
8 Variational Calculus

In this part of the course, we consider the energetics governing the shape of water droplets,
soap films, bending beams etc. For systems with a few degrees of freedom (e.g., particle
mechanics) you are used to the idea of solving equations of the form

d2x

dt2
= −dU(x)
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, (175)
dx

where U(x) is an energy function. You will recall that the basic idea to understanding this
type of equation is to first find the fixed points (the places where the force on the particle is
zero) and then understand their stability. By piecing the trajectories that go into and out
of the fixed points together you arrive at a complete description of how the system works,
even if you can’t calculate everything.

We now want to figure out how to think about solving such problems in continuous
systems. In this case the state of the system is described not by discrete variables xi but
by functions fi(x). A good example of the difference is to consider a mass-spring system.
If there are n masses connected by springs then we would want to know xi(t), the position
of the ith mass. The limit of infinitely many small masses connected by small springs is an
elastic rod, in which case we would want to know h(x, t), the displacement of the rod at a
given position x and time t. To develop techniques for continuous systems we consider an
energy functional U [f(x)], which is a function of a function. Several sorts of difficulties arise
(mathematical and otherwise) when one tries to think about physical problems described
by this energy using the same notions as those for finite dimensional dynamical systems.
We will start by considering some simple problems.

8.1 What is the shortest path between two points?

It will come as no great surprise that it is a straight line, but lets show this to be the case.
In 2D there is some function h(x) that is the path between two points x1 and x2 (think of
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h(x) as the height above the x-axis). The length of the path is given by the functional√∫ x2

L[h] = dx
x1

1 +

(
dh
)2

. (176)
dx

Now consider an alternate path h(x)+δh(x) which is only slightly different from the previous
path considered. The length of this path is √∫ x2

L[h+ δh] = dx
x1

1 +

(
d

)2

(h+ δh) . (177)
dx

Taylor-expanding the integrand for small δh and keeping only terms of linear order in
δh′ = dδh/dx, we find ∫ x2 h′δh′

L[h+ δh]− L[h] ' dx
x1

√ . (178)
1 + h′2

Integrating by parts gives [
h′

L[h+ δh]− L[h] ' √
1 + h′2

δh

]x2
x1

−
∫ x2

x1

dx

(
h′√

)′
δh. (179)

1 + h′2

The first term on the right hand side is identically zero, as we require δh to be zero at
either end (since we know our starting and ending point). Otherwise, for our path to be
a minimum we require δL to be zero for arbitrary δh. If this were not the case we could
always choose a δh and −δh to increase or decrease the path length. Thus h(x) must satisfy(

h′√
)′

= 0, (180)
1 + h′2

the solution of which is a straight line (check this for yourself). By analogy with systems
containing few degrees of freedom we say that this solution satisfies the condition δL/δh=0.

8.2 Functional differentiation

We now generalize the example from the previous section by defining a formal functional
derivative. To this end consider a general functional I[f ] of some function f(x). A func-
tionals is, by definition, a map that assigns a number to a function f(x). Basic examples
are the delta-functional ∆x0 [f ] := f(x0), which is related to the delta function by∫ ∞

∆x0 [f ] = dx δ(x− x0)f(x) = f(x0), (181a)
−∞

or integrals ∫ ∞
J [f ] = dx f(x) c(x). (181b)

−∞

A functional I is called linear, if it satisfies

I[af + bg] = aI[f ] + bI[g] (182)
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for arbitrary numbers a, b and functions f, g. Obviously, both examples in Eq. (181) are
linear. Typical examples of nonlinear functionals are action functionals, such as∫ t [m

S[x, ẋ] = ds
0

]
ẋ(s)2 − V (x(s)) , (183)

2

where, for example, V (x) = kx2/2 for the harmonic oscillator.
Given some functional I[f ], we can define its point-wise functional derivative by

δI[f ]

δf(y)
= lim

ε→0

1 {I[f(x) + εδ(x− y)]− I[f(x)]} (184)
ε

If I is linear, this simplifies to

δI[f ]
= I[δ(x− y)], (185)

δf(y)

yielding, for example,

δ∆x0 [f ]
∫

= dx δ(x− x0)δ(x− y) = δ(x0 − y0) (186a)
δf(y)

and

δJ [f ]
∫

= dx δ(x− y)c(x) = c(y). (186b)
δf(y)

Similar to ordinary derivatives, functional derivatives are linear7

δ

δf
{aF [f ] + bG[f ]} = a

δF

δf
+ b

δG
, a, b ∈ R, (187a)

δf

satisfy the product rule

δ

δf
{F [f ]G[f ]} =

δF

δf
G[f ] + F

δG
(187b)

