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Figure 1: Payoffs y(x) for derivatives on an underlying asset x with strike price K. (a) 
Short and long positions in a forward contract. (b) Long positions in three different 
kinds of option contracts. 

1 Introduction 

A derivative security is a financial instrument whose value is "derived" from the value of 
one or more underlying assets, which could be commodities (e.g. pork bellies), stocks (e.g. 
shares of AOL), foreign exchange rates (e.g. the $/yen buying rate), interest rates (e.g. the 
US prime lending rate) or more exotic variables (e.g. the average snowfall in Aspen, CO) [I]. 
The simplest derivative is a forward contract (or its publicly traded alter-ego, a futures 
contract) on a stock or commodity, which gives the holder of the long position (the buyer 
of the contract) the right to purchase the underlying from the holder of the short position 
(the seller of the contract) for a fixed strike price at a fixed time in the future (the maturity 
of the contract). Clearly, as shown in Fig. l (a) ,  the value of the long position in a forward 
contract y(x) at maturity (ignoring transaction costs, taxes, etc.) is 

y(x) = x -K (long forward) (1) 
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where x is the value of the underlying and K is the strike price1. 
An option is a more sophisticated, harder to price, version of a forward contract, in which 

the holder may choose whether or not to exercise the contract2. Of course, the contract will 
be exercised only if it is profitable to do so. Hence, at maturity the value of a call option, 
which is the right (but not the obligation) to buy the underlying x at the strike price K, is 

(x) = max{x - K, 0) (long call) (2) 

as shown in Fig. l(b),  since the option will not be exercised if x < K. A put option is the 
right to sell the underlying x at price K at maturity3. There are many other kinds of options, 
such as the digital option which is a pure bet, i.e. the short pays the long a fixed amount 
if x > K and vice versa if x < K. Many complex derivative contracts can be expressed as 
linear combinations of put, call, and digital option positions4. 

The difficulty in pricing derivatives is that they involve risk, which is also their raison 
d'ttre [2]. Derivative securities exist so that investors can either hedge, i.e. reduce their 
exposure to a certain risk, or speculate, i.e. bet on expected outcomes. For example, a 
shareholder of a stock worth $100 could purchase a put option struck at $50 to insure against 
losing more than half of her money. Conversely, a speculator who expects the stock to rise 
could buy a call option struck at $100. In both cases, the crucial question is: What is a fair 
price for the derivative security? 

The answer to this question depends on the statistics of the underlying asset, which are 
generally not known. Nevertheless, the "rational" approach to derivative pricing, pioneered by 
Bachelier a century ago [3], is to assume a certain probability law for the underlying (perhaps 
reflecting historical data or personal intuition) and determine from it a fair price on which 
all investors would agree, given the same assumptions. Although the rational-pricing concept 
is ubiquitous today, the definition of "fair price" has evolved considerably since 1900. In 
this lecture, we will compare and contrast three major theories of rational option pricing due 
to Bachelier [3], Black-Scholes-Merton [4, 5, 61, and Bouchaud-Sornette [7], in chronological 
order. 

Pricing by a Fair-Game Argument 

It is common to assume that the underlying asset follows a "Markov process", which means 
that the transition probabilty p(x, tx,, to) that the value is x at time t, given that it is x, 
at time to < t ,  depends only on (x,t,x,,t,) and not upon other historical data5. Consider a 
derivative with payoff y(x). At first it seems very reasonable that the price w ~ ( x , )  at time to 

'The value of the short position is K - x, right? 
'A European option can only be exercised at maturity, but an American option can be exercised (at 

the same strike price) at any earlier time as well. In this lecture, we only consider European options, which 
are much easier to price. 

3Do you see that a long forward is equivalent to a long call plus a short put? This is an example of put-call 
parity. 

