Characters of symmetric groups and free cumulants
Philippe Biane

ABSTRACT. We investigate Kerov’s formula expressing the normalized irre-
ducible characters of symmetric groups evaluated on a cycle, in terms of the
free cumulants of the associated Young diagrams.

1. Introduction

Let p be a probability measure on R, with compact support. Its Cauchy trans-
form has the expansion

(1.1) Go(2) :/R L (dn) =2+ Y My p R

zZ—T
k=1

where the M}, are the moments of the measure . This Laurent series has an inverse
for composition K(z), with an expansion

(1.2) Ku(z2)=2z"'4) Rz
k=1

The Ry are called the free cumulants of p and can be expressed as polynomials
in terms of the moments. Free cumulants show up in the asymptotic behaviour of
characters of large symmetric groups. More precisely, let A be a Young diagram,
to which we associate a piecewise affine function w : R — R, with slopes £1, such
that w(z) = |z| for |z| large enough, as in Fig. 1 below, which corresponds to the
partition 8 = 4 + 3 + 1. Alternatively we can encode the Young diagram using
the local minima and local maxima of the function w, denoted by z1,... ,z, and
Yi,--- ,Ym—1 respectively, which form two interlacing sequences of integers. These
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are (-3,-1,2,4) and (-2,1,3) respectively in the picture.

1 Y1 22 Y2 T3 Y3 T4
Fig.1
Associated with the Young diagram there is a unique probability measure p, on
the real line, such that

(1.3) / Lyw(dx) = w for all z € C\ R
RZ—T [LZ: (2 — i)
This probability measure is supported by the set {z1,...,2;} and is called the

transition measure of the diagram, see [K1]. We shall denote by R;(w) its free
cumulants. Let o € S,, be a permutation with ky cycles of length 2, k3 of length 3,
etc. We shall keep ks, k3, ... fixed, and denote r = E;); Jkj, while we let n — oo.
The normalized character y,, associated to a Young diagram with n cells has the
following asymptotic evaluation from [B]

r4l

(1.4) Xo (@) = [ Ry (@)™ + 0(n="%).
j=2

Here the O term is uniform over all Young diagrams whose numbers of rows and
columns are < Ay/n for some constant A, and all permutations with r < ry for
some 1.

As remarked by S. Kerov [K2], free cumulants can be used to get universal,
exact formulas for character values. More precisely consider the following quantities

YSrwy=nn-1)...(n —k+ 1)xu(ck)
for k > 1 where ¢, is a cycle of order k (with ¢; = e).

THEOREM 1.1 (Kerov’s formula for characters). There ezxist universal polyno-
mials K1,Ks,... ,Ky,,..., with integer coefficients, such that the following identi-
ties hold for any n and any Young diagram w with n cells

Yr(w) = Kip(Re(w), R3(w), - - -, Rgy1(w)).
We list the few first such polynomials

Li=Ry
Yo =Rz
Y3 =Rs+ R>
¥4 = Rs5 +5R3

Y5 = Rg + 15R4 + 5R3 + 8R»
Y6 = R7+ 35R5 + 35R3R> + 84R3
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The coefficients of Kerov’s polynomials seem to have some interesting combinatorial
significance, although the situation is far from being understood. In this paper we
shall give a proof of the above theorem, compute some of the coefficients in the
formula, as well as give some insight into this problem.

This paper is organized as follows. In Section 2 we gather some information on
free cumulants, Boolean cumulants and their combinatorial significance. In Section
3 we introduce some elements in the center of the symmetric group algebra. These
are used in Section 4 to give a combinatorial proof of Theorem 1.1. In Section 5 we
give another proof, based on a formula of Frobenius, which yields a computationally
efficient formula for computing Kerov’s polynomials. In Section 6 we compute the
coefficients of the linear terms of Kerov’s polynomials, as well as some coefficients
of degree 2. We make some remarks in Section 7 on the possible combinatorial
significance of the coefficients of Kerov’s polynomials. This involves in a natural
way the Cayley graph of the symmetric group. Finally in Section 8 we list the
values of Kerov polynomials up to 1.

