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13 The Navier-Stokes Equations 

In the previous section, we have seen how one can deduce the general structure of hydro­
dynamic equations from purely macroscopic considerations and and we also showed how 
one can derive macroscopic continuum equations from an underlying microscopic model. 
For the remainder of this course, we will return to the macroscopic viewpoint developed in 
Sec. 12. 

13.1 Viscosity 

A main insight from the discussion in the previous section is that the Euler equations, as 
given in Sec. 12.1, do not account for one final element needed to complete the macroscopic 
fluid equations: viscosity. Viscous stresses try to stop relative motion between nearby parts 
of the fluid. Another way of saying this is that wherever there is a rate of strain in the fluid, 
a stress acts to reduce the strain. As with pressure, viscosity has its origins in intermolecular 
forces and momentum transfer across a surface. 

To understand more about viscosity, let’s first have a general discussion of the stress 
acting on an infinitesimal fluid element. There are two kinds of stresses: normal stresses 
and tangential stresses. We anticipate that the viscous stresses act tangentially to the fluid 
element (as their role is to get rid of relative motion.) Our goal is to figure out the form of 
these tangential stresses. All of the information related to normal and tangential stresses 
within a fluid can be collected in the stress tensor. The stress tensor is a three by three 
matrix σ with components σij , which has the property that the stress acting on a surface S 
with unit normal n is just σijnj . For an arbitrary fluid element, the net force arising from 
surface stresses is  

σ · ndS = 
 

(\ · σ)dV. (338) 
S V 

We must therefore determine the form of σ in order derive our equations of motion. 
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Firstly, suppose there were no tangential stresses on a fluid element. The normal stresses 
are just pressures. In this case the stress tensor would just be 

  
−p 0 0 

σ = 

⎛⎝ 0  −p 0 . (339) 
0 0 

⎞
−p 

The

⎠
 momentum equation for the component ui of the velocity is then 

Dui ∂p 
=  , (340)

Dt 
−
∂xi 

and this is Euler’s equation, which we derived in the previous lecture. 
Now let’s think a little more about the tangential stresses acting on a fluid element. We 

argue that the net torque on an element must vanish. This means that σ12, the stress in the 
x-direction on the face with normal in the y-direction must be equal to σ21, the stress in the 
y-direction on the face with normal in the x-direction. If these do not exactly cancel, the 
forces will make the fluid element spin. The fact that the tangential stresses on the fluid 
element balance means that the stress tensor must be symmetric. We therefore deduce that 
the stress tensor is of the general form ⎛  

σ⎝ 11 σ12 σ13 
σ = −pI +  σ12 σ22 σ23  , (341) 

σ13 σ23 σ33 

⎞

where

⎠
 I is the identity matrix. 

In determining the form of the viscous tangential stresses, we reason that these must 
arise from relative motion between fluid elements. Thus the stress should somehow depend 
on \u, which will only be nonzero if there are velocity gradients. Note that \u is also a 
tensor, and can be written explicitly as 

 
∂xux ∂yux ∂zux 

\u = 

⎛⎝ ∂xuy ∂yuy ∂zuy 
∂xuz ∂yuz ∂zuz 

⎞

W

⎠ . (342) 

e immediately have a problem because the tensor is not symmetric, whilst we know that 
the stress tensor is necessarily symmetric. There is, however, a mathematical fact that says 
a general tensor can be expressed as the sum of a symmetric tensor and an antisymmetric 
tensor, i.e., if A is a tensor then 

1 1 
Aij = As

ij + Aa
ij = (Aij + Aji) + (Aij − Aji). (343)

2 2 

The first part of the formula corresponds to a symmetric tensor and the second part to 
an antisymmetric tensor. Using this construction, the velocity gradient tensor can thus be 
divided into symmetric part 

s 1\u = (∂iuj + ∂
 j ui) (344a)
2

65 



and antisymmetric part 

a 1\u = (∂iuj − ∂
 j ui).	 (344b)
2

Physically, the symmetric part \us corresponds to the deformation of the fluid element 
and is called the rate of strain tensor. The antisymmetric part corresponds to rotation of 
the fluid element and is called the vorticity tensor. To see this, let’s consider a flow that 
is rotating, but not deforming, and also a flow that is deforming, but not rotating. In two 
dimensions a rotating flow is u ∝ (−y, x) and a deforming flow is u ∝ (x, y). For the 
rotating flow it can be shown that the antisymmetric part \ua is non-zero, and for the 
deforming flow the symmetric part is non-zero \us. 