4See Problem 1. 
'In this lecture, we will only consider a single time interval (to,t )  and hence adopt the simpler notation 

p(xIx0). 



be given by the expected payoff at maturity6 

where 

b (x ) )  - / y(xlp(xlx.)dx 

for the case of continuous outcomes in the interval (a, b) or 

for the multinomia17 case of N discrete outcomes xi. This "fair-game" approach, which 
amounts to requiring that there should be no expected profit from a fairly priced options 
position, was first proposed in 1900 by Bachelier [3]. For example, the Bachelier price of a 
call option c ~ ( x , )  in the continuous case is given by 

An important feature of Bachelier's theory is that it involves residual risk: The option 
contract can lead to financial gain or loss for either position. A convenient measure of the 
residual risk R> is given by the variance of the payoff 

where u, is the volatility (or standard deviation) of the payoff. 
Bachelier's theory also has a variational formulation. Suppose we define residual risk for 

an arbitrary option price w(x,) as the standard deviation RB of the payoff 

which is a quadratic function of w. The Bachelier price w~ is obtained by setting dRi/dw = 0, 
which yields the minimum residual risk R;. 

The geometrical interpretation of (3) is easiest to see in the multinomial case (5). The 
Bachelier price w~ is a weighted average of the possible payoffs yi, with weights given by the 
transition probabilities pi. This corresponds to a "best fit" horizontal line going through the 
(xi, yi) point, which is optimal in the "least-squares" sense of minimal variance ui. 

As illustrated in Fig. 2, this means that the Bachelier price is sensitive to properties of the 
underlying probability distribution, such as its expected return (x) - x .  This makes sense. 
For example, an investor who expects the underlying value to increase at maturity would 
pay more for an at-the-money (x, = K )  call option, and take more risk, than an investor 
who expects the underlying value to decrease. This depedence of the derivative price on the 
expected return of the underlying is, however, (remarkably) not true when riskless hedging is 
possible. 

61n this lecture, we ignore interst-rate effects, taxes, dividends, transaction costs, etc., which are very 
important in practice, but not fundamental to the theoretical pricing problem. 

'We adopt the shorthand notation pi =p(xilx,) and yi = y(xi). 



Figure 2: The Bachelier price (gray circle) for an at-the-money (x, = K )  call 
option in a multinomial model with outcomes (xi, y,). The dependence of the price 
and residual risk are shown for underlying probability distributions {pi} with (a) 
negative and (b) positive expected returns. 

3 Pricing with Riskless Hedging 

Although it seems quite reasonable, the Bachelier price is generally not "fair". To see this, 
consider the case of a forward or futures contract. The Bachelier price is 

with residual risk 

R i  = ((x - (2))') = ur 
2 

(10) 

where u, is the volatility of the underlying asset. The problem with Bachelier's theory is that 
it neglects the possibility of hedging (i.e. reducing) risk by cleverly trading the underlying 
asset along with the derivative. For example, an investor who is short a pork-belly future 
(with any strike price or maturity) can perfectly hedge her risk by immediately buying a pig. 
In that case, she would pay the initial price x, for the pig and then would possess a pork 
belly at maturity to deliver for a price K ,  no matter what happens to the market price x of 
pork bellies! In other words, by constructing a riskless hedge, the investor will receive a 
guaranteed payoff of K x ,  at maturity. Therefore, the fair price ff(x,) for the long position 
in the forward contract is uniquelf given by 

In this simple case, the Bachelier price is fair if and only if the expected return is zero, (x) = x,. 
The preceding analysis suggests that we consider the possibility of hedging a long options 

position by selling q5 units of the underlying, for a net initial investment 

'The existence of a unique price should make you wonder why futures exchanges exist at all, since the 
value of a futures position appears to be known with certainty! However, this is not true when interest-rate 
fluctuations, which affect the value of a future cash flow, are considered [I]. 
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Assuming a static hedge (fixed 4), the value of the net investment at maturity is 

u = y (x) - 4x. (13) 

The fair-game criterion now requires 

in which case the price of the derivative is 

which is a linear function of the underlying-asset value x,. Note that the Bachelier price 
WB = (y) is always fair when the expected return is zero, but otherwise, the pricing problem 
is reduced to finding an appropriate hedge ratio 4. The correction to the Bachelier price is 
equal to the expected return on the hedging strategy. 