δf

as well as two chain rules

δ δ(F [g(f)])
(F [g(f)]) =

δf δg

dg(x)

df(x)
(187c)

δ

δf
g(F [f ]) =

dg(F [f ])

dF

δ(F [f ])
(187d)

δf

As a nice little exercise, you can use the above properties to prove that the exponential
functional ∫

F [f ] = e dx f(x)c(x) (188)

satisfies the functional differential equation

δF [f ]
= c(y)F [f ]. (189)

δf(y)

7See, e.g., Appendix A in Parr & Young, Density-Functional Theory of Atoms and Molecules (1989,
Oxford University Press)
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8.3 Euler-Lagrange equations

In practice, relevant functionals typically not just depend on a function but also on its
derivatives, see Eq. (183). For instance, let us assume we are looking for a twice differentiable
function Y (x), satisfying the boundary conditions Y (x1) = y1, Y (x2) = y2 and minimizing
the integral ∫ x2

I[Y ] = f(x, Y, Y ′)dx. (190)
x1

What is the differential equation satisfied by Y (x)? To answer this question, we compute
the functional derivative

δI[Y ]

δY
= lim

ε→0

1 {I[Y (x) + εδ(x− y)]− I[Y (x)]}∫ ε
x [2 ∂f

=
x1 ∂Y

δ(x− y) +
∂f

∂Y ′
δ′(x− y)

]
dx

=

∫ x2

x1

[
∂f

∂Y
− d

dx

∂f
]
δ(x− y)dx. (191)

∂Y ′

Equating this to zero, yields the Euler-Lagrange equations

∂f
0 =

∂Y
− d

dx

∂f
(192)

∂Y ′

It should be noted that the condition δI/δY = 0 alone is not a sufficient condition for
a minimum. In fact, the relation might even indicate a maximum. It is often possible,
however, to convince oneself that no maximum exists for the integral (e.g., the distance
along a smooth path can be made as long as we like), and that our solution is a minimum.
To be rigorous, however, one should also consider the possibility that the minimum is merely
a local minimum, or perhaps the relation δI/δY = 0 indicates a point of inflexion.

It is easy to check that Eq. (192) yields the Newton equations

mẍ = −V ′(x), (193)

when applied to the action functional (183). Similarly, the Euler-Lagrange equations for
the shortest-path integral (176) just give the ODE (180).

8.4 Brachistrochrone

In June 1696, Johann Bernoulli set the following problem: Given two points A and B in a
vertical plane, find the path from A to B that takes the shortest time for a particle moving
under gravity without friction. This proposal marked the real beginning of general interest
in the calculus of variations. (The term ‘brachistochrone’ derives from the Greek brachistos
meaning shortest and chronos meaning time.)

If the particle starts with zero initial speed at height h0, energy conservation requires
mv2/2 = mg(h0 − h(x)), where v is particle speed, h0 is the original height of the particle
and h(x) is the height of the particle at position x. Thus√

v = 2g(h0 − h(x)). (194)

41



By definition v = ds/dt so that the time taken to go from A to B is∫ B ∫ B ds
dt = √ . (195)

A A 2g[h0 − h(x)]

√
We know that ds = 1 + h′2, so that the time taken is√∫ B 1 + h′2

T [h] = dx . (196)
A 2g(h0 − h)

The integrand √
1 + h′2

f = (197)
2g(h0 − h)

determines the time of descent. We can insert f directly into the Euler-Lagrange equa-
tion (192) to obtain the ODE that governs the shortest-time solution. Here, we shall
pursue a slightly different approach by starting from the readily verifiable identity( )

d
h′
∂f − f = 0, (198)

dx ∂h′

which integrates to

h′
∂f − f = C, (199)
∂h′

with some constant C. Substituting for f we obtain explicitly√
h′2 1 + h′2√ − = C. (200)

(h h′0 − h)(1 + 2) h0 − h

Solving this for h′ and integrating both sides of the expression, we obtain∫ √
h0 − h

x = dh√ , (201)
2a− (h0 − h)

where C = (2a)−
1
2 . To evaluate this integral we substitute h0 − h = 2a sin2 θ and obtain2∫

θ
x = 2a sin2 dθ + x0 = a(θ − sin θ) + x0. (202)

2

We have thus found a parametric representation for the desired curve of most rapid descent:

x = x0 + a(θ − sin θ), h = h0 − a(1− cos θ). (203)

These are the equations of a cycloid generated by the motion of a fixed point on the
circumference of a circle of radius a, which rolls on the negative side of the given line
h = h0. By adjustments of the arbitrary constants, a and x0 it is always possible to
construct one and only one cycloid of which one arch contains the two points between
which the brachistochrone is required to extend. Moreover, this arc renders the time of
descent an absolute minimum compared with all other arcs.
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