I would like to thank A. Okounkov and R. Stanley for useful communication,
as well as G. Olshanski for providing me a copy of [IO].

2. Noncrossing partitions, moments and free cumulants
From the relation between moments and cumulants given by
(2.1) G, =K

we obtain by Lagrange inversion formula that

1 -1 —k+1
k_l[z ]Gw(z) o

(where [271] L(z) denotes the coefficient of z~! in the expansion of a Laurent series
L(z)). From this we get that the coefficient of M!* ... M! in Ry, is equal to

(2.3) (_1)1+l1+"'+lrw

Lt k=10
if k= Zj Jjl;, and to O if not.
Conversely one has

(2.2) R =—

1
M — —1 K k+1
= e K )
and the coefficient of R\ ... Rlr in My, with k = 3, il; is equal to

k!
WLk +1=3, 1)

It will be also interesting to introduce the series

(2.4)

Ho(2) =1/Gu(z) = 2= 3 Byt
k=1

The coefficients By, in this formula are called Boolean cumulants [SW] and the
coefficient for B* ... Blr in My, with 3 ;Jl; = k is the multinomial coefficient

(b +la+ ...+ 1)
Il !

A combinatorial interpretation of these formulas is afforded by R. Speicher’s work
[Sp] which we recall now. A noncrossing partition of {1,...,k} is a partition such

(2.5)
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that there are no a,b,c,d with a < b < ¢ < d, a and ¢ belong to some block of the
partition and ¢, d belong to some other block. The noncrossing partitions form a
ranked lattice which will be denoted by NC (k). We shall use the order opposite to
the refinement order so that the rank of a non-crossing partition is k£ + 1—(number
of parts). The relation between moments and free cumulants now reads

(2.6) My= Y R

TeNC(k)

where, for a noncrossing partition 7 = (m,72,...7,), one has R[r] = [[; R,
where |m;| is the number of elements of the part m;. It follows from (2.5) that the
coefficient of R'* ... Rlr in the expression of My (with k = Y. il;) is equal to the
number of non-crossing partitions in NC (k) with I; parts of 7 elements, and is given
by (2.4).

A parallel development can be made for the connection between Boolean cu-
mulants and moments. A partition of {1,... ,k} is called an interval partition if its
parts are intervals. The interval partitions form a lattice B(k), which is isomorphic
to the lattice of all subsets of {1,...,k—1} (assign to an interval partition the com-
plement in {1,...,k} of the set of largest elements in the parts of the partition).
The formula for expressing the M}, in terms of the By, is

(2.7) My= > BIn]

mEB(k)

3. On central elements in the group algebra of the symmetric group

Let A be a Young diagram, and for n > |A| let ¢ be a one to one map from
the cells of A to the set {1,...,n}. Consider the associated permutation o, whose
cycles are given by the rows of the map ¢. For example the following map with
n > 24, gives the permutation with cycle decomposition

(471121912)(20211142416)(53)(2213)(29)

4 |7 1112 |19|12
20| 2111 | 14| 24|16
513

22|13

219

10

8

Fig.2
If @, is the set of such maps defined on A, we shall call ay,, the element in the
group algebra of S,, given by
Ax;n = Z O¢

PED
see [KO]. If A has one row, of length I, we call a;,, the corresponding element.
Note that ai;, = n.e.
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LEMMA 3.1. There exists universal polynomials Py with integer coefficients
such that, for all n, one has

Ax\in = P)\(al;n; cen 7a|)\\;n)
and ; j degp, (ajn) < [A[-
The proof is by induction on the number of cells of X\. This is clear by definition

if X has one row. If XA has more than one row then let A’ be A with the last row
deleted, and let k be the length of this row. One has

