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18.366 Random Walks and Diffusion 

Solutions to Problem Set 3 

Martin Z. Bazant and former 18.366 students∗ 

April 10, 2005 

1 Modified Kramers­Moyall Expansion 

1.1 Preliminaries (also covered in lecture) 

1.1.1 General form of expansion 

Independence of steps of the random walker (i.e. absence of “memory” of magnitude and direction 
of previous steps at a current step) is expressed by the Chapman­Kolmogorov (Bachelier) equation: 

PN+1(x) = 
+∞ 

PN (x − y)p(x, t + τ x − y, t)dy (1)|
−∞ 

which is a recursion for PN (x − y), the PDF that the walker is at point x − y at step N (time 
t = Nτ), in terms of p(x, t+ τ x− y, t), the given PDF that the walker makes step x− y → x at step |
N N + 1 (time t t + τ).→ →

We can formally (i.e. without regard to actual behavior of the functions) expand product PN (x− 
y)p(x, t + τ x − y, t) in powers of y around point x in Taylor series: |

∂ 
PN (x − y)p(x, t + τ x − y, t) = PN (x)p(x + y, t + τ x, t)− y (PN (x)p(x + y, t + τ |x, t)) + | |

∂x 
y2 ∂2 

2! ∂x2 
(PN (x)p(x + y, t + τ x, t)) − ... (2)|

The partial derivatives ∂ are with respect to x with y fixed. This expansion is not very self­∂x 
evident; for its justification it might help to consider p(x, t + τ x − y, t) as a function of x − y and|
y: p(x, t + τ x − y, t) ≡ ft+τ,t(x − y, y); or to compare the expansion to a “regular” Taylor series of |
a function f(x − y) around point x in powers of y: 

2 

f(x − y) = f(x)− yf �(x) + 
y

f ��(x)− ..., (3)
2 

where effectively x in the LHS gets replaced by x+y in the RHS, and therefore in (2) p(x, t+τ x−y, t)|
in the LHS has to be replaced by p(x + y, t + τ |x, t) in the RHS. 

∗The solution to problem 1 adapted from Marat Rvachev (2003). Problem 3 is adapted from the final project of 
Ken Gosier (2001), which became a master’s thesis in finance at the Courant Institute, NYU in 2002. 
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Substituting (2) in (1), converting integral of sum into sum of integrals and changing order of 
differentiation: 

+∞ ∂ 
PN+1(x) = 

+∞ 
PN (x)p(x + y, t + τ x, t)dy − y [PN (x)p(x + y, t + τ |x, t)] dy + ...| � 

−∞ ∂x −∞ � � 

= PN (x)M0(x, t, τ)− 
∂

PN (x) 
+∞ 

yp(x + y, t + τ x, t)dy + ... 
∂x 

|
∞ � � � 

−∞ � 
∂ n� 1 

= PN (x) + −
∂x 

PN (x)Mn(x, t, τ)
n! 

n=1

∞ � 

∂ 
�n


= PN (x) + τ −
∂x 

[PN (x)Dn(x, t, τ)] . (4) 
n=1 

+∞In the last two equalities we used the notation Mn(x, t, τ) = −∞ p(x + y, t + τ x, t)yndy and|
1Dn(x, t, τ) = n!τ Mn(x, t, τ). Transferring PN (x) in (4) to the LHS and dividing both sides of the 

equation by τ : 
nPN+1(x)− PN (x)

= 
∞ � 

∂ 
�

[PN (x)Dn(x, t, τ)] (5)
τ 

−
∂x 

n=1 

Since ρ(x, Nτ) = PN (x) for all N and x, we can formally substitute PN (x) for ρ(x, t), PN+1(x) for 
ρ(x, t + τ) (t = Nτ): 

nρ(x, t + τ)− ρ(x, t) ∞ � 
∂ 
�

[ρ(x, t)Dn(x, t, τ)]= 
τ 

−
∂x 

(6) 
n=1 

In the continuum limit (τ → 0), ρ(x, t + τ) can be expanded in powers of τ as 

∂ρ(x, t) τ2 ∂2ρ(x, t)
ρ(x, t + τ) = ρ(x, t) + τ + + ... (7)

∂t 2! ∂t2 

Substituting (7) in (6) and rearranging terms, we get the final result: 
n∂ρ � τn−1 ∂nρ �� 

∂∞ ∞ �
∂t 

+ 
n! ∂tn 

= −
∂x 

[Dn(x, t, τ)ρ(x, t)]. (8) 
n=2 n=1 

1.1.2 Fokker­Planck equation 

Given that in the continuum limit (N → ∞, τ → 0) the moments scale as M1 ∼ D1τ , M2 ∼ 2D2τ 

and Mn ∼ M
n/2 = O(τn/2), we can estimate orders of Dn(x, t, τ) as τ 0:2 →

M1(x, t, τ)
D1(x, t, τ) = ∼ D1 ∼ O(1), (9)