There is another way to view (13), which has profound practical consequences: Rearranging 
the terms, we find that the derivative position is equivalent (albeit, perhaps only in some 
statistical sense) to a replicating portfolio consisting of an amount u, in cash and an 
amount 4 of the underlying asset 

W = u,+ $2,. (16) 

Whenever a riskless hedge is possible, this equivalence is exact, and there is no difference 
between the derivative position and the replicating portfolio! In other words, in such cases 
the derivative is not an independent financial instrument, a situation which economists refer 
to as a complete market. 

A riskless hedge is always possible for a forward contract because the payoff function is 
linearg. In general, however, u is a random variable dependent on the random variable x 
through (13), and the real market is of course incomplete. Nevertheless, for certain special 
probability laws, a riskless hedge is still possible such that u is non-random, for any choice of 
y(x), which implies a unique fair price for the derivative security. 

This powerful insight was first made and applied to options pricing by Black and Sc- 
holes [4] and Merton [5] in 1973. Their ideas have had a profound impact on financial theory 
and practice, which recently led to their sharing a Nobel Prize in Economics in 1997. The 
Black-Scholes-Merton theory involves dynamic hedging in continuous time with "diffusive" 
underlying dynamics (see below). A much simpler, but equivalent version of the same ideas, 
more in the spirit of this lecture, was later given by Cox, Ross and Ingersoll [6] in 1979, who 
considered a static hedge with binomial probabilities. 

In the binomial model, the underlying can assume only two possible values xl and 2 2  at 
maturity, with probabilities pl and pz = 1p l ,  respectively. At maturity, the hedged portfolio 
(13) has value 

yl - X I  with probability pl 
y~- 4x2 with probability pz (17) 

Note that the two random outcomes can be equated by choosing 4 to be the riskless hedge 
ratio given by 

'See problem 2. 
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Since the final value u of the portfolio is nonrandom, it must be equal to  the initial value u, 
(ignoring interest-rate effects) by the fair-game argumentlo. Therefore, from (18) the unique 
fair price of the option wf (x,) is 

wf (xo) = u o + (bx, =u+ (bz, = yl + ($(& zl) = (x2 - x0)y1+ (x, - x1)Y2 (19)
2 2  - x1 

Geometrically, the fair price simply corresponds to a linear interpolation between the 
two points {(xi,yi)}, as shown in Fig. 3. This result also corresponds to a risk-neutral 
valuationl1: wf is equal to the average payoff when pl is adjusted so that (x) = x,. Note 
that the Bachelier price with the binomial model depends on pl, while the fair price (19) does 
not, except in the risk-neutral case (x) = x,. 

Figure 3: The Bachelier (gray circle, dashed line) and risk-neutral (gray square, solid 
line) prices in the binomial model with a nonzero expected return ((x) # x,). 

The Black-Scholes-Merton dynamic-hedging model can be obtained by successive appli- 
cations of (19) on a binary t ree  of equal spacing 62 in underlying price and 67 in time. If 
we let wj") denote the option price at "backward time" 7, = t - n b ~and underlying value 
xi = ibx, then the risk-neutral pricing formula (19) applied to each "branch" or the tree takes 
the form 

1
.,j"+l) = 2(wj;', + '"j'i) (20) 

which is to  be solved recursively (backward in time) starting with the payoff function at 
maturity wjO) = yi. Rewriting (20) as 

and taking the continuum limit 62 t0 , b ~t0 with 6x2/67 = u2/2 held constant, we obtain 
the celebrated Black-Scholes equation12 

''In economic terms, this is amounts to requiring that there be no arbitrage opportunities, in which an 
investor could make a nonzero, riskless return. 