ax inQg;n = Z Oy 0o
$1,02

where ¢, is a map on the diagram A" and ¢ a map on the diagram (k) with one row
of length k. For any pair (¢1, ¢2) there is a unique pair A, B where A is a subset
of cells of X', B is a subset of cells of (k), and a bijection 7 from A to B which
tells on which cells the two maps ¢; and ¢, coincide. The cycle structure of oy, 04,
depends only on M\, k, A, B,7, and not on the values taken by the maps ¢1, ¢2.
Let Ax k,a,B,r be the diagram with |A| — |A| boxes (putting some one-box rows
if necessary) of this conjugacy class. For each (A, B,7) take some corresponding
(¢1,¢2), and take a map on the diagram Ay ; 4 B.r, which realizes the permutation
04, 0¢,- If necessary put the fixed points in the one-box rows. Now extend this to
all pairs of maps (¢1, ¢2) covariantly with respect to the action of S,,. Each map on
Ax k.4.B,r is obtained exactly once, and if A = B = () then clearly Ay k4.8, = A
It follows that

(31) AN'nQfn = Gxn T E : AAyr 4 B, -in
A,B,7,|A|>1

For all terms in the sum one has |[Ax 4.5, < |A|. The proof follows by induction.
The condition on degrees is checked also by induction. O

4. Jucys-Murphy elements and Kerov’s formula

Consider the symmetric group S,, acting on {1,2,...,n} and let * be a new
symbol. We imbed S,, into S,,11 actingon {1,2,... ,n}U{x}. In the group algebra
C(Sn+1), consider the Jucys-Murphy element

Jn=(1%)+(2%) + ...+ (n*)
where (i j) denotes the transposition exchanging i and j. Let E,, denote the orthog-
onal projection from C(S,,+1) onto C(S,),i.e. E (o) =0cifo € S,, and E,(0) =0
if not. If we endow C(Sy,+1) with its canonical trace 7(0) = 6., (i.e. T is the linear
extension of the normalized character of the regular representation), then E,, is the
conditional expectation onto C(S,,), with respect to 7. We define the moments of
the Jucys-Murpy elements by

(4.1) My = En(J))
To this sequence of moments we can associate a sequence of free cumulants through
the construction of section 2. We call Ry, these free cumulants. By construction,

the My, and Ry, belong to the center of the group algebra C(S,) (even to Z(S,)).
The relevance of these moments and cumulants is the following

LEMMA 4.1. For any n and any Young diagram w with n boxes, one has
Xw(Ri) = Ry (w)
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Since Yy, is an irreducible character, it is multiplicative on the center of the
symmetric group algebra and therefore it is enough to check that x,, (M) = Mg (w).
Let x* be the induced character on S,;1, then x, (Mj) = x*(J¥) and the result
follows from the computation of eigenvalues of Jucys-Murphy elements. See e.g.
[B], Section 3. O

One has

(4.2) Jk = > (%i1) ... (xix)

Q1,00 €{1,... 0}

A term in this sum gives a non trivial contribution to My if and only if the per-
mutation o = (x41)...(x4) fixes *. In order to see when this happens we have
to follow the images of * by the successive partial products of transpositions. Let
J1 = sup{l < k|i; = i}. If this set is empty then o(x) = iy # *. If not then one
has o = (xi1)...(xij_1)0" where o'(*) = x, hence we can continue and look for
J2 = sup{l < ji —1|i; =4;—1}. In this way we construct a sequence ji,ja,.... If,
and only if, the last term of this sequence is 1 then we get a non trivial contribu-
tion. Let m be the partition of 1,... &k such that [ and m belong to the same part
if and only if i = 4,,. The fact that (xi1)...(xix) fixes * depends only on this
partition, and we call admissible partitions the ones for which (xi41) ... (x14) fixes
*. Furthermore, the conjugacy class, in Sy, of (x41)...(xi) depends only on the
partition. Let A\(7) be the Young diagram formed with the nontrivial cycles of this
conjugacy class. Let

Ze= > (xin)...(xix)
D1 yeen BT

where 41, ... ,i; ~ m means that the partition associated to the sequence iy, ... ,ig

is m, then we have
My= Y Z

7 admissible

Let ¢(m) be the number of parts of 7, then the number of k-tuples i1,... i ~ 7
is equal to (n)c(r) (where, as usual (n); = n(n —1)...(n — k + 1)), and one has
|A(7)| < e(nr), therefore one has

