# Solutions to Exam 2 

Martin Z. Bazant

## 1. Electrochemical Equilibrium.

(a) The Fokker-Planck (or Nernst-Planck) equations for diffusion and drift of ions in the "meanfield" electrostatic potential, $\phi$, are:

$$
\begin{equation*}
\frac{\partial c_{ \pm}}{\partial t}=\frac{\partial}{\partial x}\left( \pm \mu_{ \pm} e \frac{d \phi}{d x} c_{ \pm}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(D_{ \pm} c_{ \pm}\right) \tag{1}
\end{equation*}
$$

where $\mu_{ \pm}=D_{ \pm} / k T$ are the ionic mobilities, given by the Einstein relation. Assuming steady state and constant $D_{ \pm}$, we obtain ODEs for equilibrium:

$$
\begin{equation*}
\pm \frac{d}{d x}\left(c_{ \pm} \frac{d \psi}{d x}\right)=\frac{d^{2} c_{ \pm}}{d x^{2}} \tag{2}
\end{equation*}
$$

where $\psi=-e \phi / k T$. Integrating twice, using the boundary conditions, $\psi(\infty)=0$ and $c_{ \pm}(\infty)=c_{0}$, we obtain the expected concentration profiles of Boltzmann equilibrium:

$$
\begin{equation*}
c_{ \pm}(x)=c_{0} e^{ \pm \psi(x)}=c_{0} e^{\mp e \phi(x) / k T} \tag{3}
\end{equation*}
$$

The diffuse charge density of ions is then

$$
\begin{equation*}
\rho(x)=e\left(c_{+}(x)-c_{-}(x)\right)=2 c_{0} \sinh \psi(x) \tag{4}
\end{equation*}
$$

which combines with Poisson's equation of electrostatics :

$$
\begin{equation*}
-\varepsilon \frac{d^{2} \phi}{d x^{2}}=\rho \tag{5}
\end{equation*}
$$

to produce the Poisson-Boltzmann equation. Changing variables, we obtain the required dimensionless form:

$$
\begin{equation*}
\frac{d^{2} \psi}{d y^{2}}=\sinh \psi \tag{6}
\end{equation*}
$$

where $y=x / \lambda$ with a characteristic length scale,

$$
\begin{equation*}
\lambda=\sqrt{\frac{\varepsilon k T}{2 e^{2} c_{0}}} . \tag{7}
\end{equation*}
$$

(b) Putting the units back, the linearized problem is

$$
\begin{equation*}
\lambda^{2} \frac{d^{2} \phi}{d x^{2}}=\phi, \quad \phi(\infty)=0, \phi(0)=-\zeta \tag{8}
\end{equation*}
$$

which is easily solved:

$$
\begin{equation*}
\phi(x)=-\zeta e^{-x / \lambda} \tag{9}
\end{equation*}
$$

It is clear that the influence of the surface potential $\zeta$ decays exponentially with a characteristic length scale, $\lambda$. Equivalently, the (linearized) charge density

$$
\begin{equation*}
\rho(x)=\frac{\varepsilon \zeta}{\lambda^{2}} e^{-x / \lambda} \tag{10}
\end{equation*}
$$

is "screened" in the bulk solution beyond a distance, $\lambda$, usually called the "Debye screening length" (even though it was derived earlier by Gouy).
(c) The region near the charged surface is commonly called a "double layer" since it looks like a capacitor, with the charge $q$ on the surface, equal and opposite to the diffuse charge in solution which screens it:

$$
\begin{equation*}
q=-\int_{0}^{\infty} \rho(x) d x=\left.\varepsilon \frac{d \phi}{d x}\right|_{0} ^{\infty}=-\varepsilon \frac{d \phi}{d x}(0) \tag{11}
\end{equation*}
$$

To obtain the charge-voltage relation $q(\zeta)$, and thus the differential capacitance, $d q / d \zeta$, we integrate the dimensionless PBE, using the trick of multiplying by $\psi^{\prime}$ :

$$
\begin{equation*}
\psi^{\prime} \psi^{\prime \prime}=\psi^{\prime} \sinh \psi \tag{12}
\end{equation*}
$$

Integrating and requiring $\psi(\infty)=\psi^{\prime}(\infty)=0$, we obtain

$$
\begin{equation*}
\frac{1}{2}\left(\psi^{\prime}\right)^{2}=\cosh \psi-1=2 \sinh ^{2}(\psi / 2) \tag{13}
\end{equation*}
$$

