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This paper works from the Results of the IAP lecture "Financial Derivatives," and the associated appendix 
"Pricing Risky Options with Nearly Contilmous Hedging," by VIartin Bazant. The Lecture and Appendix 
may he found online at 

The paper is divided into 3 sections. The first section checks the calculations of the Appendix, the second 
makes an extellsioll to the case of a unique risk-free interest rate: and the third considers the case of lognormal 
price dynamics. 

1 Check of the Results of the Appendix 

This section carries out all the steps of the calculations for the results of the Appendix. We start by re-stating 
Eq. (7)> 

This equation is a statement of the dynamic hedging strategy used to minimize the quadratic risk of the 
hedged portfolio. Written out xs-ith full notation, we have 

Note that the arguments (2, t )  of $+must match the arguments of w on the left-hand side, since the amount 
@ is chosen at time t: to hedge price movements at the later time t + 6t. 

Next using the "Markov" relation for the transitioll probability p; stated as Eq. (1) of the Appendix, 
we have 

where 6x = x'-x. dx' = d(6x), and the (so far unstated) limits of i~ltegratiou remaill unchanged at ( - x ,  x). 
We also note that x is a constant in the integrals of (3). since it represents the price at time t .  We use 

this to write 

(4 w(x, t) = i w(x + 62, t +6t)p(bx, 6t)d(6x) - 4*(x, t)(p6t) 

This equation is the full statement of the final step of Eq. (7) from the Appendix. 

I11 consideriug Eq. (4), we first write out fl in a different form from the Appendix. The formula there is 
stated as 

where again we note that all expectation are taken over the price a t  the future time t + at, given that the 
price is x at time t. We use manipulations similar to those used to obtain Eq. (4) to write 

http://www-math.mit.edu/


To simplify (6 ) :we first change the statement of the moments from the Appendix. Eqs. (4)-(6)there state 
the form of the de-meaned moments: 

The moments without de-meaning axe give11 by 

We combine terms in the numerator, and use these refined moments, to write out q'? in its full form as 

We next approximate fl to O(6t) as follows. We write out the Taylor expausioli for w,  

aw azu+ -62 + -6tax at 
1 azw 1 aLzu ,+ --6x2 + --6t + -a 2 1 0  

2 ax2 2 at2 axat 
1 ia31u 1 a 3 ~  1 a3w + --dx3 + --fit + -- 6x6t" +-- 6x%t
6 a x 3  6  at3 2 axat2 2 ax2at 

where all terms on the left-hand side are evaluated a t  ( x ,  t ) .  We replace w by this expalision in (9),and 
integrate term by term, to obtain 



\Ye group by order-at, which gives the expressio~l 

This equation corresponds to Eq. (9) from the Appendix. The expressions differ in the O(6t) term. 

Eq. (12) gives an expression which may be substituted into the dynamic hedging equation ( 4 )  to get an 
O(i t '9  approxilnation for the second term there. We next carry out a similar procedure for the first term in 
(4). that is, the expectation of 7u. This time xs-e keep terms to order 6t2. The result is 

/ w ( x + i x ,  t  + i t ) p ( 6 x ,  h t ) d ( i x )  

/ I  a la2,; a 2 r  pu2 t u t u  a 3 ~ u*(x;~+ 3 ) g ]  + ( i t )  [-- +--+/I- +--+-- +
2  a x L  2  at2 axat 2 a x 3  2 a x Z a t  

+ 0 ( 6 t ' / ~ )  

We combine the approximations (12) and (13) to re-write the dynamic hedging equation (4). The result is 

/12 aLul 1 aLul a 3 ~  + 3) a 4 ~U L+ (it)  + -- + --[ 2 axL 2  at2 2  ar2at + 24 ax4 6 a x 3  

Eq. (14) expresses the Black-Scholes equation plus corrections to 0 ( 6 t ) ;for models whose dynamics may be 
described by the moments in (7) and ( 8 ) ,and a zero interest rate. We next replace all time derivatives a t  
O ( i t ) by spatial derivatives, by the following two-step procedure. We first combine two of the terms: 

1 a 2 w  u2 a3w a [ a ~~~a~w-- + -- - + - -+-- + 0(it1f2)]
2  at2 2  ax2at  2  at-t at 2  ax2  

We next approximate the right-hand side of (15)similarly, 



The terms a t  0(6 t119 in (15) and (16) enter only a t  0(6 t3I2)ill the hedging equation (14);thus allowing 
for the simplified form 

Eq. (1'7)nearly presents a form where the size of each new order-6t correction term depends 011 the next 
highest cumulant of 62. An alteruate form is to group by w-derivative. 

