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Summary 

A stronger result on the limiting distribution of the eigenvalues of random Hermitian 
∗matrices of the form A+XTX , originally studied in Marčenko and Pastur [4], is presented. 

Here, X (N×n), T (n×n), and A (N×N) are independent, with X containing i.i.d. entries 
having finite second moments, T is diagonal with real (diagonal) entries, A is Hermitian, 
and n/N → c >  0 as  N → ∞. Under addtional assumptions on the eigenvalues of A 

and T , almost sure convergence of the empirical distribution function of the eigenvalues of 
A + XTX∗ is proven with the aid of Stieltjes transforms, taking a more direct approach 

than previous methods. 
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∗1. Introduction. Consider the random matrix XTX , where  X is N × n containing 

independent columns, and T is n × n Hermitian, independent of X. Several papers have 

dealt with the behavior of the eigenvalues of this matrix when N and n are both large but 
having the same order of magnitude (Marčenko and Pastur [4], Grenander and Silverstein 

[2], Wachter [6], Jonsson [3], Yin and Krishnaiah [8], Yin [7]). The behavior is expressed 

in terms of limit theorems, as N → ∞, while n = n(N) with n/N → c >  0, on the 
∗ ∗ 

empirical distribution function (e.d.f.) FXTX  of the eigenvalues , (that is, FXTX  (x) is  
∗the proportion of eigenvalues of XTX ≤ x), the conclusion being the convergence, in 

∗ ∗some sense, of FXTX  to a nonrandom F . The spectral behavior of XTX is of significant 
importance to multivariate statistics. An example of the use of the limiting result can be 

found in Silverstein and Combettes [5], where it is shown to be effective in solving the 

detection problem in array signal processing when the (unknown) number of sources is 
sizable. 

The papers vary in the assumptions on T , X, and the type of convergence (almost 
sure, or in probability), maintaining only one basic condition: FT converges in distribution 

(weakly or strongly) to a nonrandom probability distribution function, denoted in this 
paper by H. However, the assumptions on X share a common intersection: the entries of √ 

NX  being i.i.d. for fixed N , same distribution for all N , with unit variance (sum of the 

variances of real and imaginary parts in the complex case). 
In Marčenko and Pastur [4] and Grenander and Silverstein [2], only convergence in 

probability (at continuity points of F ) is established. The others prove strong convergence. 
It is only in Yin and Krishnaiah [8] and Yin [7] where T is considered to be something 

other than diagonal, although it is restricted to being nonnegative definite. The weakest 
assumptions on the entries of X are covered in Yin [7]. All others assume at the least a 

moment higher than two. A minor difference is the fact that only Marčenko and Pastur [4] 
and Wachter [6] allow for complex X; the proofs in the other papers can easily be extended 

to the complex case. 
Only Marčenko and Pastur [4] considers arbitrary H. The others assume H to have 

all moments, relying on the method of moments to prove the limit theorem. These proofs 
involve intricate combinatorial arguments, some involving graph theory. On the other 
hand, the proof in Marčenko and Pastur [4] requires no combinatorics. It studies the 

limiting behavior of the Stieltjes transform 

1 ∗ 

dFXTX  mXT  X∗ (z) =  (λ)
λ − z 

∗ 
of FXTX  , where  z ∈ C+ ≡ {z ∈ C : Imz  >  0}. A function in z and t ∈ [0, 1] is 
constructed which is shown to converge (in probability) to a solution of a nonrandom first 
order partial differential equation (p.d.e.), the solution at t = 1 being the limiting Stieltjes 
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transform. Using the method of characteristics, this function is seen to be the solution to a 

certain algebraic equation. Before presenting this equation, it is appropriate to mention at 
this point that Marčenko and Pastur [4] considered a more general form of matrix, namely 

A + XTX∗, where  A is N × N Hermitian, nonrandom, for which FA converges vaguely, 
as N → ∞, to a (possibly defective) distribution function A. Letting m(z) denote the  

Stieltjes transform of F , and  mA(z) the Stieltjes transform of A, the equation is given by 

(1.1)	 m(z) =  mA z − c 
τdH(τ) 

.
1 +  τm(z) 

It is proven in Marčenko and Pastur [4] that there is at most one solution to the p.d.e., 
implying (1.1) uniquely determines the limiting distribution function via a well-known 

inversion formula for Stieltjes transforms. 
The main purpose of the present paper is to extend the result in Marčenko and Pastur 

[4], again with the aid of Stieltjes transforms, to almost sure convergence under the mild 

conditions on X assumed in Yin [7], at the same time weakening the assumptions on T 

(assumed in Marčenko and Pastur [4] to be formed from i.i.d. random variables with d.f. 
H) and  A. Although some aspects require arguments of a more technical nature, the 

proof is more direct than those mentioned above, avoiding both extensive combinatorial 
arguments and the need to involve a p.d.e. By delineating the roles played by basic matrix 

properties and random behavior, it provides for the most part a clear understanding as to 

why the e.d.f. converges to a nonrandom limit satisfying (1.1). 
It is remarked here that the approach taken in this paper is currently being used 

as a means to extend the result to arbitrary T , and to investigate the convergence of 
individual eigenvalues associated with boundary points in the support of F (see Silverstein 

and Combettes [5]). 
The remainder of the paper is devoted to proving the following. 