(1) ()

&= (”)MI

ax(r)in = (n - |)‘|) v (n - C(W) + ]-)a)\(ﬂ);n

In order that A(w) be a cycle of length k — 1, it is necessary an sufficient that =
be the partition {1, %}, {2},{3},...,{k — 1}. All other admissible partitions have
¢(m) < k — 1. We deduce that

My, = Ak—1;n + Z Zr

m admissible, ¢(m)<k—1

It follows from Section 3 that My is a polynomial with integer coefficients, inde-
pendent of n, in the aj;,, of the form

ag—1,n + (polynomial in aj,n;j < k — 1).
We can thus invert this polynomial relation and get

ak—1;n = My + (polynomial in M;;j < k).
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with polynomial with integer coefficients. Since M}, can be expanded as polyno-
mials with integer coeflicients in the R; we thus have

ag—1;n = Ri + (polynomial in Rj;j < k).

Applying x., to both sides of this equation and using Lemma 4.1, we obtain Theorem
1.1. O

5. Frobenius formula and free cumulants

Let A = (A1, A2,...) be a partition of n, with Ay > Xy > ..., and p; = \j+n—i.
Let

p(2) = [ (= - o),

then the value of the normalized character x) on a cycle of length k is given by
Frobenius’ formula

G @xale) = 22— 1) (e~ k+ Dplz — B/p(2)

See [M], 1.7, Example 7, pages 117-118 (beware that characters are not normalized
in Macdonald’s book). Now we remark that

zp(z —1)/p(z) =1/Gr(z +n—1) = Hx(z + n — 1)
therefore

(n)kxa(ck) = —%[z‘l] Hyx(z+n—1)...H\(z+n—k)

Using the invariance of the residue under translation of the variable one gets
1
(n)kX)\(Ck) = —E[Zil] H)\(Z) . H)\(Z —k+ ].)

Comparing with 2.2 we deduce the following formula for Kerov’s polynomials.

THEOREM 5.1. Consider the formal power series

H(z)=2z- iszlfj.
j=2
Define
DI —%[zfl]HA(z) o Hy(z—k+1)
and
Resr = —71= ' THA2)"

then the expression of Xy, in terms of the Ry 's is given by Kerov’s polynomials.

This formula for computing Kerov’s polynomials was shown to me by A. Ok-
ounkov [O]. It seems plausible that S. Kerov was aware of this (see especially the
account of Kerov’s central limit theorem in [IO]). It is much easier to implement,
than the algorithm given by the proof in Section 4. We give the result of some
Maple computations in Section 8.
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6. Computation of some coefficients of Kerov’s polynomials

For a term RE> ... RFr define its degree by > kj and its weight is 3_; jk;. It
is clear from sign considerations that in the expansion of ¥, only terms of weight
having the opposite parity of k occur. The term of highest weight is R4 and it is
the only term with this weight, as follows from Theorem 5.1.

We shall first be interested in the terms of degree one.

THEOREM 6.1. The coefficient of Ri41—2; in Xy, is equal to the number of cycles
¢ € S, of length k, such that (12...k)c has k — 2l cycles.

In order to prove the theorem we shall compute the generating function for
the linear coefficients, using Theorem 5.1 formula. Since we are interested only in
linear terms, we see that the formula expressing X, in terms of R; is the same as
the one in terms of B;. Put B; = tz*~'. We shall find the coefficient of z~! in
H(z)H(z—1)...H(z — k + 1), keeping only the terms with degree one in ¢. One
has H(z) = z — tz/(z — x), therefore

kilzz—l (z—k+1)

[t(|H(z)H(z—1)...H(z—k+1) = Gk z—x—])

“F%

Using again invariance of residue by translation one obtains
1 k=lkt

(61) ZJZ‘ Rk+1 21 Zk—kZH £I?+]—l ZQk.T,’—I

7j=0 1=0

where Qr(z) =z(z+1)...(x+k—1).
Denote by dy the dimension of the irreducible representation with Young dia-
gram .

