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1 Linear Polymer Structure 

1.1 Mean Total Energy 

We define η = ασ2/kT so that p(θ) ∝ eη cos θ . The normalizing constant can be found as � 2π� π 

A(η) = e η cos θ sin θdθdφ 
0 0 

η sinh η
= 2π

e − e−η 

= 4π . 
η η 

Thus we have the normalized p(θ) as 

η η cos θ p(θ) = 
A(

1 
η) 

e η cos θ = e .
4π sinh η 

To get �EN � we first calculate the correlation coefficient ρ(T ), which is 

ρ(T ) = 
�Δxn · 

2 

Δxn+1� = �cos θ�. 
a

We can get this easily using the derivative of A(η): 

1 
� 2π� π 

�cos θ� = 
A(η) 

cos θe η cos θ sin θdθdφ 
0 0 

1 dA(η) 1 
= 

A(η) dη 
= coth η − . 

η 

Therefore � �
1 �EN � = −(N − 1)αa 2ρ(T ) = −(N − 1)αa 2 coth η − . 
η 

∗Based on solutions for problem 3 by Ryan Larsen and David Vener (2003), and problem 4 by Ahmed Ismail 
(2003). 
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1.2 Asymptotic scaling 

Since two adjacent steps have correlation ρ(T ), the correlation between n­th and n + m­th steps is 
generally given by 

�Δxn ·Δxn+m� = ρ(T )m .
2a

From the lecture we know 

�R2 1 + ρ(T ) 2 
N � ∼ 

1 − ρ(T ) 
a and aeff (T ) ∼ 

1 + ρ(T ) 
a .

1 − ρ(T ) 
as N →∞

Thus the asymptotic behaviors of ρ(T ) and aeff(T ) are ⎧ ⎪⎨ ⎪⎩


η 3ασ2 

3
= 

kB T 
(η → 0 or T →∞)eη + e−η 1 

ρ(T ) = −
η 

=
 1
1 − = 1 −

η 
kB T 
ασ2 (η →∞ or T → 0),


η − e−ηe

3ασ2 

1 + 

⎧ ⎪⎨ ( )T →∞� kB T 
2ασ2 (T → 0).kB T 

aeff(T ) 
a


∼
⎪⎩


2 Polymer Surface Adsorption 

2.1 PDF of displacement between adsorption sites 

To find the probability density function of the displacement between successive adsorption sites, we 
make use of the electrostatic analogy described in the lectures and in A Guide To First Passage 
Processes by S. Redner. To find the hitting probability of the walker on the plane we solve the 
problem of finding the electric potential φ due to a charge of size q = 1/4πD at r0 = (0, 0, a), 
subject to the condition that φ = 0 on the plane. By introducing an image charge at −r0 we see 
that 

q
φ(r) = − 

q 
+ . 

r − r0| | |r + r0|
The hitting probability on the plane is given by 

∂φ 
P (x, y) = −D 

∂z z=0 

z − a z + a 
2 + (z − a)2)3/2 

−= −Dq 
(x2 + y (x2 + y2 + (z + a)2)3/2 

z=0 
a 

= .
2π(x2 + y2 + a2)3/2 

Position after N steps 

To calculate the probability density function of the position PN (x, y) after N steps, we find the 
characteristic function of p(x, y) found above: 

∞ ∞ ae−ikx−ily 

p̂(k, l) = dxdy
 .
2π(x2 + y2 + a2)3/2 −∞ −∞ 
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By symmetry, we know that p̂(k) must be a function of |k|, and we therefore assume without loss 
of generality that k = (k, 0). By changing to polar coordinates x = r cos θ, y = r sin θ, we obtain 

re−ikr cos θ∞ � 2π 

p̂(k) = dr dθ .
2π(r2 + a2)3/2 

0 0 

Carrying out the angular integration gives 

∞ rdr 
p̂(k) = a J0(kr). 

0 (r2 + a2)3/2 

To solve this, we write the above integral as I(k, a). We know that 

I(0, a) = a � 

∞ 

0 

rdr 

(r2 + a2)3/2 

a 
�∞ 

= − √
r2 + a2 

0 
= 1. 