Theorem 1.1. Assume 

a) For N = 1, 2, . . .  XN = (  √1
N 

XN 
ij ∈ C, i.d. for all N, i, j, independent ij ), N × n, XN


across i, j for each N , E|X1

1 1  − EX1 |2 = 1.  1 1

b)	 n = n(N) with n/N → c >  0 as  N →∞. 

c)	 TN = diag(τ1 
N , . . .  , τN ), τN ∈ R, and the e.d.f. of {τ1 

N , . . .  , τN } converges almost n i	 n 

surely in distribution to a probability distribution function H as N →∞. 

∗d)	 BN = AN + XN TN XN , where  AN is Hermitian N × N for which FAN converges 
vaguely to A almost surely, A being a (possibly defective) nonrandom d.f. 

e) XN , TN , and  AN are independent. 
Then, almost surely, FBN , the e.d.f. of the eigenvalues of BN , converges vaguely, as 

N →∞, to a (nonrandom) d.f. F , whose Stieltjes transform m(z) (z ∈ C+) satisfies (1.1). 
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The proof is broken up into several parts. Section 2 presents matrix results, along 

with results on distribution functions. The main probabilitistic arguments of the proof 
are contained in section 3. The proof is completed in section 4, while section 5 provides a 

simple proof of at most one solution m(z) ∈ C+ to (1.1) for z ∈ C+ . 
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2. Preliminary Results. For rectangular matrix A let rank(A) denote the rank of A, 
and for positive integers i ≤ rank(A), let sA be the ith largest singular value of A. Define i 

sA to be zero for all i >  rank(A). When A is square having real eigenvalues, λA will denote i i 

the ith largest eigenvalue of A. For  q ∈ CN , �q� will denote the Euclidean norm, and �A� 
A λAA∗the induced spectral norm on matrices (that is, �A� = s = 1 ).1 

For square C with real eigenvalues, let F C denote the e.d.f. of the eigenvalues of C. 
The measure induced by a d.f. G on an interval J will be denoted by G{J }. 

The first three results in the following lemma are well-known. The fourth follows 
trivially from the fact that the rank of any matrix is the dimension of its row space. 
Lemma 2.1. 
a) For rectangular matrices A, B of the same size, 

rank(A + B) ≤ rank(A) + rank(B). 

b) For rectangular matrices A, B in which AB is defined, 

rank(AB) ≤ min(rank(A), rank(B)). 

c) For Hermitian N ×N matrices A, B, 

N

(λA − λB )2 ≤ tr (A −B)2 .i i 
i=1 

d) For rectangular A, rank(A) ≤ the number of non-zero entries of A. 
The following result can be found in Fan [1]. 

Lemma 2.2. Let m, n be arbitrary non-negative integers. For A, B rectangular matrices 
of the same size, 

A+B A + sn+1.s m+n+1 ≤ sm+1 
B 

For A, B rectangular for which AB is defined 

AB A B sm+n+1 ≤ sm+1sn+1. 

These inequalities can be expressed in terms of empirical distribution functions. For √ ∗rectangular A let AA∗ denote the matrix derived from AA by replacing in its spectral √ 
Adecomposition the eigenvalues with their square roots. Thus, λ AA∗ 

= si .i 

Lemma 2.3. Let x, y be arbitrary non-negative numbers. For A, B rectangular matrices 
of the same size, 

√ √ √ 
AA∗ 

F (A+B)(A+B)∗ {(x + y, ∞)} ≤ F {(x, ∞)}+ F BB∗ {(y, ∞)}. 
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If, additionally, A, B are square, then


√ √ √ 
AA∗ 

F (AB)(AB)∗ {(xy, ∞)} ≤ F {(x, ∞)}+ F BB∗ {(y, ∞)}. 