''See Problem 3. 
12This is the case of zero interest rate r = 0, and "normal" ( a  = 0) rather than "lognormal" (a  = 1) 
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with initial (or rather, final) condition W ( X , T  = 0) = y(x). YOU may recognize (22) as 
the classical diffusion equation from physics. The "Black-Scholes miracle" is that if the 
underlying obeys a classical diffusion process (a "random walk" composed of equal binomial 
steps), then a riskless hedge can be constructed, as in the discrete binomial case, and hence 
a unique fair price can be calculated by solving (22). Note that as in the binomial case the 
Black-Scholes price does not depend on the expected rate of return of the underlying asset 
(only on the volatility rate u). Taking the continuum limit of (18), we find that at a riskless 
hedge can be constructed dynamically by selling an amount 

of the underlying asset for every unit held of the derivative. 
Although risk-neutral valuation and the Black-Scholes equation were immensely successful 

in the 1970s and 1980s, it became clear after the stock market crash of 1987 that theory has 
serious trouble with rare events, which do not fit into the Gaussian diffusion (or binomial 
tree) framework. In fact, it has been determined that excessive confidence in the Black- 
Scholes-Merton theory at least enhanced the amplitude of the crash, if not caused it [I, 21. 
Specifically, the culprit seems to have been equation (23), which led nervous investors to 
quickly sell falling stocks in the hope of replicating protective put options via the Black- 
Scholes-Merton "riskless" hedging strategy. Unfortunately, when the statistical assumptions 
of the theory began to break down, this strategy of portfolio insurance may have had a 
nonlinear feedback with the market that actually caused stock prices to plummet even faster! 

Pricing and Hedging with Residual Risk 

Although it is still a subject of controversy in theoretical circles (but not on Wall Street!), 
the Black-Scholes-Merton theory is missing the rather important element of pricing, which 
is present in the original Bachelier theory: namely, residual risk. Riskless hedges only exist 
in certain special cases (which albeit, happen to be remarkably robust13). A more general 
pricing theory must somehow deal with residual risk. Unfortunately, in such a theory, the 
option price is no longer unique (see below). 

In 1994, Bouchaud and Sornette [7] (following several others) devised a pricing theory 
for risky options that generalizes the Black-Scholes-Merton theory by finding the optimal 
hedge ratio @ that minimizes, but not necessarily eliminates, risk. Here we apply the 
Bouchaud-Sornette ideas to a single static hedge. A convenient definition of risk is the variance 
of the hedged position (13): 

R2 = u: = ((u - (u))'). (24) 

dynamics, which are both good approximations near maturity. The original Black-Scholes equation 

aw u2 a2w aw -= - x 2 0  -+ rx- - rw a~ 2 ax2 ax 
is also easily derived from the binomial model with some minor modifications. It can be reduced to the 
diffusion equation by a simple change of variables. (Can you see how?) 

13Thanks in part to the Central Limit Theorem, which explains why simple diffusion processes are so 
common. 



where u = y - $2. Since R is a quadratic function of 4, 

R2 = 0: - 24((xy)- (x)(Y))+ $20: (25) 

this definition is sometimes called quadratic risk. Setting dRZ/d$ = 0 yields the optimal 
hedge ratio 

q = (XY) - (x)(Y) 
(2" - ( x ) ~  

in which case the residual quadratic risk R' can be written as 

R*Z = UY
2 
- $*2

0,
2 = R; -y20: 

The appropriate investment in the hedged position uz is again determined by the fair-game 
argument 

(2" (Y) - (4(XY)u: = (u) = (y) - qY(x)= 
(2" - (2)" 

which yields the Bouchaud-Sornette price 

Note that u: could also be determined by minimizing R with respect to u, = (u), i.e. setting 
dRZ/du, = 0. 

Figure 4: The Bachelier price (gray circle, dashed line) and Bouchaud-Sornette price 
(gray square, solid line) for an at-the-money call option in a multinomial model. The 
price and residual risk are shown for cases of (a) negative and (b) positive expected 
returns. 