By integrating by parts, we also know that 

∞ dr 
I(k, a) = a √

r2 + a
kJ0

� (kr). 
2

0 

Differentiating this expression gives 

∞ dr 
Ik(k, a) = a √

r2 + a
(krJ0

��(kr) + J0
� (kr)). 

2
0 

By definition, we know that the zeroth order Bessel function satisfies the differential equation 
x2J0

��(x) + xJ0
� (x) + x2J0(x) = 0 and therefore we find that 

∞ dr 
Ik(k, a) = a √

r2 + a
(−krJ0(kr)). 

2
0 

Differentiating with respect to a gives 

Ik(k, a) ∞ akrJ0(kr)dr 
Ika(k, a) = + a 

a 0 (r2 + a2)3/2 

and hence we have a partial differential equation 

Ik(k, a)
Ika(k, a) = + akI(k, a). 

a 

By inspection, we see that a solution to this equation that satisfies the condition I(0, a) = 1 is 
I(k, a) = e−ka and hence 

p̂(k) = e−a|k|. 

From this expression, it is easy to see that P̂N (k) = e−aN |k| and hence 

Na 
PN (x, y) = .

2π(x2 + y2 + N2a2)3/2 



� � � �

�

�
 �


M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 4 

4 Solution to the Telegrapher’s Equation 

4.1 Fourier­Laplace Transform 

First we apply the Laplace Transform to obtain 

s (s + r) ̃c (x, s) − (s + r) δ (x) = v 2 c̃ (x, s)xx . 

Applying the Fourier Transform gives 

s (s + r) ˆ 2 ̂c̃ (k, s) − (s + r) = −k2 v c̃(k, s) 

from which we obtain 
ˆ s + r 
c̃(s, k) = . 

k2v2 + s(s + r) 

4.2 Variance of the position 

We use the relationship 
∂2ĉ�x 2 (t)� = − . 
∂k2 

k=0 

Accordingly, 
2 2v22v r 1 1 L [ x 2(t)�] = = +


2 −22 (s + r) r s + rs s s 

which we transform to obtain 
22v�x 2(t)� = (rt + e−rt − 1).

2r

When rt � 1 we have �x2(t)� ∼ t2 (superdiffusion) and when rt � 1 we have �x2(t)� ∼ t/r (normal 
diffusion). 

4.3 CLT for a persistent random walk 

Beginning with the diffusion equation, ct = Dcxx, we first apply the Laplace transform to obtain 

sc̃ (x, s) − δ (x) = Dc̃ (x, s)xx . 

Applying the Fourier transform gives 

sˆ̃c (k, s) − 1 = −k2Dˆ̃c (k, s) 

ˆ̃c = 
1 

s + k2D 
= 

1 
s + v2k2/r 

(1) 

(2) 

where we used D = v2/r. In long time limit (s � r), the solution from part (a) can be approximated 
as 

ˆ s + r s/r + 1 1 
2k2

c̃ = 
s(s + r) + v

= 
s(s/r + 1) + v2k2/r 

∼ 
s + v2k2/r 

which is the Fourier­Laplace transform of the diffusion equation. 
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4.4 Inverting the transforms 

We carry out the Fourier inversion first; we obtain 

s + r∞ dk
e−ikx c̃(x, s) = 

k2v2 + s(s + r) 
.

2π−∞ 

The poles are located at ±i s(s+r) . In the usual fashion of performing Fourier integrals of this 2v
type, we arrive at 

1 x

c̃ (x, s) = � 
s + r

e−
√

s(s+r) |
v
| 
.

2v s (s + r) 

= e−atBy noting that s (s + r) = (s + r/2)2 − r2/4 and the property L−1 F (s + a)} F (s)}L−1 {
we obtain � 

{ � 
e−rt/2 1 s + r/2 

2 
L−1 

v (s + r/2) (s − r/2) 
e−
√

(s+r/2)(s−r/2) |x|c (x, t) = � v . 

We introduce the variables s̄ = s|
v
x| and α = r|x| and t ̄ = vt . We can then write the Laplace 

transform above as 
2v |x| 

1 1 
� γ+i∞ 

d¯ s̄t̄ s̄ + α
e−
√

(¯ s−α)

s + α) (¯|x| 2πi γ−i∞ 
se � 

(¯ s − α) 
s+α)(¯ . 