Proof. Let N denote the number of rows of A√, B. Let  m ≥ 0, n ≥ 0 be the smallest integers √ 
A B AA∗ BB∗for which sm+1 ≤ x and sn+1 ≤ y. Then F {(x, ∞)} = m/N and F {(y, ∞)} = √ √ √ 

A+B AA∗ BB∗ 
n/N , so that F √ 

(A+B)(A+B)∗ {(sm+n+1, ∞)} ≤ F {(x, ∞)} + F {(y, ∞)} in the 
√ √ 

AB AA∗ BB∗first case, and F (AB)(AB)∗ {(sm+n+1, ∞)} ≤  F {(x, ∞)} + F {(y, ∞)} in the 

second case. Applying Lemma 2.2 we get our result. 
For any bounded f : R → R, let  �f� = supx |f(x)|. Using Lemma 2.2 it is straight­

forward to verify Lemma 3.5 of Yin [7] which states: For N × n matrices A, B 

∗ ∗ 1 �F AA − F BB(2.1) � ≤  rank(A −B). 
N 

This result needs to be extended. 
Lemma 2.4. For N ×N Hermitian matrices A, B 

1 �F A − F B � ≤  rank(A −B). 
N 

Proof. Let I denote the N × N identity matrix and c be any real number for which 

both A + cI and B + cI are non-negative definite. For any x ∈ R, F A (x) − F B (x) =  

F (A+cI)2 
((x + c)2) − F (B+cI )2 − F (B+cI )2((x + c)2). thus, �F A − F B � = �F (A+cI)2 �, and  

we get our result from (2.1). 
The next result follows directly from Lemma 2.1 a), b) and Lemma 2.4. 

Lemma 2.5 Let A be N ×N Hermitian, Q, Q both N ×n, and  T , T both n ×n Hermitian. 
Then 

a) �F A+QT Q ∗ − F A+QT Q 
∗ � ≤  

2 
N 

rank(Q −Q) 

and 

b) �F A+QT Q ∗ − F A+QTQ  ∗ � ≤  
1 

rank(T − T ). 
N 

The next lemma relies on the fact that for N ×N B, τ ∈ C, and  q ∈ CN for which B 
∗and B + τqq  are invertible, 

1
(2.2) q ∗(B + τqq  ∗)−1 = 

1 +  τq∗B−1q
q ∗ B−1 , 

∗ ∗ ∗B−1 ∗which follows from q B−1(B + τqq  ) = (1  +  τq q)q . 
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Lemma 2.6. Let z ∈ C+ with v = Im  z, A and B N  × N with B Hermitian, τ ∈ R, and  

q ∈ CN . Then 
�A�
≤tr ∗(B − zI)−1 − (B + τqq  − zI)−1 A . 
v 

∗ ∗ ∗Proof. Since (B − zI)−1 − (B + τqq  − zI)−1 = τ(B − zI)−1qq (B + τqq  − zI)−1, we  have  

by (2.2) 

=

∗τ tr (B − zI)−1qq (B − zI)−1A 

1 +  τq∗(B − zI)−1q 
∗(B − zI)−1 − (B + τqq  − zI)−1 Atr 

= 
∗(B − zI)−1A(B − zI)−1

≤ �A� |τ | 
2�(B − zI)−1q�

|1 +  τq∗(B − zI)−1q| .

q q

τ 
1 +  τq∗(B − zI)−1q 

∗λB eieiWrite B = where the ei’s are the orthonormal eigenvectors of B. Then i 

∗|ei q|2 

λB − z
2�(B − zI)−1 q� = |2 

,| i 

and 
∗|ei q|2 

λB − z
∗|1 +  τq  ∗(B − zI)−1 q| ≥ |τ | Im  q  (B − zI)−1 q = |τ |v . 

2| |i 

The result follows.

Lemma 2.7. Let z1, z2 ∈ C+ with max(Im  z1, Im z2) ≥ v >  0, A and B N  × N with A


Hermitian, and q ∈ CN . Then


1 |tr B((A − z1I)−1 − (A − z2I)−1)| ≤ |z2 − z1|N�B� 
2 
, and 

v

1∗ ∗ |q B(A − z1I)−1 q − q B(A − z2I)−1 q| ≤ |z2 − z1| �q�2�B� .
2v

Proof. The first inequality follows easily from the fact that for N ×N matrices C, D, 

∗|tr CD| ≤ (tr CC ∗ tr DD )1/2 ≤ N�C� �D�, 

and the fact that �(A − ziI)−1� ≤ 1/v, i = 1, 2. The second inequality follows from the 

latter observation. 
Let M(R) denote the collection of all sub-probability distribution functions on R. 

v vVague convergence in M(R) will be denoted by −→ (that is, FN −→ G as N →∞ means 
Dlim FN {[a, b]} = G{[a, b]} for all a, b continuity points of G). We write FN −→ G if FN 

N →∞ 
and G are probability d.f.’s. We denote the d.f. corresponding to the zero measure simply 

by 0. 
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Lemma 2.8. For {FN }∞ ⊂M(R), FN �= 0, such that no subsequence converges vaguely N =1 

to 0, there exists a positive m such that 

inf FN {[−m, m]} > 0. 
N 

Proof. Suppose not. Then a sequence mi →∞ and a subsequence {FNi }∞ can be found i=1 
vsatisfying FNi {[−mi,mi]} → 0, which implies FNi −→ 0, a contradiction. 