τ 

M2(x, t, τ)
D2(x, t, τ) = 

2!τ 
∼ D2 ∼ O(1), (10) 

Mn(x, t, τ) O(τn/2) ∼ O(τn/2−1), n > 2 (11)Dn(x, t, τ) = 
n!τ 

∼ 
n!τ 

Here we used definition of Dn: Dn(x, t, τ) = Mn(x,t,τ ) . By inspecting equation (8) and discarding n!τ 

terms of orders of τ1/2 or higher1, equation (8) can be rewritten as 

∂ρ ∂ ∂2 

+ O(τ) = −
∂x 

(D1ρ) + 
∂x2 

(D2ρ) + O(τ1/2), (12)
∂t 

1Here and below we assume that orders of derivatives of (Dnρ) and ρ are not lower (in τ) than the orders of (Dnρ) 
and ρ respectively, i.e. that (Dnρ) and ρ are smooth enough functions. 
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or 
∂ρ ∂ ∂2 

∂t 
+ 

∂x 
(D1ρ) = 

∂x2 
(D2ρ) + O(τ1/2), τ → 0, (13) 

which is the required Fokker­Planck equation. 

1.2 Modified Kramers­Moyall Expansion: Higher­order terms 

By inspecting (8) and taking into account orders of Dn given by (9)­(11), it can be seen that the 
∂3

only term at O(τ1/2) is (− 
∂x3 (D3ρ)). Including this term in (13) we obtain: 

∂ρ ∂ ∂2 ∂3 

∂t 
+ 

∂x 
(D1ρ) = 

∂x2 
(D2ρ)− 

∂x3 
(D3ρ) + O(τ), τ → 0. (14) 

Similarly, keeping in (8) terms of order of O(τ) or lower: 

∂ρ ∂ τ ∂2ρ ∂2 ∂3 ∂4 

+ (D1ρ) + + O(τ2) = 
∂x2 

(D2ρ)− 
∂x3 

(D3ρ) + 
∂x4 

(D4ρ) + O(τ3/2). (15)
∂t ∂x 2 ∂t2 

We will now eliminate the second time derivative of ρ in the third term in the LHS. Rearranging 
terms: 

∂ρ τ ∂2ρ ∂ ∂2 ∂3 ∂4 

= − 
2 ∂t2 

− 
∂x 

(D1ρ) + 
∂x2 

(D2ρ)− 
∂x3 

(D3ρ) + 
∂x4 

(D4ρ) + O(τ3/2). (16)
∂t 
∂Applying τ 

2 ∂t to both sides and changing order of differentiation: 

τ ∂2ρ τ τ ∂3ρ ∂ ∂ ∂2 ∂ ∂3 ∂ ∂4 ∂
(D2ρ)− (D3ρ) + (D4ρ) + O(τ3/2).

2 ∂t2 
=

2 
− 

2 ∂t3 
− 

∂x ∂t 
(D1ρ) + 

∂x2 ∂t ∂x3 ∂t ∂x4 ∂t 

(17) 
Including terms of orders higher than or equal to τ3/2 in O(τ3/2) and taking some of the derivatives: 

τ ∂2ρ τ ∂ ∂ ∂2 ∂ 
(D2ρ) + O(τ3/2)

2 ∂t2 
=

2 
− 

∂x ∂t 
(D1ρ) + 

∂x2 ∂t 

τ ∂ρ ∂D2 ∂ρ 
= 

∂ 
ρ
∂D1 + D1 + 

∂2 � 

ρ + D2 

�� 

+ O(τ3/2). (18)
2 

− 
∂x ∂t ∂t ∂x2 ∂t ∂t 

Substituting in (18) expression for ∂ρ 
∂t from (16) and keeping only orders up to (and not including) 

O(τ1/2) in the square brackets: 

τ ∂2ρ τ ∂ ∂D1 ∂ ∂2 

= ρ + D1 − 
∂x 

(D1ρ) + 
2 ∂t2 

− 
2 ∂x ∂t ∂x2 

(D2ρ) 

∂ ∂2 

+ 
τ ∂2 

ρ
∂D2 + D2 − 

∂x 
(D1ρ) + + O(τ3/2). (19)

2 ∂x2 ∂t ∂x2 
(D2ρ) 

Now plugging this last expression back into (16) we get the answer: 

∂ρ τ ∂ ∂D1 ∂ ∂2 

= ρ 
∂t 2 ∂x ∂t 

+ D1 − 
∂x 

(D1ρ) + 
∂x2 

(D2ρ) 

τ ∂2 ∂D2 ∂ ∂2 

ρ + D2 − 
∂x 

(D1ρ) + (20)− 
2 ∂x2 ∂t ∂x2 

(D2ρ) 

∂ ∂2 ∂3 ∂4 

− 
∂x 

(D1ρ) + 
∂x2 

(D2ρ)− 
∂x3 

(D3ρ) + 
∂x4 

(D4ρ) + O(τ3/2). 