Notice how in the complex s̄­plane we have a branch cut on the real axis between −α and +α. We 
must choose whether to close the the integration path on the right side (no singularities) or of the 
left side (branch cut). If we consider the original differential equation as a wave equation, we know 
from a physical argument that the signal cannot propagate faster than v. Therefore, when |x| > vt 
(or ¯ t < 1) then solution should be 0 and we will close the contour in the right­hand plane. However, 
when when |x| < vt (or ¯ t > 1) we close on the left­hand plane where we will pick up a non­zero 
contribution from the branch cut. Hence the integral reduces to 

1 1 
�� α 

d¯ s̄t̄ s̄ + α s2 
−α 

d¯ s̄t̄ s̄ + α
e−i

√
α2 −s̄2 

.se s e 
2 2|x| 2πi −i

√
α2 − s̄

e i
√

α2−¯ + 
α i

√
α2 − s̄−α 

If we change ŝ → −ŝ in the second integral, combine integrals, and perform a variable change 
s̄ = α cos (θ), we reduce the integral to 

1 α 
� π

t cos θ+i sin θ) 

|x| 2πi 
dθ (1 + cos θ) e α(t̄ cos θ+i sin θ) + (1 − cos θ) e−α(¯ . 

0 

tWe can then write t cos θ + i sin θ = 
√

t2 − 1( √
t2−1 

cos θ + √
t2
i 
−1 

sin θ) = cos(θ − iβ) where β = 
1sinh− 1( √

t2−1 
). We simplify the equations to 

1 α 
� π � � π � 

|x| π 
{ dθ cosh((α t̄2 − 1) cos(θ − βi)) + dθ cos(θ) sinh((α t̄2 − 1) cos(θ − βi)}. 

0 0 

Through a box contour integration we recognize that the above integral is equivalent to the integral � π+iβ . (The integrals along the lines of constant real θ cancel each other). Then through a change 0+iβ 
of variable θ θ + iβ we obtain →

1 α 
� π � � π 

dθ cosh((α t2 − 1) cos θ) + dθ cos(θ + iβ) sinh((α t2 − 1) cos(θ))}
|x| π 

{
0 0 
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or 

1 α 
� π � � π 

dθ cosh((α t2 − 1) cos θ) + dθ(cos(iβ) cos θ − sin(iβ) sin(θ)) sinh((α t2 − 1) cos θ)}. 
|x| π 

{ 
0 0 

The second term in the second integral reduces to 0 and we obtain 

1 α � 
t̄2 − 1) + cos(iβ)I1(α t̄2 − 1)}

|x| π 
{I0(α 

or 
1 α � ¯ � 

t̄2 − 1) + √
t̄2 

t 

− 1 
I1(α t̄2 − 1)}. 

|x| π 
{I0(α 

2We define z = r
√

v2 t2−x and obtain 2v 

e−rt/2 r rt 
c(x, t) = 

2v 
{I0(z) + I1(z)}

2 2z 

when ¯ t > 1. Notice that at t ̄ = 1 the Laplace integrand reduces to 1 as γ → ∞. So the integral is 
δ (t ̄ − 1) or δ (vt − x ). To summarize, we have | |

e−rt/2 r rt 
c(x, t) = 

2 
{δ(x − vt) + δ(x + vt) + 

2v 
{I0(z) + I1(z)}H (vt − x .

2z 
| |)}

5 Inelastic diffusion 

5.1 Finding the PDF of XN 

In terms of p (x) for the ΔXn, the joint PDF of the sum will be given by an (N − 1)­dimensional 
integral: ⎛ ⎞ � � N −1� N�−1⎝ xN

PN (xN ) = · · · p
a

− aj−N Δxj ⎠ (p (Δxj ) d (Δxj )) .N 
j=1 j=1 

Alternatively, since the steps are independent, we can write this as the inverse Fourier transform of 
the convolution. Define the characteristic function of the ΔXn as 