1Let {fi} be an enumeration of all continuous functions that take a constant value m 
1(m a positive integer) on [a, b], where a, b are rational, 0 on (−∞, a  − 1 ] ∪ [b + m ,∞),m 

and linear on each of [a− 1 , a], [b, b + 1 ]. Standard arguments will yield the fact that for m m 

F1, F2 ∈M(R) 

D(F1, F2) ≡ 
∞

fi dF1 − fidF2 2−i 

i=1 

is a metric on M(R) inducing the topology of vague convergence (a variation of this metric 

has been used in Wachter [6] and Yin [7] on the space of probability d.f.’s). Using the Helly 

selection theorem, it follows that for FN , GN ∈M(R) 

(2.3) lim �FN −GN � = 0  =⇒ lim D(FN , GN ) = 0. 
N →∞ N →∞ 

Since for all i and x, y ∈ R, |fi(x) − fi(y)| ≤ |x− y| it follows that for e.d.f.’s F, G on 

the (respective) sets {x1, . . .  , xN }, {y1, . . .  , yN } ⎞⎛ 2 

1 
N 1 

N

D2(F, G) ≤ (xj − yj )2(2.4)
 ⎝
 ⎠
|xj − yj | ≤
 . 
N N 

j=1 j=1 

1
Finally, since for G ∈M(R) the Stieltjes transform mG(z) =  dG(λ) (z ∈ C+)

λ− z 
possesses the well-known inversion formula 

1 
� b 

G{[a, b]} = lim ImmG(ξ + iη)dξ 
π η→0+ 

a 

(a, b continuity points of G), it follows that for any countable set S ⊂ C+ for which R ⊂ S 

(the closure of S), and FN , G  ∈M(R) 

v(2.5) lim mFN (z) =  mG(z) ∀z ∈ S =⇒ FN −→ G as N →∞. 
N →∞ 
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3. Truncation, Centralization, and an Important Lemma. Following along similar 
lines as Yin [7], we proceed to replace XN and TN by matrices suitable for further analysis. 
To avoid confusion, the dependency of most of the variables on N will occasionally be 

dropped from the notation. All convergence statements will be as N →∞. 
Let � and � XT  � X = (  √1 Xij ). Using Lemmas Xij = Xij I(|Xij |< 

√ 
N ) BN = A+ � X∗, where  �

N 
2.5a and 2.1d, it follows as in Yin [7] pp. 58-59 that 

� a.s.(3.1) �FBN − FBN � −→ 0. 

� XT  � � � X ( � � Xij ). Since rank(E �Let BN = A + � X∗ where X = X − E � Xij = Xij − E � X) ≤ 1, 
we have from Lemma 2.5a 

(3.2) �FBN − FBN � −→ 0. 

For α >  0 define Tα = diag(τ1I(|τ1 |≤α), . . .  , τnI(|τn |≤α)), and let Q be any N × n 

matrix. If α and −α are continuity points of H, we have by Lemma 2.5b and assumptions 
b) and c) 

�FA+QT Q ∗ − FA+QTα Q ∗ 1 1 
n

a.s. c� ≤  rank(T − Tα) =  I(|τn |>α) −→ cH{[−α, α] }. 
N N 

i=1 

It follows that if α = αN →∞ then 

∗ ∗ a.s.�FA+QT Q − FA+QTα Q(3.3) � −→ 0 

Choose α = αN ↑ ∞ so that 

� α81 
∞

(3.4) α4(E|X1 1|2I(|X1 1  |≥ln N ) + ) → 0 and  
N2 

(E|X1 1  |4I(|X1 1|< 
√ 

N ) + 1)  < ∞. 
N 

N =1 

1(Note: It is easy to verify N 2 E|X1 1|4I(|X1 1  |< 
√ 

N ) is summable.) � Xij I(|Xij |<ln N ), X = (  √1 Xij ), Xij = Xij −Xij , and  Let Xij = Xij I(|Xij |<ln N ) − E �
N 

X = (  √1 Xij ). Then, from (2.4), Lemma 2.1c, and simple applications of the Cauchy-
N 

