
1 Math basics

1.1 Derivatives and differential equations

In this course, we will mostly deal with ordinary differential equations (ODEs) and partial
differential equations (PDEs) real-valued scalar or vector fields. Usually, non-bold symbols
will be reserved for scalar objects f (e.g., mass density) and bold font f = (f1, f2, . . .)
for vector-valued objects, such as time-dependent position vectors x(t) or velocity fields
v(t,x) = (v1(t,x), v2(t,x), . . .).

ODEs are equations that contain derivatives of scalar or vector-valued or, more generally,
tensor-valued functions f(x) of a single variable x. Depending on context, we will denote
derivatives of such functions by

df ˙= f = f ′ = fx (1)
dt

PDEs are equations that contain derivatives of scalar or vector-valued functions f(x1, x2, . . .)
of more than one variable. Depending on context, we will denote partial derivatives by

∂f
= ∂x f = ∂if = fx = f,i (2)

∂x i i
i

In standard 3D Cartesian coordinates (x1, x2, x3) defined with respect to some global
orthonormal frame Σ, spanned by the basis vectors (e1, e2, e3), the gradient-operator ∇ is
defined by

∑3

∇ = ∂xe1 + ∂ye2 + ∂ze3 = ∂iei ≡ ∂iei, (3)
i=1

where we have introduced the Einstein summation convention on the rhs. Applying ∇ to a
scalar function f gives a vector

∇f = (∂1f, ∂2f, . . .) (4)

whereas application of ∇ to a tensorial quantity depends on the choice of the product: For
instance, in the case of a 3D vector field v(t,x), we can obtain a scalar field called divergence

∇ · v ≡ ∂ivi, (5a)

another (pseudo-)vector field called curl

∇∧ v ≡ (εijk∂jvk) (5b)

and the gradient matrix

∇v ≡ (∂ivj). (5c)

The (scalar) Laplacian operator 4 in Cartesian coordinates is defined by∑
4 ≡ ∇2 ≡ ∂i∂i = ∂ii. (6)

i

Please recall how these operators look in cylindrical and spherical coordinates.
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1.2 Linear and nonlinear objects

A mathematical operator - or, more generally, some property – P defined on vectors or
functions f, g, is said to be linear, if it satisfies

P(αf + βg) = αP(f) + βP(g) (7)

Important examples are derivatives, integrals and expectation values.
A famous linear ODE, is the simple harmonic oscillator equation

ẍ(t) = −ω2x(t) (8)

which has fundamental sin- and cos-solutions, that can be used to construct more general
solutions by superposition.

An important (homogeneous) linear PDE, is Laplace’s equation

∇2f(t,x) = 0. (9)

Functions f satisfying this equation are called harmonic.
Later on, we will often try to approximate nonlinear PDEs through linear PDEs.

1.3 Complex numbers and functions

Although we will mostly deal with real fields in this course, it is sometimes helpful to rewrite
equations in terms of complex quantities, especially, when dealing with 2D hydrodynamic
problems. Complex numbers are 2D extensions of real numbers,

z = x+ iy ∈ C , i2 = −1 (10)

with real part <z = x ∈ R and imaginary part =z = y ∈ R. The complex conjugate of a
real number is given by

z̄ = x− iy (11)

and corresponds to a reflection at the real axis or, equivalently, at the line =(z) = 0.
Addition of complex numbers is linear

z = z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) = x+ iy (12)

corresponding to the addition of the two 2D vectors (x1, y1) and (x2, y2). In contrast,
complex multiplication mixes real and imaginary parts

z = z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2) = x+ iy (13)

A complex function is a map

f : C→ C , f(z) = (u(x, y), v(x, y)) (14)

that can be interpreted as a map from R2 → R2. A function f is said to be complex
differentiable (or analytic or holomorphic) if it satisfies the Cauchy-Riemann equations

∂xu = ∂yv , ∂yu = −∂xv (15a)
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By differentiating again, we find

∂2
xu = ∂x∂yv = −∂2

yu = 0 (15b)

∂2
yv = ∂y∂xu = −∂2

xv = 0; (15c)

(15d)

this means that analytic functions f = (u, v) are harmonic

∇2f = 0. (15e)

An analytic function that we will frequently encounter is the exponential function∑∞ zn
exp(z) =

k=0
k!

= 1 + z +
z

+ . . . (16)
2!

Euler’s formula

eiφ = cosφ+ i sinφ , φ ∈ R (17)

relates exp to the trigonometric sin-and cos-functions.
When dealing with axisymmetric problems it is often advantageous to use the polar

representation of a complex number
√

z = reiφ , r = |z| = zz̄ ∈ R+
0 , , φ = arctan 2(y, x) ∈ [0, 2π) (18)

From the properties of the exp-function, it follows that the multiplication of complex num-
bers

z = z1z2 = r1e
iφ1r2e

iφ2 = r1r2e
i(φ1+φ2) (19)

corresponds to a combined rotation and dilatation.

1.4 Fourier transforms

The Fourier transform of a function f(t) is defined by

1
f̂(ω) = √

∫ ∞
dt eiωt f(t), (20a)

2π −∞

its the inverse is given by

1
f(t) = √

∫ ∞
dω e−iωt f̂(ω) (20b)

2π −∞

In particular, for the Dirac delta-function δ(t)

1
δ̂(ω) = √

∫ ∞
dt eiωt

1
δ(t) =

2π −∞
√

2π
, (21)

yielding the useful Fourier representation

δ(t) =
1
∫ ∞

dω e−iωt (22)
2π −∞

These definitions and properties extend directly to higher dimensions.
A main advantage of Fourier transformations is that they translate differential equations

into simpler algebraic equations.
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