LEMMA 6.2. Let A be a Young diagram with k cells, let
Py(z) =Y (z+c(D))
Oe

be its content polynomial, and c(o) = number of cycles of o, then

> daxa(0)2!!”) = Py(x)
€Sk
See [M], 1.1, Example 11, 1.3, Example 4, and (7.7).
Let ¢j be the cycle (12...k), by the orthogonality relations for characters and
Lemma 6.2, one has

(6.2) i ZdAX)\ (ck)Pr(z)Pa(y) = > 'l fenylle)

€Sk
Let us compute the coefficient of y in the left hand side of (6.2). Only hook
diagrams A = (k —1,1%) for I = 0,... ,k — 1, contribute and for such a diagram
daxa(ck) = (kjl)(—l)l. One has Py(z) = Q(x — 1), the coefficient of y in Px(y)

is (k ; 1) , and Py(z) = Q(x —1) therefore we find formula (6.1) for the left hand
side. Comparing with the right hand side we get Theorem 6.1. O
Theorem 6.1 has also been proved by R. Stanley [St1] by a closely related

method.
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THEOREM 6.3. The coefficient of Ri_3Ry in Xy (for k > 5) is (k + 1)k(k —
1)(k—4)/12.

Again this follows from Theorem 5.1 through some lengthy, but straightforward
computations which are omitted.

More generally, based on numerical investigations, we conjecture the following
formula for terms of weight k& — 1.

CONJECTURE 6.4. The coefficient of Rl; ...Rls in Xy, with k = 2y + 33 +
...+ sls + 1 is equal to

E+Dk(k—1) (o +...+ 1) v, . _
24 Ammaanl | U
j=2

The validity of this conjecture has been checked up to & = 15. A proof for the
other cases (at least for degree two terms) can presumably be given using Theorem
5.1 but the computations become quickly very involved. No such simple product
formula seems to be available for the general term.

Another natural conjecture is that all coefficients in Kerov’s formula are non
negative integers, which also has been checked up to £ = 15. See the next Section
for more on this.

7. Connection with the Cayley graph of symmetric group

Let us explore more thoroughly the connections between the My, By, R and
Y. Formulas (2.5) and (2.6) provide a natural combinatorial model for expressing
moments in terms of free or Boolean cumulants. We will be looking for similar
models for expressing the other connections. Observe first that for all measures
associated with Young diagrams one has M; = B; = R; = 0. We will restrict
ourselves to this case in the following.

Let us apply Kerov’s formula to the trivial character. As we shall see, this
will give a lot of information. The probability measure associated with the trivial

character is do_1 + n+r16n with Cauchy transform

_n_
n+1
z—n+1

O e

The corresponding moments are

k I o _ k—1 = j
(-=1)% + nf=n————— = (1)) (-n)
Jj=1

We will find it useful to interpret this as the generating function for the rank in a
totally ordered set with £ — 1 elements. We take this totally ordered set as the set
I}, of partitions of {1,... ,k—1} given by {1,2,...,5h {7 +1};{j+2};...{k—1}
and the rank is the number of parts.

(7.1) My, = (—1)k1 Z (—n)l7l

€l _1
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The k" free cumulant of this measure is the generating function
(7.2)
— 1 (k-1\[(k-1
G D=t 9y | G ICU R T L DR CE
=1 TENC(k—1)

For the Boolean cumulants one finds
(7.3)

k—1
Be=nln-1 = (-0 (TN = o S

= M T 1 r€B(k—1)

The evaluation of the trivial character on Xy, gives n(n —1)...(n —k +1). This is
the generating function (recall that (o) is the number of cyles of o)

Se= (1" Y ()
€Sk

Let us now concentrate on the formula expressing the free cumulants in terms
of Boolean cumulants, and the Boolean cumulants in terms of moments. The first
such expressions are

Ry, = B

Rs = Bs

Ry = B,-B:

R5 - B5 - 3B2B3

R6 == B6 — 4B2B4 — 2B32» + QBS

R7 = B7 — 5B2B5 — 5B3B4 + 10B§B3
By, = M,

B; = M;

By = M;— M?