Schwarz inequality we have 

∗ ∗ XTα X � ∗ ∗D2(FA+ � � , FA+XTα X ) ≤ 
1 

tr ( �XTαX −XTαX )2 

N 

=
1 

tr (XTαX ∗)2 + tr (XTαX ∗ + XTαX ∗)2 + 2tr (XTαX ∗ + XTαX ∗)XTαX ∗ 

N 
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1 
� � �1/2� 

∗ ∗ ∗≤ tr (XTαX ∗)2 + 4tr (XTαX XTαX ) + 4  tr (XTαX ∗ XTαX )tr (XTαX ∗)2 . 
N 

It is straightforward to show 

∗ ∗ ∗ ∗ ∗)2)1/2tr (XTαX ∗)2 ≤ α2tr (X X )2 and tr (XTαX XTαX ) ≤ (α4tr (X X )2tr (X X . 

Therefore, in order to show 

∗ ∗ a.s.XTα X(3.5) D(FA+� � , FA+XTα X ) −→ 0 

it is sufficient to verify 

1 a.s. 1
(3.6) α4 tr (X X ∗)2 −→ 0 and  tr (X X ∗)2 = O(1) a.s. 

N N 

For any N × n matrix Y = (Yij) with Yij ∈ C i.i.d., mean zero, and finite eighth 

moment, it is straightforward to show for all N 

2(3.7) E(tr (Y Y  ∗)2) =  NnE| Y1 1| 4 + Nn(N + n − 2)E2| Y1 1| 

and 

(3.8) Var(tr (Y Y  ∗)2) 

≤ K(N2E| Y1 1| 8 + N3(E| Y1 1| 6E| Y1 1| 2 + E2| Y1 1| 4) +  N4(E| Y1 1| 4E2| Y1 1| 2 + E4| Y1 1| 2)), 
nwhere K depends only on the maximum of N . The verification of (3.8) can be facilitated 

by writing the variance as 

¯ ¯ ¯ ¯ ¯ ¯ ¯(3.9) E(Yi jYk jYk lȲ 
i lYi jYk jYk lYi l) − E(Yi jYk jYk lYi l)E(Yi jYk jYk lYi l) 

i j k l 

i j k l


(where Ȳ 
a b  is the complex conjugate of Ya b) and using the following facts: 

1) For any non-zero term in (3.9), at least one of the ordered pairs of indices 
(i, j), (k, j), (k, l), (i, l) must match up with one of (i, j), (k, j), (k, l), (i, l), and none 

of the eight random variables appear alone. 
2) EZa EZb ≤ EZa+b for nonnegative random variable Z and nonnegative a, b. 

Since EX1 1  = 0  and  X1 1  = X1 1I(|X1 1|≥ln N) + E( �� X1 1I(|X1 1  |<ln N)), we have 

(3.10) E| X1 1| 2 = Var(Re X1 1) +  Var(ImX1 1) 

X1 1I(|X1 1  |≥ln N)) +  Var(Im  �= Var(Re � X1 1I(|X1 1  |≥ln N)) ≤ E| X1 1| 2I(|X1 1  |≥ln N) 
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2I √≤ 2(E| X1 1| (ln N ≤|X1 1  |< N ) + | EX1 1I(|X1 1|< 
√ | 2P(| X1 1| ≥  ln N))N )


≤ KE| X1 1| 2I(|X1 1|≥ln N ) → 0.


For m ≥ 4


E| X1 1| m ≤ 2m−1(E| X1 1| mI(|X1 1  |≥ln N ) + | E �X1 1I(|X1 1|<ln N )| m) 

mI≤ 22(m−1)E| X1 1| (ln N ≤|X1 1  |< 
√ 

N ) + (22(m−1) + 22m−1)(E| X1 1| )m 

m−4 
2≤ Km(N E| X1 1| 4I(ln N ≤|X1 1|< 

√ 
N ) + 1). 

Therefore, using (3.7), (3.10), and (3.4) we find


1 ∗ 1 1
√E α4tr (X X )2 ≤ α4K( E| X1 1| 4I(ln N ≤|X1 1|< N ) + + E2| X1 1| 2)
N N N 

1 ≤ α4K �(E| X1 1| 2I(|X1 1|≥ln N ) + ) → 0,
N

and from (3.8) (using again E| X1 1| 4I(|X1 1|< 
√ ≤ NE| X1 1| 2)N ) 

α814 4IVar(α tr (X X ∗)2) ≤ K
N2

(E| X1 1| (|X1 1  |< 
√ 

N ) + 1)  
N 

a.s.4 1 ∗which, from (3.4), is summable. Therefore, α N tr (X X )2 −→ 0. 
2Simple applications of the dominated convergence theorem will yield E| X1 1| → 

E| X1 1  − EX1 1| 2 = 1. Moreover, it is straightforward to verify for m ≥ 4 

E| X1 1| m ≤ Km(ln N)m−2 . 