2 Nonzero, Unique Risk-Free Interest Rate 

The Appendix and Section ( 1 ) were worked out in the absence of interest-rate effects. This section extends 
the previous formulatiolis to include a nonzero: unique risk-free interest rate. 

It is an oversimplification, hut a useful first approximation, to assume a uuique risk-free rate T .  Such a rate 
was derived by Black and Scholes, siuce by their model it was possible to completely hedge away all risk: 
aud thereby create a riskless investment. If it is in general impossible to elimiuate all risk, as assumed here, 
then the rate for borrowers and lenders should differ. The resulting consequences remain for future xs-ork. 

Re-stating the dynamic hedging equation ( 2 ) ,we have 

This equation states that the current value of the hedge portfolio should be equal to its expected value one 
time step in the future. In the presence of an interest rate T :  the net value of the hedge portfolio must be 
borrowed, aud the resulting liability must earn interest. With this modification, we have 

erbt( w ( x .  t )  - $* (x , t ) x )  

(20) 
= / w ( z ' ,  t + 6 t ) d x 1 ,t + 6tlx. t )dx l  - p ( x , t )  / z1p(x1,t + 6tlz. t )dx l  

Re-arranging terms, and again using the Markov relation for the transitioli probability p, leads to 



Note that this expressioll reduces to Eq. ( 4 ) from Section ( 1 ) in the case r = 0. 41so note that @ remaills 
unchanged from Section (1). qY is still chosen to minimize the variauce of the hedged portfolio, as detailed 
in Section 4 of the Lecture. Heme we still use Eq. (12) to approximate d* to O(6t) .  

\Ye also retain Eq. (13) to approximate the expectation for w ,  but now we multiply in the exponential for 
the risk-free growth rate. Since we wish to approximate this term to 0 ( 6 t 2 ) :we use the relation 

We multiply (22) into the relation (13) for w: and group terms by order-at, to obtain 

We leave the O(6t" terms split out; because of a simplification that rs-ill be made later 

At the second step, rve again use the approximate relation (22) for the exponential, along rs-ith (12) for fl, 
to approximate the second term of the hedging equation (21) to O(6t"). 

a2w a2W ( r x  - + 3 ) a 3 ~ ,/ I ) u ~ ( x ~+ ( 6  [ - p j + x --axat  + 6 a x 3  

We next substitute (23) and (24) into the hedging equation (21). After some manipulations, we have 

atu aw u2a2w
O =  [ a x  at 2 ax2  r x - + - + - - r w ]  

u3X3 a3w ( r x  - p)uX3 a2w 

6 ax3 2 axz
+ -1 



We simplify the O(6t ) terms; using a procedure similar to that used at the end of Section (1 ) . We write out 
the relation 

all; aw -= rzu - rz- ---aaul + 0(6t1i")
at ax 2 ax> 

We use this to make the substitutions 

1 a% a2w ua a3w -- + rx- +--=w
2 at2 axat 2 ax2at 

Using these substitutions, we re-write (25) as 

( r x  - p ) u a 2 w  

(29) 
( r x  - p)uz a3w j ;:I
24 82" m ) + ( ( T x - g ) P - T - - TU? T~;' -

Importantly, we note that (29) reduces to Eq. (17) from Section ( I ) ,  if r = 0. Once again, we nearly have 
an expression \?here the correction term at each higher order of 6t depends on the next highest cumulant of 
62. \Ye show (29) with terms grouped by w-derivative. 
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