The grand conclusion of this is that we expect the strain tensor σ to be a function of 
the rate of strain tensor i.e., σ = σ(\us). The question now is, what function is it? This 
depends on the fluid and the situation is usually divided into two categories. 

(i)	 Newtonian fluids: In Book II of the Principia Newton writes 

‘The resistance arising from the want of lubricity in the parts of a fluid is, other 
things being equal, proportional to the velocity with which the parts of the fluid are 

separated from one another.’ 

Thus Newton’s guess, which corresponds to the simplest situation, was that the stress 
is a linear function of the strain, 

σ = 2µ\us .	 (345) 

(ii)	 Non-Newtonian fluids: This encompasses all other cases. That is, whenever the stress 
depends on the strain in a more complicated way, the fluid is called non-Newtonian. 

Which of these two possibilities happens can only be determined experimentally for a par­
ticular fluid. In general, whether a fluid is non-Newtonian or not depends on how hard 
you are shearing it. Fortunately, it happens that most simple fluids are Newtonian under 
ordinary conditions. So for water, oil, air etc. it is often possible to approximate fluids as 
being Newtonian. Non-Newtonian also happens frequently in nature (e. g. liquid crystals) 
and gives rise to fascinating flow phenomena, but this is more specialised. 

Now let’s put everything together and write down the equations for Newtonian viscous 
         th flow. If we consider the equation for ui, the i component of the velocity, this is 

Dui ∂p 
	 
� ∂ 1 

 
∂uj ∂ui

ρ = − + 2µ + 
Dt ∂xi ∂xj 2 ∂xi ∂xj 

 −\   \  = ip+ µ i( u

 
\ · u) + µ\2

i. (346) 

When the fluid density doesn’t change very much we have seen that \ · u = 0, and under 
these conditions the Navier-Stokes equations for fluid motion are 

Du 
ρ = p + µ 2 u. (347)−\ \
Dt 
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These form the basis for much of our studies, and it should be noted that the derivation relies 
crucially on the incompressibility of the flow. The equations are essentially a macroscopic 
description of microscopic laws, and were written down even before the notion of a molecule 
was fully understood. 

The parameter µ is called the coefficient of viscosity, and since our derivation of the 
viscous force is phenomenological, it is both important and useful to make sure that all 
of the assumptions have been clearly stated. Is it true in general that only one number 
is sufficient to completely characterise the viscosity? Stated another way, the viscous ef­
fects in a fluid capture the macroscopic consequences of dissipative collisions between fluid 
particles. Is it obvious that only one number is sufficient to characterise this (enormously 
complicated!) process? Interestingly, one can show that if the fluid is both assumed to be 
both incompressible and isotropic (i.e., whichever way you look at the fluid it’s macroscopic 
properties are the same) then the parameter µ is all that is needed. 

13.2 Boundary conditions 

Now we have the equations of motion governing a fluid, the basic claim is that all the 
phenomena of normal fluid motion are contained in the equations. Unfortunately, there is 
no general theory of obtaining solutions to the Navier-Stokes equations. In fact, so difficult 
can it be, that the challenge of proving the existence and smoothness of solutions has been 
named as one of the seven Millennium Prize Problems by the Clay Mathematics Institute 
(www.claymath.org/prizeproblems/statement.htm). All is not lost however, as one can 
turn to experiments to find new phenomena and, on the basis of this mathematicians can 
go looking for solutions. To become familiar with the equations we shall find some simple 
solutions to well known problems, but to directly compare solutions to experiments we first 
need to think a little about boundary conditions. 

There are several types of boundaries that occur in practice, though the most common is 
simply the solid wall. The equations of motion for the fluid specify what happens everywhere 
except for the fluid element right next to the wall. At the wall, the forces between the wall 
and the fluid determine the dynamics. 