Thus, from (3.7) we find 
1 

E tr (X X ∗)2 → c(1 + c),
N 

and from (3.8) 
1 

Var( tr (X X ∗)2) ≤ K
(ln N)2 

N n2 

1 ∗ a.s.which is summable. Therefore, N tr (X X )2 −→ c(1 + c), so that (3.6) holds, which 

implies (3.5). This, together with (2.3), (2.5), and (3.1-3.3), shows that, in order to prove 
v

FBN −→ Fc,H , it is sufficient to verify for any z ∈ C+ 

a.s.
m ∗ (z) −→ mFc,H (z).

F A+XT  X 

Notice the matrix diag(E| X1 1| 2τ1 
N , . . .  ,E| X1 1| 2τN ) also satisfies assumption c) of n 

1Theorem 1.1. We will substitute this matrix for T , and replace X by √ X (at least 
2E|X 1 1  |
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for N sufficiently large so that E|X1 1|2 > 0). Since |Xij I(|Xij |<ln N )| ≤ ln N + E|X1 1| we 
1have (for N sufficiently large) √ 

E|X1 1  |
|Xij | ≤ a ln N for some a >  2. Let log N denote 

2 

the logarithm of N with base e1/a (so that a ln N = log  N). Simplifying notation, we write 

BN = A + XTX∗ with X = (  √1 Xij ) where, 
N


1) Xij are i.i.d. for fixed N ,

2) |X1 1| ≤ log N , 
3) EXij = 0,  E|X1 1  |2 = 1,  

and, along with assumptions b), c), d) of Theorem 1.1, proceed to show for any z ∈ C+ 

a.s.
mF BN (z) −→ mFc,H (z). 

As will be seen in the next section, the following lemma and (2.2) contribute the most 
to the truth of Theorem 1.1. 

Lemma 3.1. Let C = (cij ), cij ∈ C, be  an  N × N matrix with �C� ≤  1, and 

Y = (X1, . . .  , XN )T , Xi ∈ C, where the Xi’s are i.i.d. satisfying conditions 2) and 3). 
Then 

∗(3.11) E|Y CY − tr C|6 ≤ KN3 log12 N 

where the constant K does not depend on N , C, nor on the distribution of X1. 
Proof: We first consider C real. Since 1 ≥ �C� = (λCCT 

)1/2, it follows that |cii| ≤ 1 for  1 

each i. We  have  

�� �� � ∗ ¯ E|Y CY − tr C|6 ≤ 32 E cii(|Xi|2 − 1) 
�6 + E� cij XiXj 

�6 
. 

i i�=j 

For the first sum the expansion is straightforward: 

2 4E 
�� 

cii(|Xi|2 − 1) 
�6 ≤ K log12 N |cii|6 + (c + |ciicjj |3)iicjj 

i i i�=j 

+ (ciicjj ckk )2 ≤ KN3 log12 N 
i j  k  

distinct 

For the second sum we have the expression 

¯ ¯ ¯ ¯ ¯ ¯ ci1 j1 ci2 j2 ci3 j3 cj4 i4 cj5 i5 cj6 i6 EXi1 Xj1 Xi2 Xj2 Xi3 Xj3 Xi4 Xj4 Xi5 Xj5 Xi6 Xj6 . 
i1 =� j1 

. . . 
i6 =� j6 
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Notice a term will be zero if any Xk appears alone. The sum can be further decom­
posed into sums where each one corresponds to a partitioning of the 12 indices, with each 

set in the partition containing at least 2 indices, none containing any pair il, jl. Consider 
one such sum. The summation is performed by 1) restricting the indices in the same parti­
tion set to take on the same value, and 2) not allowing indices from different partition sets 
to take on the same value. The expected value part will be the same for each term and 

can be factored out. It is bounded in absolute value by log12 N . The sum can be further 
decomposed, using an inclusion-exclusion scheme, where each resulting sum only satisfies 
1). By Lemma 3.4 of [Yin], each of these sums is bounded in absolute value by � � � �1/22 2 ci1 j1 

· · ·  ci6 j6 
≤ N3 

i1 =� j1 i6 =� j6 

2since ci1 j1 
= tr CCT ≤ N . Thus we get (3.11). 

