46] Goldsheid, I.; Khoruzhenko,	 B., Eigenvalue Curves of Asymmetric Tri-Diagonal Random 
Matrices. Electronic Jour. Probab. 2000, 5, Paper 16. MR 2002j:82061 

[47] Goodman, R.; Wallach, W., Representations and Invariants of the Classical Groups. Cam-
bridge Press: Cambridge, 1998. MR 99b:20073 
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