We choose the "-" square root

$$
\begin{equation*}
\psi^{\prime}=-2 \sinh (\psi / 2) \tag{14}
\end{equation*}
$$

because the surface charge $q$ in Eq. (11) has the opposite sign of the diffuse charge density, $\rho(0) \propto \psi(0) \propto$ zeta . Putting units back and using Eq. (11), we obtain the desired result:

$$
\begin{equation*}
q(\zeta)=\frac{2 \varepsilon k T}{\lambda e} \sinh \left(\frac{e \zeta}{2 k T}\right) \tag{15}
\end{equation*}
$$

(Note that in the limit of small voltage, $\zeta \ll k T / e$, the interface behaves like a parallel-plate capacitor of dielectric constant $\varepsilon$ and width $\lambda$, since the capacitance is $d q / d \zeta \sim \varepsilon / \lambda$.)
(d) Since Eq. (14) is separable,

$$
\begin{equation*}
\frac{d \psi}{2 \sinh (\psi / 2)}=-d y \tag{16}
\end{equation*}
$$

it is easily integrated (provided that you are comfortable with hyperbolic functions!):

$$
\begin{equation*}
\log \tanh (\psi / 4)=-y+C \tag{17}
\end{equation*}
$$

The constant $C$ is typically replaced by $\gamma$ :

$$
\begin{equation*}
\tanh (\psi / 4)=\gamma e^{-y} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\tanh (e \zeta / 4 k T) \tag{19}
\end{equation*}
$$

Thus, we arrive at the Gouy-Chapman solution to the full, nonlinear Poisson-Boltzmann equation:

$$
\begin{equation*}
\psi(y)=4 \tanh ^{-1}\left(\gamma e^{-y}\right) \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi(x)=-\frac{4 k T}{e} \tanh ^{-1}\left(\gamma e^{-x / \lambda}\right) \tag{21}
\end{equation*}
$$

which exhibits nonlinear screening at the same length scale $\lambda$.

## 2. First passage of a set of random walkers.

(a) For each (independent) walker, we make a continuum approximat and solve

$$
\begin{equation*}
\frac{\partial P}{\partial t}=D \frac{\partial^{2} P}{\partial x^{2}}, \quad P(x, t=0)=\delta\left(x-x_{0}\right) \tag{22}
\end{equation*}
$$

subject to an absorbing boundary condition $P=0$ at the origin, the "target". By linearity, we can satisfy the boundary condition by introducing an image source of negative sign at $-x_{0}$, which respresents "anti-walkers" which annihilate with the true walkers whenever they meet, at the origin (e.g. see Redner's book):

$$
\begin{equation*}
P(x, t)=\frac{e^{-\left(x-x_{0}\right)^{2} / 4 D t}-e^{-\left(x+x_{0}\right)^{2} / 4 D t}}{\sqrt{4 \pi D t}} \tag{23}
\end{equation*}
$$

In terms of this solution, the survival probability is

$$
\begin{equation*}
S_{i}(t)=\operatorname{Prob}\left(T_{i}>t\right)=\int_{0}^{\infty} P(x, t) d t=\operatorname{erf}\left(x_{0} / \sqrt{4 D t}\right) \tag{24}
\end{equation*}
$$

in terms of the error function

$$
\begin{equation*}
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-x^{2}} d x \tag{25}
\end{equation*}
$$

The PDF of the first passage time is then

$$
\begin{equation*}
f_{i}(t)=-S_{i}^{\prime}(t)=\frac{x_{0}}{\sqrt{4 \pi D t}} e^{-x_{0}^{2} / 4 D t} \tag{26}
\end{equation*}
$$

which is the Lévy-Smirnov density, derived by different means in lecture.
(b) On exam 1, we studied the largest step of a random walk, and here we need the smallest return time. By the same basic argument, the indepedence of the walkers implies:

$$
\begin{equation*}
S(t)=\operatorname{Prob}(T>t)=\operatorname{Prob}\left(T_{i}>t\right)^{N}=S_{i}(t)^{N} \tag{27}
\end{equation*}
$$

Therefore, the PDF for the minumum first passage time is

$$
\begin{equation*}
f(t)=-S^{\prime}(t)=N f_{i}(t) S_{i}(t)^{N-1} \tag{28}
\end{equation*}
$$

(c) Since $\operatorname{erf}(z) \sim 2 z / \sqrt{\pi}$ as $z \rightarrow 0$, we have

$$
\begin{equation*}
S(t) \sim\left(\frac{x_{0}}{\sqrt{\pi D t}}\right)^{N} \propto t^{-N / 2} \tag{29}
\end{equation*}
$$

and $f(t) \propto t^{-1-N / 2}$ as $t \rightarrow \infty$. Therefore, the $m$ th moment of the minimum first passage time

$$
\begin{equation*}
\left\langle T^{m}\right\rangle=\int_{0}^{\infty} t^{m} f(t) d t \tag{30}
\end{equation*}
$$

is finite if and only if $m-1-N / 2>-1$, or $N>2 m$. In particular, the mean first passage time $(m=1)$ is finite if and only if $N \geq 3$.