For arbitrary C we write C = C1 + iC2 with C1 and C2 real. It is a simple matter to 

verify max(�C1�, �C2�) ≤ �C�. Using this, the inequality 

∗ ∗ ∗ |Y CY − tr C| ≤ |Y C1Y − tr C1|+ |Y C2Y − tr C2| 

and the truth of (3.11) for real matrices, we get our result. 
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4. Completing the Proof of Theorem 1.1. Fix z = u + iv ∈ C+. We  begin  by  
∗ 

separating the convergence of F AN into two cases. Consider first the behavior of F XN TN XN . 
a.s.1 ∗It is straightforward to verify n tr X XN −→ 1, either by using Lemma 3.1 (with C = I),N 

1 ∗or by just taking the fourth moment of n tr X XN − 1. This implies that, almost surely, N 
∗ 

any vaguely convergent subsequence of F X X must be proper, or, in other words, the 
∗ Dsequence { F XN XN } is almost surely tight. Since F TN −→ H a.s., it follows from the 

∗ 
second inequality in Lemma 2.3 that, almost surely, { F XN TN XN } is tight. 

Now suppose A = 0, that is, almost surely, only o(N) eigenvalues of AN remain 

bounded. Let, for Hermitian C, | C| denote the matrix derived from C by replacing in its 
spectral decomposition the eigenvalues with their absolute values (the singular values of 

∗C). Writing AN = BN − XN TN XN , we have from the first inequality in Lemma 2.2 

∗ 

F |AN |{ (x + y, ∞ )} ≤  F |BN |{ (x, ∞ )} + F |XN TN XN |{ (y, ∞ )} 

a.s.for non-negative x, y. It follows that for every x ≥ 0, F |BN |{ (x, ∞ )} −→ 1, that is, 
v

F BN −→ 0 almost surely. Thus, the Stieltjes transforms of F AN and F BN converge almost 
surely to zero, the limits obviously satisfying (1.1). 

We assume for the remainder of the proof A �  = 0. Using again the first inequality in 
∗ vLemma 2.2 it follows that, whenever { F XN TN XN } is tight, and F BNi −→ 0 on a subse­

vquence { Ni} , we have  F ANi −→ 0. Thus, { F BN } almost surely satisfies the conditions of 
Lemma 2.8. Therefore, the quantity 

v dF  BN (x)
δ = inf Im(mF BN ) ≥ inf 

N 2(x2 + u2 ) +  v2 

is positive almost surely. 
For i = 1, 2, . . .  , n, let  qi (= qN ) denote the  ith column of XN , B(i) = BN = i (i) 

∗BN − τiqiqi , 

� τi1 
n

N 1 
n

x = xN = 
1 +  τimF BN (z) 

and x(i) = x(i) = 
� τj 

N N 1 +  τj m B(i) (z) 
. 

i=1 j=1 F 

Notice both Im  x  and Im  x(i) are non-positive. Write BN − zI = AN − (z − x)I + 
∗ − xI. Then XN TN XN 

∗(AN − (z − x)I)−1 = (BN − zI)−1 + (AN − (z − x)I)−1(XN TN XN − xI)(BN − zI)−1 , 

and, using (2.2) 

1 
n

∗(4.1) mAN (z − x) − mBN (z) =  tr (AN − (z − x)I)−1 τiqiq − xI (BN − zI)−1 

N i 
i=1 
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1 
n

=

N


tr (AN −(z−x)I)−1 τi ∗ 
i (B(i) − zI)−1 − x(BN − zI)−1 

∗1 +  τiqi (B(i) − zI)−1qi 
qiq 

i=1 

n

= 
N 1 +  τimF BN (z)

i=1 

where di = dN
i = 

1 τi 
di, 

1∗1 +  τimF BN (z) 
qi (B(i)−zI)−1(AN −(z−x)I)−1 qi− tr (BN −zI)−1(AN −(z−x)I)−1 .∗1 +  τiqi (B(i) − zI)−1qi N 

Notice the norms of (BN − zI)−1, (B(i) − zI)−1, (AN − (z − x)I)−1, and  

(AN − (z − x(i))I)−1 are all bounded by 1/v. Using the fact that qi is independent of 
both B(i) and x(i), we have by Lemma 3.1 

log12 N ∗ 1 K log12 N 
E| �qi�2 −1|6 ≤ K E| i (B(i) − zI)−1 qi − tr (B(i) − zI)−1|6 ≤ , and 

N3 
, q 

v6 N3N 

1∗ 6 ≤E|qi (B(i)−zI)−1(AN −(z−x(i))I)−1 qi− tr (B(i)−zI)−1(AN −(z−x(i))I)−1| K log12 N
. 

v12 N3N 
This is enough to ensure that, almost surely, 

∗ | �qi�2 − 1|, |qi (B(i) − zI)−1 qi −m(4.2) 
F 

B(i) (z)|max max , 
i≤n 

1∗ 
i (B(i) − zI)−1(AN − (z − x(i))I)−1 qi − tr (B(i) − zI)−1(AN − (z − x(i))I)−1