To derive boundary conditions from first principles, it is necessary to take these inter­
actions into account. Suffice to say that (a) in the nineteenth century there were vigorous 
debates between Maxwell, Stokes, etc. about what the correct conditions were, and (b) 
though today there is agreement for most situations, no decent derivation beginning with 
the microscopics has been given. From a purely mathematical point of view, it is necessary 
to check how many boundary conditions are allowed to still have unique solutions to the 
equations. If too many conditions are specified there might be no solutions of the equations 
which are consistent with them. 

What are the boundary conditions? First, fluid cannot penetrate the boundary. That 
is, the component of the velocity normal to the solid boundary vanishes. What about the 
tangential component of the velocity? If the fluid has no viscosity, it is inconsistent to 
demand any relation on the tangential component of the velocity at the boundary. If there 
is viscosity then it is possible to demand another condition. The condition which is mostly 
accepted to be true is called the no slip boundary condition (there is important ongoing 
research which aims at determining if and when such a condition breaks down). The no-slip 
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condition says that dissipative processes are so strong that the tangential component of the 
velocity actually vanishes there! This is known to be true from experimental studies of the 
motion of fluid near walls. It is extremely important, however, to understand that this is a 
phenomenological observation, not derived from first principles. 

13.3 Some simple solutions 

As mentioned before, in different limits the Navier-Stokes equations contain all of the im­
portant classes of partial differential equations. Let’s proceed to find an example which has 
within it a diffusion equation. We consider the following problem, at low Reynolds numbers 
(taken from Acheson, p.35). Consider a viscous fluid that is at rest in the region 0 < y < ∞ 
and suppose that at t = 0 the rigid boundary at y = 0 is moved at constant speed U in the 
x-direction. What is the motion of the fluid? 

Since the jerking motion is uniform in the x-direction, we expect the velocity to be of the 
form (u, v, w) = (u(y, t), 0, 0). Moreover, there is no pressure variation across the system in 
the x-direction, so the pressure is uniform. Thus the equation of motion is just 

∂u ∂2u 
= ν . (348)

∂t  ∂y2

Note that the assumed form of the velocity automatically satisfies the incompressibility 
condition. Also, the nonlinear term has vanished because of the form of the velocity field. 
The equation is a diffusion equation for the velocity in which ν is the diffusion coefficient. 
The initial condition is that u = 0 in the upper half plane. The boundary conditions are 
that u(0, t) = U for t > 0 (no-slip), and we expect that u will vanish as y → ∞ (since it 
vanishes initially).  

We look for a similarity solution of the form u(y, t) = f(y/
√
 νt) = f(η). The logic is the 

same as we employed in examining the diffusive spreading of a point cloud. That is, initially  
there are no characteristic scales in the solution. After time t the only scale is of order 

√
t 

because of the structure of the equations. The factor of ν is for convenience. Plugging this 
into the diffusion equation gives 

f "" 
1 

+ ηf " = 0. (349)
2 

Integrating twice, 
η 

f =   A+ B e− s2/4ds, (350) 
0 

where A and B are integration constants. 

∫ 
The boundary conditions imply that A +

B ∞
exp(0 −s2/4)ds = 0 and A = U . Using the fact that  ∫ ∞ 

−  2 
e s /4ds = 

√
π, (351) 

0 

we have the solution 
y/ 

√
νt 1  2u(y, t) = U

 
1 − √ 

∫ 
e −s /4ds 

 
. (352)

π 0 

The simple form of the initial and boundary conditions was essential to our finding this  
solution. We see that at different times the velocity profiles are all geometrically similar  
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i.e., the velocity is always the same function of (y/

√
 νt). As time progresses, the velocity 

profile becomes stretched out and the effects √ of motion are largely confined to within a 
distance νt from the boundary. 