The RHS of this equation involves only spatial derivatives of ρ. The large brackets could of course 
be opened; this, however, would not lead to significant cancellation of terms and simplification of 
the equation. 
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2 Black­Scholes Formulae for Options Prices 

The appplication of the Black­Scholes equation to simple options is discussed in many textbooks 
using a variety of methods, e.g. Hull, Options, Futures, and Other Derivative Securities. 

3 Continuum Limit of Bouchaud­Sornette Options Theory 

For a general and thorough study of options pricing by minimizing the Bouchaud­Sornette “quadratic 
risk” allowing for a variety of discrete random walks for the underlying asset (including additive and 
multiplicative stochastic processes) and interest­rate effects, see the final project report (and Master’s 
thesis) of Ken Gosier, Pricing and Hedging of Residual Risk (2001), available at the class web site. 
The answer to this question is contained there, scattered throughout the paper, and the main part 
is reproduced below. 

Suppose the underlying asset follows a discrete random walk with (additive) independent steps. 
Assume the displacements y = δx in each time step δt have low order moments which depend on the 
current price, 

�δx� = µxδt (21) 
2�δx 2 = σ2 x 2δt + µ x 2δt2 (22) 

�δx 3 = σ3λ3x 3δt3/2 + 3µσ2 x 3δt2 + O(δt3) (23) 
�δx 4 = σ4(λ4 + 3)x 4δt2 + O(δt5/2). (24) 

The random displacement is proprotional to the current value, so this is a discrete approximation of 
a multiplicative stochastic process (as is assumed in Black­Scholes theory). The time step δt could be 
viewed as the correlation time of the underlying asset, beyond which price increments are effectively 
independent. 

Next we follow the Bouchaud­Sornette strategy of minimizing the “quadratic risk”, or variance 
of the return of a position consition of the option and short φ of the underlying. Since minimizing 
the total variance is equivalent to minimizing the variance in each time step, we get the least­squares 
fit equations given in class, as a recursion for w(x, t). 

u(x, t) = w(x, t)− φ(x, t)x = e−rδt w(x + δx, t + δt)p(δx, δt)dδx − φ(x, t) (x + δx)p(δx, δt)dδx 

(25) 
and 

1 � 
φ∗(x, t) = (δx − µxδt)w(x + δx, t + δt)p(δx, δt)dδx (26)

σ2x2δt 

The optimal hedge ratio φ∗ in Bouchaud­Sornette theory is given by the slope of the “least­squares 
fit” of the hedged position to the option price, as explained in class, so φ∗ = Cov(x, w)/Var(x) = 
Cov(δx, w)/Var(δx). 

After specifying the low­order moments of the random walk for the underlying asset, Eqs. (21)– 
(24), the fair game argument, Eq. (25), and the Bouchaud­Sornette hedging strategy, Eq. (26), we 
now have all the ingredients necessary to derive the pricing PDE for the option w. We will show 
that this PDE agrees with the Black­Scholes equation to leading­order, but also contains correction 
terms. The size of the corrections will be proportional to the discrete time step δt, the parameters 
µ, σ, λ3, λ4 from the moments, Eqs. (21)–(24), and the risk­free interest rate. 
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We begin by formally deriving moment expansions for terms on the right­hand side of Eq. (25). 
For the integral in w, we approximate the function by its Taylor series. 

w(x + δx, t + δt) = w(x, t) (27) 
∂w ∂w 

+ (x, t)δx + (x, t)δt 
∂x ∂t 
1 ∂2w 1 ∂2w ∂2

+ 
∂x2 

(x, t)δx 2 + 
∂t2 

(x, t)δt2 + 
w 

(x, t)δxδt + (28)
2 2 ∂x∂t

· · · 

In making these expansions, we assume that the function w(x, t) is slowly varying at length and time 
scales much larger than those of individual steps, so that it is differentiable in the limit δt 0. This →
is a reasonable assumption as long as the maturity of the option is much larger than the time step. 