Bs = Ms—2MyMs;

Bs = Mg —2MyMy— M2+ M3

B; = My —2MsMs — 2M3My + 3M3Ms;

These formulas contain signs but we can make all coefficients positive by an overall
sign change of all variables. We are going to give a combinatorial interpretation of
these coefficients. Let us replace moments, free cumulants and Boolean cumulants
by the values (7.1), (7.2) and (7.3). It seems natural to try to interpret the formulas
expressing free cumulants as providing a decomposition of the lattice of noncrossing
partitions

NC(k—-1) =U,BJ[n]
into a disjoint union of subsets which are products of Boolean lattices, whereas the
formula expressing Boolean cumulants should come from a decomposition of the
Boolean lattice

B(k —1) = UgI[nr]

into a union of products of totally ordered sets.

It turns out that such decompositions exist, and we shall now describe them.
First we look at the formula for expressing Boolean cumulants in terms of moments.
On the Boolean lattice of interval partitions, let us put a new, stronger order
relation. For this new order a covers b if and only if b can be obtained from a by
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deleting the last element of some interval, if this interval had at least three elements,
or if it is the interval [1,2]. The resulting decomposition of the Boolean lattice of
interval partitions of {1,2,3,4,5} is shown in the following picture. It corresponds
to the formula for Bg above. The first line in the picture corresponds to the interval
Mg, the second and third line account for the two intervals MsM,, the fourth
line for the product interval M2, and the last line for the point corresponding to
M3. The ranking is horizontal. The proof that this decompostion yields the right
interpretation of the Boolean cumulant-moment formula is easy and left to the
reader.

o000 0O a... m.. m. m‘
e6eee ssboe sibbs
(eoeés Goeés dhvés

secéoe
XXX seééoe
TXXX

XX L)

Fig.3

Now let us decompose the lattice of non-crossing partitions into a union of
Boolean lattices. For this we put the following new order on noncrossing partitions.
A noncrossing partition a covers a noncrossing partition b if and only if b can be
obtained from a by cutting a part of b between two successive elements ,7 + 1. For
example we give here the list of the Boolean intervals obtained in this way in NC(5),
corresponding to the formula for Rg. Next to each interval we give the term to which
it corresponds in the formula. Consider the Cayley graph of Sy with respect to the
generating set of all transpositions. The lattice NC(k) can be embedded into Sy,
as the subset of elements lying on a geodesic from e to the full cycle (12...k). In
this embedding, the cycles of a permutation correspond to the parts of a partition,
hence the functions |r| and I(o). We give in the notation the cycle structure of a
noncrossing partition as an element of S,. An interval [o,0'] in which 0=10’ has a
cycle structure 2%z ... k' corresponds to a term Bé"'Bé2 Bff .. 'B;c’:-l7 where s is such
that therank of o is s + 1y + ...+ [}.

le, (12345)] Bs
[(13),(1345)] BBy
(14),(145)(23)] B3
[(15),(15)(234)] BoBa
[(24),(1245)]  B.Bs
[(25),(125)(34)] B3
[(35),(1235)]  B2By
[(135)] B;
[(15)(24)] B3

Observe that each interval above is in fact an interval for the Bruhat order.
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Looking at the above results and at Theorem 6.1, it is tempting to try in-
terpreting Kerov polynomials as coming from a decomposition of the symmetric
group into ”intervals” for some suitable order relation, in which the adjacency
relation should be induced by the one of the Cayley graph. The coefficient of
R%...R!s would count the number of intervals isomorphic to the ordered set
NC(1)2NC(2)'s...NC(s — 1)!s. Such interval would be of the form [, o'] with
lo] =1+ (k+1-32;1;)/2, and |o'| =14 (k+1+43_;1;)/2. The obvious choice for
the first term Ry in X would be to take the set of geodesics from e to (12...k).
Observe however that because of sign problems we should get a ”signed” covering of
Sk, namely each element of S; would be contained in a certain number of intervals
and intervals corresponding to terms of even degree would give a multiplicity one
while terms of odd degree would give a multiplicity -1, the sum of multiplicities
would then be +1 for any o € Sj.