The solution above would not have been so simple if, for instance, an upper boundary 
were present. In this case, a length-scale is imposed on the problem, this length-scale being 
the distance h between the plates. We can then no longer look for a similarity solution, 
and instead the solution is found by the method of separation of variables. The problem is 
described in detail in Acheson (p. 40-41). Without solving the problem in detail however, 
we can get a very good idea of what happens. We argue that after a large amount of time 
we expect the system to reach a steady state. This problem is easy to solve, as all we need 
to do is drop the time dependent term from equation (1) and solve subject to the boundary 
conditions u(0, t) = U and u(h, t) = 0. The steady state solution is the linear profile y 

u(y) = U 1 −
 
. (353)

h 
The outstanding issue is to then ask, how long does it take for this profile to be realised. 
Well, we know that viscous diffusion is responsible for setting up the profile, and the di­
mensions of ν are L2/T . Since the separation of the plates is h, then we obtain a timescale 
by forming the combination h2/ν. This is roughly the time taken for viscous diffusion to 
act over the gap between the plates, and gives an order of magnitude estimate for the time 
taken to set up a steady profile. And we have obtained all this information, without having 
to do any difficult mathematics! 

13.4 The Reynolds number 

For an incompressible flow, we have established that the equations of motion are 

∂u 
ρ + ρu 
∂t 

· \u = −\  p + µ\2u + f ext, (354) 

as well as incompressibility \· u = 0. Now note that the equation has five terms in it. The 
first two have to do with inertia and the third is pressure gradient, the fourth is viscosity 
and the fifth is an external force. In many situations, all of these terms are not equally 
important. The most trivial situation is a static situation. Here all of the terms involving 
the velocity are zero, and the only nonzero terms are the pressure gradient and the external 
forces. There are many other possibilities. The most difficult part is to figure out in any 
particular situation which of the terms in the equation are large, and which are small. In 
different limits the Navier-Stokes equations contain all of the important classes of partial 
differential equations (i.e., diffusion equation, Laplace’s equation, wave equations) which 
are usually considered. In the next lecture we shall find an example which has within it a 
diffusion equation. 

An important parameter that indicates the relative importance of viscous and inertial 
forces in a given situation is the Reynolds number. Suppose we are looking at a problem 
where the characteristic velocity scale is U0, and the characteristic length scale for variation 
of the velocity is L. Then the size of the terms in the equation are 

∂u U2 U2 
0 0 µU∼ 0
, u · \u ∼  , µ\2u ∼ . (355) ∂t L L L2
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The ratio of the inertial terms to the viscous term is  

ρU2
0 /L ρU0L 

= = Re, (356)
µU0/L2 µ 

and this is called the Reynolds number, Re. When the Reynolds number is very high the 
flow is rather inviscid, and when the Reynolds number is low the flow is very viscous. Honey 
is at low Reynolds number and turbulence is at high Reynolds number. For low Reynolds 
number it may be possible to ignore the inertial terms in the Navier-Stokes equations and 
obtain the so-called slow (or creeping) flow equations for very viscous flow. At high Reynolds 
number one ends up with the Euler equations. 

The Reynolds number can be varied by changing the viscosity of fluid. In practice, one 
distinguishes two types of viscosities. 

Dynamic viscosity The SI physical unit of dynamic viscosity µ is the Pascal×second 

[µ] = 1Pa · s = 1 kg/(m · s) (357) 

If a fluid with a viscosity µ = 1Pa · s is placed between two plates, and one plate is pushed 
sideways with a shear stress of one pascal, it moves a distance equal to the thickness of 
the layer between the plates in one second. The dynamic viscosity of water (T = 20 ◦C) is 
µ = 1.0020 × 10−3 Pa · s. 

Kinematic viscosity When dealing with incompressible fluids of constant density, then 
it’s often convenient to consider the kinematic viscosity ν, defined as 

µ
ν = , [ν] = m2/s (358) 

( 

which essentially enters into the Reynolds number of an object of given size L and speed 
U0. The kinematic y  viscosity of water with mass densit ( = 1 g/cm3 is ν = 10−6m2/s = 
1 mm2/s = 1 cSt. 

To conclude this section, let’s put in some numbers. For example, for fish or humans 
swimming in water, we s finds: 

L   1m, U0  1 m/s ⇒ Re  106, 

whereas for bacteria: 

 L  1 µm, U0  10 µm/s ⇒ Re  10−5. 

This is a huge difference and allows for considerable mathematical simplifications. 
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