∞ 

e−ikx p̂ (k) = p (x) dx. 
−∞ 

Then the probability of the sum is given by 

1 ∞ 

e−ikx ˆ 1 
� ∞ 

e−ikx 
N

PN (xN ) = PN (k) dx = p̂ (a nk) dk. (3)
2π 2π 

n=1−∞ −∞ 

5.2 Finding the cumulants of XN 

Since the steps are independent, we can write the cumulant expansion of PN (x) in terms of the 
cumulant expansion of pi (x): 

N

ln P̂N (k) = 
� 

ln ˆ
N ∞

pm (k) = 
�� (−ik)l 

cm,l, (4)
l! 

m=1 m=1 l=2 
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where the sum over l in (4) is from 2 to infinity since we have assumed zero mean. However, we 
know that for the mth step in the random walk, we are computing the distribution of amΔXm, 
which leads to the result that 

ml cm,l = a cl, (5) 

where cl is the lth cumulant of p (x). Therefore, inserting (5) into (4), we have 

N ∞ �∞ � (−ik)l N
m mln P̂N (k) = 

�� (−ik)l 

a cl = 
l! 

a cl. (6)
l! 

m=1 l=2 l=2 m=1 

Of course, we know that the bracketed summation in (6) is just 
N N +1� a − am a = 

a − 1 
m=1 

for 0 < a < 1, and therefore (6) becomes 
N � (−ik)l � 

aN +1∞ ∞
mln P̂N (k) = 

�� (−ik)l 

a cl = 
− a 

� 

cl,
l! l! a − 1 

m=1 l=2 l=2 

which allows us to conclude that 
N +1 

CN,l = 
a − a

1 − a
cl. 

5.3 Limit of Cumulants 

In the given limit, we have 
a−aN +1 

c2mC2m = � limN →∞ � 
1−a � �m . (7)

Cm 
limN →∞ 

a−aN +1 
2 

1−a c2 

When a = 1 − ε, where ε > 0, (7) becomes 

limN →∞ 
(1−ε)−(1−ε)N +1 

c2mC2m = � � 
1−(1−ε) � �mCm 

2 limN →∞ 
(1−ε)−(1−ε)N +1 

c21−(1−ε) 

c2m limN →∞ (1 − ε) − (1 − ε)N +1 
ε 

= � � ��m . (8) 
c2 limN →∞ (1 − ε) − (1 − ε)N +1 
ε 

But we have � � 
lim (1 − ε) − (1 − ε)N +1 = 1 − ε − lim (1 − ε)N +1 = 1 − ε, 

N →∞ N →∞ 

and thus evaluating (8) we have 

C2m
c2m ((1 − ε)) εm−1c2m = � ε � = 

2 ε 2
Cm c2 (1 − ε) m 

cm (1 − ε)m−1 . 

Consequently, as ε → 0, we have (1 − ε)m−1 ≈ 1 − (m − 1) ε, and therefore 

εm−1 �C2m c2m c2m

m m m
Cm ≈ 

c2 (1 − (m − 1) ε)
= 

c

c
2m 

εm−1 + 
c

(m − 1) εm ≈ O 
� 
εm−1 , 

2 2 2 

which is the result we wanted to establish. 
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5.4 Effective Central Limit Theorem 

ζC2
1/2From (3), we can write the function P∞ as 

PN ζC2
1/2 
� 1 

� ∞ 

e−ikζC
1/2 

� 
= 2 exp ln P̂N (k) d ζC2

1/2 
.

2π −∞ 

However, since ln P̂N (k) defines the cumulant expansion, we have 

� ∞ � � 
PN 

� 
ζC2

1/2 1 
� ∞ 

e−ikζC
1/2 

�� (−ik)l 

= 2 exp CN,l d ζC2
1/2 

. (9)
2π l!−∞ l=2 

But, from part (c), we have � � 
,C2m ≈ O εm−1C2 

m 

and therefore as ε 0, (9) reduces to → 

PN 

� 
ζC2

1/2 1 
� ∞ 

e−ikζC
1/2 1 

= 2 exp − 
2 
k2C2 d ζC2

1/2 
,

2π −∞ 

from which we obtain � � 
PN ζC2

1/2 = ,√
2
1 

πC2 
e−ζ2/2 

and therefore we have the desired limit, 

φ (ζ, ε) → φa (ζ) = 
1 

e−ζ2/2 .√
2π 