One way to get around this problem of signed covering would be to look at
the expression of characters in terms of Boolean cumulants, where this problem
disappears. One would then be lead to look for a decomposition of the Cayley
graph into a union of products of Boolean lattices. It is here natural to try doing
so by using the Bruhat order. Indeed some decompositions of the symmetric group
into Boolean lattices have appeared in the litterature [LS], [M], but they are not
the ones we are looking for, indeed by Theorem 5.1 one can compute the total
number of intervals which should occur in the decomposition of S}, and even the
generating function of the number of terms according to their degrees, it is given
by

Sapi(2) = ﬁ(f_‘f)acg(x +i(i—1)  Syle) = (2p— 1)z (@)

whereas the above decompositions have (k — 1)! intervals.

It has been observed by R. Stanley [St2], that if one evaluates the character of
a cycle for a rectangular p x ¢ Young diagram, then one can improve the formulas
(7.1) to (7.3) by replacing them by their homogeneous two-variable correspondants,
while the character is now given by the rhs of (6.2), with z = —p,y = ¢. This gives
more evidence for the connection with the Cayley graph of symmetric group.

Let us now look at the first values of k. The cases of ¥ for & = 2,3,4 do not
present difficulty so let us concentrate on X5 = Rg+ 15R, +5R2 +8R,. We already
have the interpretation of the terms Rg and 8 Rz, they should correspond repectively
to the interval [e, (12345)], of elements such that d(e,o) + d(o,(12345)) =4 (d
is the distance in the Cayley graph) and the eight one point intervals [c] where ¢
is a 5-cycle whose product with (12345)~! is a 5-cycle. It remains to cover the
elements of S5 satisfying d(e,o) + d(o,(12345)) = 6 by 15 intervals isomorphic to
a 3-cycle. This should yield 5 elements with d(e,0) = 3 = d(o,(12345)) which
are counted twice. After some guesswork the following (non unique) decomposition
can be found. The 15 intervals are

[(13)(24),(13425)]
[(132),(13245)]
[(142),(14235)]

and their conjugates by (12345). The 5 elements counted twice are
(13)(254)
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which appears in the intervals [(13)(24),(13425)]] and [(254),(13254)], and all
its conjugates by (12345).

8. Values of ¥, for £k =7 to 11

Y = Rs+T70Rs+ 84 Ry Ry + 56 R3% + 14 Ry® + 469 Ry + 224 Ry2 + 180 Ry

Ys = Rg+126R;+ 168 Ry Rs + 252 R3 Ry + 126 Ry” R
+1869 R5 + 2688 Ry R3 + 3044 R3

Y9 = Rig+ 210 Rs + 300 R» Rg + 480 R3 R + 270 R,>
+360 Ry R3> + 270 R>> Ry + 30 Ry*
+5985 Rg + 10548 Ry Ry + 6714 R3% + 2400 Ry®
426060 Ry + 14580 R»2 + 8064 R

Y190 = Ri1+ 330 Ry + 495 R; Ry + 825 Ry Rg + 990 Ry Rs
+495 R5 R»>> + 1485 Ry R3 Ry + 330 R5® + 330 Ro® Rs
+16401 R7 + 32901 R» R5 + 46101 R5 Ry + 33000 R»% Rs
+152900 Rs + 258060 Ry R3 + 193248 Ry

Y11 = Ris+495 R0+ 770 Rg Ry + 1320 R3 Ry + 1650 Rg R4 + 880 Rs?
+825 Ry% Rg + 2640 R5 R» R3 + 1485 Ry Ry® + 1980 R5” R,
+660 Ro® Ry + 1320 Ry R3? + 55 Ry°
+39963 Rg + 87890 Ry R + 130108 R3 Rs + 71214 R,?
+105545 Ro? Ry + 136345 Ry Rs® + 15400 Ry*
+696905 Rg + 1459700 Ry R4 + 902440 R3> + 386980 R,>
+2286636 R, + 1401444 Ry? + 604800 R
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