N 
|
 → 0.|q 

DWe concentrate now on a realization for which (4.2) holds, δ >  0, F TN −→ H, and  
v

F AN −→ A. Lemma 2.6 gives us 

∗ 
i (B(i) − zI)−1 qi|(4.3) max max |mF BN (z) −m B(i) (z)|, |mF BN (z) − q

F 
→ 0. 

i≤n 

For N large enough so that 

δ∗ |Im  mF BN (z) − Im  m B(i) (z)|, |Im  mF BN (z) − Im  q  i (B(i) − zI)−1 qi|F
maxmax

i≤n 

< 
2 
, 

we have for i, j ≤ n 

<

1 +  τimF BN (z) 2 ∗ |mF BN (z) − qi (B(i) − zI)−1− 1 qi|,∗1 +  τiqi (B(i) − zI)−1 δqi 

and 
2τj τj 

B(i) (z)mF BN (z) −m
F

− ≤ 
δ2 
| |.

1 +  τj mF BN (z) 1 +  τj m B(i) (z)
F 
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Therefore, 

1 +  τimF BN (z) 
, |x − x(i)| → 0.(4.4)
 − 1max max ∗1 +  τiqi (B(i) − zI)−1qii≤n 

Using Lemmas 2.6, 2.7, (4.2)-(4.4), we have maxi≤n di → 0, and since 

τi 

1 +  τimF BN (z) 
1
≤ ,

δ


we conclude from (4.1) that 

mAN (z − x) − mBN (z) → 0 

Consider a subsequence {Ni} on which m
F 

BNi 
(z) converges  to a number  m. Since 

τ 
f(τ) =  

1 +  τm  

is bounded, and 
1τ − f(τ) (z) − m≤ 
δ2 
| |m

F 
BNi 

,
1 +  τm

F 
BNi 

(z) 

it follows that, along {Ni}, 

so that 

τdH(τ)

1 +  τm  

,
x (= xNi ) → c 

τdH(τ) 
1 +  τm  

.
m = mA z − c


Therefore, m is unique (Marčenko and Pastur [4] or Section 5 below), and we must have 

mF BN (z) → m, an event which occurs with probability 1. Therefore, using (2.5), the proof 
is complete. 
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5. A Proof of Uniqueness. The following lemma renders the proof of Theorem 1.1 

to be free of any dependence on arguments involving p.d.e.’s. 
Lemma 5.1. For z = z1 + iz2 ∈ C+, there exists at most one m ∈ C+ s.t. 

dA(τ )
(5.1) m = 

λdH(λ)τ − z − c 1+λm 

Proof. For m = m1 + im2 ∈ C+ satisfying (5.1) we have 

dA(τ ) 
λ(1+λm1 )dH (λ) 

m = 
λ2 m2 dH(λ)τ − z1 + c − i z2 + c2 2(1+λm1 )2 +λ2 m (1+λm1 )2 +λ2 m2 2 

Therefore 

(5.2) m2 = z2 + c 
λ2m2dH (λ) dA(τ ) 

.

1 +  λm
 22| | λdH (λ)τ − z + c 1+λm 

Suppose m = m1 + im2 ∈ C+ also satisfies (5.1). Then 

(5.3) m − m = 

λdH(λ) λdH(λ) dA(τ )1+λm−1+λm 
c 

λdH(λ) λdH(λ)τ − z + c τ − z + c1+λm 1+λm 

τ − z + c


λ2dH (λ) dA(τ )
(m − m)c 

(1 + λm)(1 + λm) λdH (λ) λdH(λ)τ − z + c1+λm 1+λm 

Using Hölder’s inequality and (5.2) we have 

λ2dH(λ) dA(τ ) 
c 

(1 + λm)(1 + λm) λdH (λ) λdH(λ)τ − z + c τ − z + c1+λm 1+λm 

⎛
 ⎛ ⎜⎝
⎞ ⎟⎠ 

1/2 ⎞ ⎟⎠ 
λ2dH (λ) λ2dH(λ)dA(τ ) dA(τ )⎜⎝
≤
 c

1 +  λm
 2 1 +  λm|2 2| | |λdH(λ) λdH(λ)τ − z + c τ − z + c1+λm 1+λm 

⎛
 ⎛⎞⎠ 

1/2 ⎞⎠ 

1/2 

λ2dH(λ) λ2dH(λ)m2 m2⎝c ⎝c
 < 1 .=
 � λ21 +  λm 1 +  λm|λ22 2 m2 dH(λ)| | |m2 dH(λ)z2 + c z2 + c2 2|1+λm| |1+λm|

Therefore, from (5.3) we must have m = m. 
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