There is an interesting probabilistic interpretation of the Bouchaud-Sornette theory. In 
terms of the correlation coefficient of x and y 

the optimal hedge ratio can be expressed as 



and the residual risk as 
2 2r2= 0, (1 - pry) . (32) 

Now it is clear that what is missing in Bachelier's theory is the effect of correlations between the 
underlying asset and the derivative price. It is precisely such correlations that make hedging 
possible. The quality of the hedge, measured by a reduced R*', improves as p,, increases from 
0 (the Bachelier limit, R' = uv) to 1(the Black-Scholes-Merton limit, R' = 0). Whenever the 
payoff function is linear (e.g. for a forward contract), a riskless hedge exists, regardless of the 
transition probability law, because in that trivial case the derivative and the underlying-asset 
values are perfectly correlated at maturity. For any nonlinear payoff function, however, there 
are nontrivial correlations 0 < p,, < 1,which cause the risk to be nonzero and the fair price 
to depend on the full transition probability law14. 

There is also a nice geometrical interpretation of the Bouchaud-Sornette theory. Rewriting 
(24) as 

R2 = ([Y - (u, + 4x)I2) (33) 

we see that u: and @, and hence the fair price w*(x,), are determined by a weighted linear 
regression of the payoff y on the underlying x at maturity. In other words, u: and I$+ are 
chosen to obtain the best fit of the equation 

in the least-squares sense, with the weight of the point (x, y) given by the transition prob- 
ability ~ ( x x , )of the underlying asset. For students of probability theory, it is perhaps more 
transparent to display the optimal coefficients in the multinomial case 

g = N Cpixiyi - (Cpixi)(C piyi) 
N Cpix5 (Cpixi)" 

U: = piyi)(C~ i x ? ) ( C  (Cixi)(Cpi~iyi)  
N Cpix; - (CpixiI2 

which are the familiar formulae of (weighted) linear regression. 
By now it should be clear that changing the definition of risk R simply amounts to changing 

the type of linear regression (from least-squares to something else). For example, we could 
determine the linear coefficients uz and I$+ which minimize the "absolute-value risk" 

R' = (lu - (4)= ( I Y  - (u, + 4x)l) (37) 

rather than the quadratic risk15. In any case, we conclude that options pricing simply 
boils down to linear fitting. 

Our conclusions about pricing options in the presence of residual risk are clearly valid for 
the case of a static hedge (one trading interval), but it is natural to ask what happens when 
dynamic hedging is allowed. If hedging is allowed only at discrete moments in time, then 

14The special case of a binomial transition probability (Cox, Ross Rubinstein [6]) does not really violate 
our general conclusion because a nonlinear payoff function sampled at only two points is effectively linear. 

''In this case, if the transition probability were also uniform over a certain interval, then the fair price would 
be given by an "equal-area" fit of the payoff function. Do you see why? If so, try problem 4. 



repeated applications of the static-hedge formulae backward in time starting with the known 
payoff function y(x) at maturity will give the price w*(z, t),  optimal hedge ratio @(x, t)  and 
optimal cash investment uz(x, t)  at any earlier time t. For the nth backward-time increment 
67, the recursion is, 

W("+l)(x)= a(")(x) 	 (38) 

analogous to (20), where w(")(x) is a linear fit of the local option value at backward time 7, 
(weighted by the transition probabilities as above) 

This recursion can be solved numerically for any choice of transition probabilty function(s) 
and measure(s) of risk. Analytically, the Bouchaud-Sornette formalism can be used to derive 
perturbative corrections to the Black-Scholes theory which account for residual risk when 
fluctuations are nearly diffusive16. 

Since there is generally nonzero residual risk, the price of an option is not unique, even 
if everyone agrees upon the transition probability and the appropriate measure of risk. The 
emerging theory of pricing risky options (or more precisely, real options!) involves many 
features contrary to the classical Black-Scholes-Merton paradigm [2]: 

a 	A riskless hedge typically does not exist, and neither does a unique "rational" option 
price. (It is typically not possible to find a unique line passing through more than two 
data points.) 

a 	Option prices typically depend the expected return and other aspects of the underlying 
probability law. (The result of linear fitting depends on the weights of the data points.) 

a 	Option prices and appropriate hedging strategies depend on the market's perception of 
residual risk. (The result of linear fitting depends on how one measures "goodness of 
fit" .) 

Dealing with these issues is a major ongoing challenge to theoretical modeling [8] which has 
fueled an exodus of physicists and applied mathematicians to Wall Street in the past decade [9]. 
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