
19 Stream functions and conformal maps

There is a useful device for thinking about two dimensional flows, called the stream function
of the flow. The stream function ψ(x, y) is defined as follows(

∂ψ
u = (u, v) =

∂y
,−∂ψ

)
. (469)

∂x

The velocity field described by ψ automatically satisfies the incompressibility condition,
and it should be noted that

∂ψ
u · ∇ψ = u

∂x
+ v

∂ψ
= 0. (470)

∂y
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Thus ψ is constant along streamlines of the flow. Besides it’s physical convenience, another
great thing about the stream function is the following. By definition

∂ψ
u =

∂y
=
∂φ

∂x
, (471a)

v = −∂ψ
∂x

=
∂φ
, (471b)

∂y

where φ is the velocity potential for an irrotational flow. Thus, both φ and ψ obey the well
known Cauchy-Riemann equations of complex analysis.

19.1 The Cauchy-Riemann equations

In complex analysis you work with the complex variable z = x+ iy. Thus, if you have some
complex function f(z) what is df/dz? Well, f(z) can be separated into a real part u(x, y)
and an imaginary part v(x, y), where u and v are real functions, i.e.:

f(z) = f(x+ iy) = u(x, y) + iv(x, y). (472)

For example, if f(z) = z2 then u = x2 − y2 and v = 2xy. What then is df/dz? Since we
are now in two-dimensions we can approach a particular point z from the x-direction or the
y-direction (or any other direction, for that matter). On one hand we could define

df

dz
=
∂f

∂x
=
∂u

∂x
+ i

∂v
. (473a)

∂x

Or, alternatively
df

dz
=

∂f

∂(iy)
= −i∂f

∂y
= −i∂u

∂y
+
∂v
. (473b)

∂y

For the definition of the derivative to make sense requires ∂u/∂x = ∂v/∂y and −∂u/∂y =
∂v/∂x, the Cauchy-Riemann equations. If this is true then f(z) is said to be analytic and
we can simply differentiate with respect to z in the usual manner. For our simple example
f(z) = z2 we have that df/dz = 2z (confirm for yourself that z2 is analytic as there are
many functions that are not, e.g., |z| is not an analytic function.)

19.2 Conformal mapping

We can now use the power of complex analysis to think about two dimensional potential flow
problems. Since φ and ψ obey the Cauchy-Riemann equations, this implies that w = φ+ iψ
is an analytic function of the complex variable z = x+ iy. We call w the complex potential.
Another important property of 2D incompressible flow is that both φ and ψ satisfy Laplace’s
equation. For example, using the Cauchy-Riemann equations we see that

∂ψ

∂x2
+
∂ψ

∂y2
= − ∂2ψ

∂x∂y
+

∂2ψ
= 0. (474)

∂y∂x

The same proof can be used for φ. We can therefore consider any analytic function (e.g.,
sin z,z4,...), calculate the real and imaginary parts and both of them satisfy Laplace’s equa-
tion.
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The velocity components u and v are directly related to dw/dz, which is conveniently
calculated as follows:

dw

dz
=
∂φ

∂x
+ i

∂ψ
= u− iv. (475)

∂x

As a simple example consider uniform flow at an angle α to the x-axis. The corresponding
complex potential is w = u0ze

−iα. In this case dw/dz = u0e
−iα. Using the above relation,

this tells us that u = u0 cosα and v = u0 sinα.
We can also determine the complex potential for flow past a cylinder since we know that(

R2

φ = u0 r +
r

)
cos θ, (476)

and this is just the real part of the complex potential

w = u0

(
z +

R2
)
. (477)

z

Check this by substituting in z = reiθ. What is the corresponding stream function? Also
w(z) = −i ln z is the complex potential for a point vortex since( )

Re (w(z)) = Re −i ln(reiθ) = θ, (478)

and we know that φ = θ is the real potential for a point vortex. Thus(
R2

w(z) = u0 z +
z

)
− iΓ

ln z (479)
2π

is the complex potential for flow past a cylinder with circulation Γ.
So let’s assume that the only problem we know how to solve is flow past a cylinder, when

really we want to know how to solve for flow past an aerofoil. The idea is to now consider
two complex planes (x, y) and (X,Y ). In the first plane we have the complex variable
z = x + iy and in the latter we have Z = X + iY . If we construct a mapping Z = F (z)
which is analytic, with an inverse z = F−1(Z), then W (Z) = w(F−1(Z)) is also analytic,
and may be considered a complex potential in the new co-ordinate system. Because W (Z)
and w(z) take the same value at corresponding points of the two planes it follows that Ψ
and ψ are the same at corresponding points. Thus streamlines are mapped into streamlines.
In particular a solid boundary in the z-plane, which is necessarily a streamline, gets mapped
into a streamline in the Z-plane, which could accordingly be viewed as a rigid boundary.
Thus all we have done is distort the streamlines and the boundary leaving us with the key
question: Given flow past a circular cylinder in the z-plane can we choose a mapping so
as to obtain in the Z-plane uniform flow past a more wing-like shape? (Note that we have
brushed passed some technical details here, such as the requirement that dF/dz 6= 0 at any
point, as this would cause a blow-up of the velocity).

19.3 Simple conformal maps

The simplest map is
Z = F (z) = z + b, (480)
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which corresponds to a translation. Then there is

Z = F (z) = zeiα, (481)

which corresponds to a rotation through angle α. In this case, the complex potential for
uniform flow past a cylinder making angle α with the stream is(

2

W (Z) = 0 Ze−iα
R

u +
Z
eiα
)
− iΓ

lnZ. (482)
2π

Note, that this expression could also include the term ln eiα = iα which I have neglected.
This is just a constant however and doesn’t change the velocity.

Finally there is the non-trivial Joukowski transformation,

c2

Z = F (z) = z + . (483)
z

What does this do to the circle? Well, z = aeiθ becomes

Z = aeiθ
c2

+
a
e−iθ = (a+

c2

a
) cos θ + i(a− c2

) sin θ. (484)
a

Defining X = Re(Z), Y = Im(Z), it is easily shown that(
X

a+ c2

a

)2

+

(
Y

a− c2

)2

= 1, (485)
a

which is the equation of an ellipse, provided c < a.
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