Substituting Eq. (27) into the w integral in Eq. (25), we obtain an expression in which we have 
the derivatives for w at the initial coordinates (x, t), integrated against powers of the increments δx 
and δt. The derivatives are constants as far as the integral is concerned. Using the moments of δx, 
we obtain � � � � � 

e−rδt δx δx 
w(x + δx, t + δt)p , δt d (29) 

x x

= w


∂w ∂w σ2x2 ∂2w
+(δt) µx + +

2 ∂x2 
− rw 

∂x ∂t 

3 ∂3w
+(δt3/2) 

σ3λ3x

6 ∂x3 

3 ∂3 σ2 2 ∂3 4 ∂4w 1 ∂2w ∂2w µσ2x w x w σ4(λ4 + 3)x w
+(δt2) 

µ2x2 ∂2

+ + µx + + +
2 ∂x2 2 ∂t2 ∂x∂t 2 ∂x3 2 ∂x2∂t 24 ∂x4 

∂w w r −(rδt2) µx
∂w 

+ + 
σ2x2 ∂2

w 
∂x ∂t 2 ∂x2 

− 
2

+O(δt5/2) 

where we have also approximated the exponential term e−rδt by its Taylor series. We leave the terms 
at order­δt2 split out because of a simplification that will be made later. Next we perform a similar 
procedure for φ in Eq. (26), which yields, 

∂w 
φ∗ = (30)

∂x 

+ (δt1/2) 
σλ3x ∂2w 

2 ∂x2 

2 ∂3∂2w ∂2w σ2(λ4 + 3)x w 
+ (δt) µx + + 

∂x2 ∂x∂t 6 ∂x3 

+ O(δt3/2). 

Thus we see that φ∗ agrees with the Black­Scholes hedge ∂w/∂x to leading­order, but also contains 
correction terms at higher order in δt. 

With the approximations Eqs. (29) and (30) in hand, we re­write the fair­game equation, Eq. (25) 
and obtain (after considerable algebra), the expansion 

∂w ∂w σ2x2 ∂2w
0 = rx

∂x 
+ 

∂t 
+

2 ∂x2 
− rw (31) 
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3 ∂3w (r − µ)σλ3x
2 ∂2w 

+ (δt1/2) 
σ3λ3x +

6 ∂x3 2 ∂x2 

1 ∂2w ∂2w (r − µ)σ2λ4x
3 rσ2x3 ∂3w σ2x2 ∂3w 

+ (δt)[ r − 
µ 

µx 2 ∂
2w 

+ + rx + + +
2 ∂x2 2 ∂t2 ∂x∂t 6 2 ∂x3 2 ∂x2∂t 

4 ∂4σ4(λ4 + 3)x w 
+ ]

24 ∂x4 � 
rx ∂w ∂w σ2x2 ∂2w r − (rδt) + + w
2 ∂x ∂t 2 ∂x2 

− 
2

+ O(δt3/2). 

We may simplify the expression at order­δt by a series of recursive substitutions. These substi­
tutions basically rely on the fact that a single time derivative may be replaced by a combination of 
spatial derivatives plus terms at higher­order in δt. This may be seen by writing out the O(1) term 
of (31) as 

∂w ∂w σ2x2 ∂2w 
= −rx

∂x 
− 

2 ∂x2 
+ rw + O(δt1/2) (32)

∂t 

Showing the details of the first recursive substitution, we have 

2rx ∂w ∂w σ2x2 ∂2w r r x ∂w r2 

(−rδt) + +
2 ∂x2 

− 
2
w = (δt)

2 ∂x 
− 

2 
w + O(δt3/2). (33)

2 ∂x ∂t 

This substitution, and one more like it, lead to the final form of the pricing PDE. � � 

0 = rx 
∂w 

∂x 
+ 

∂w 

∂t 
+ 

σ2x2 

2 
∂2w 

∂x2 
− rw (34) � � 

+ (δt1/2) 
σ3λ3 

6 
x 3 ∂

3w 

∂x3 
+ 

(r − µ)σλ3 

2 
x 2 

∂2w 

∂x2 � � � � � � �� 

+ (δt) λ4 
σ4 

24 
x 4 ∂

4w 

∂x4 
+ 

(r − µ)σ2 

6 
x 3 

∂3w 

∂x3 
− x 3 

∂3w 

∂x3 

σ4 

2 
− x 2 

∂2w 

∂x2 

(r − µ)2 

2 
+ rσ2 + 

σ4 

4 

+ O(δt3/2) 

This PDE agrees with Black­Scholes at leading­order, but also contains correction terms proportional 
to powers of the time step δt and the parameters of the underlying probability distribution, in 
particular the mean µ. Therefore, contrary to the interpretation in problem 2, the “optimal” options 
price generally does not correspond to a risk­neutral valuation. 

The correction terms above were assigned as extra credit. For the solution to the “extra extra 
credit” – to solve the perturbed Black­Scholes PDE for a call option – see Gosier (2001), who starts 
by deriving the Green function. 