## 3. Escape from a symmetric trap. ${ }^{1}$.

(a) Mean escape time. We have:

$$
\frac{\partial P}{\partial t}=D \frac{\partial^{2} P}{\partial x^{2}}+\frac{D}{k T} \frac{\partial}{\partial x}\left(\phi^{\prime}(x) P(x, t)\right)
$$

where $P(x, t)=p(x, t \mid 0,0)$ within initial condition at the bottom of the well, $P(x, 0)=\delta(x)$, and absorbing boundary conditions at the exit points, $P\left( \pm x_{1}, t\right)=0$. We can write:

$$
\begin{equation*}
\frac{\partial P}{\partial t}=\mathcal{L}_{x} P \tag{31}
\end{equation*}
$$

with:

$$
\begin{equation*}
\mathcal{L}_{x}=D \frac{\partial}{\partial x}\left[e^{-\phi(x) / k T} \frac{\partial}{\partial x}\left(e^{\phi(x) / k T}\right)\right] \tag{32}
\end{equation*}
$$

The probability $S(t)$ of realization which have started at $x=0$ and which have not yet reached $x= \pm x_{1}$ up to time $t$ is given by:

$$
S(t)=\int_{-x_{1}}^{x_{1}} p(x, t \mid 0,0) \mathrm{d} x=\int_{-x_{1}}^{x_{1}} P(x, t) \mathrm{d} x
$$

The distribution function $f(t)$ for the first passage time is then given by:

$$
f(t)=\frac{\partial}{\partial t}(1-S(t))=-\frac{\partial S}{\partial t}=-\int_{-x_{1}}^{x_{1}} \frac{\partial P}{\partial t} \mathrm{~d} x
$$

The mean escape time is then given $\mathrm{by}^{2}$ :

$$
\tau=\int_{0}^{\infty} t f(t) \mathrm{d} t=\int_{-x_{1}}^{x_{1}} U_{1}(x) \mathrm{d} x \quad \text { with } \quad U_{1}(x)=-\int_{0}^{\infty} t \frac{\partial P}{\partial t} \mathrm{~d} t
$$

Performing an integration by part gives:

$$
U_{1}(x)=\int_{0}^{\infty} P(x, t) \mathrm{d} t
$$

By applying the operator $\mathcal{L}_{x}$ on both sides of this relation, we get:

$$
\mathcal{L}_{x} U_{1}(x)=\int_{0}^{\infty} \mathcal{L}_{x} P(x, t) \mathrm{d} t=\int_{0}^{\infty} \frac{\partial P}{\partial t} \mathrm{~d} t=-P(x, 0)=-\delta(x)
$$

where we have used (31). Using the expression (32) for $\mathcal{L}_{x}$, it is easy to solve:

$$
U_{1}(x)=\frac{e^{-\phi(x) / k T}}{D} \int_{x}^{x_{1}} e^{\phi(y) / k T}\left[\int_{0}^{y} \delta(z) \mathrm{d} z\right] \mathrm{d} y
$$

Now we can express the mean escape time:

$$
\begin{aligned}
\tau & =\int_{-x_{1}}^{x_{1}} U_{1}(x) \mathrm{d} x=2 \int_{0}^{x_{1}} U_{1}(x) \mathrm{d} x \\
& =\frac{1}{D} \int_{0}^{x_{1}} e^{-\phi(x) / k T}\left[\int_{x}^{x_{1}} e^{\phi(y) / k T} \mathrm{~d} y\right] \mathrm{d} x
\end{aligned}
$$

[^0]By partial integration:

$$
\begin{aligned}
\tau= & \frac{1}{D}\left[\left(\int_{0}^{x} e^{-\phi(y) / k T} \mathrm{~d} y\right)\left(\int_{x}^{x_{1}} e^{\phi(y) / k T} \mathrm{~d} y\right)\right]_{0}^{x_{1}} \\
& +\frac{1}{D} \int_{0}^{x_{1}} e^{\phi(x) / k T}\left[\int_{0}^{x} e^{-\phi(y) / k T} \mathrm{~d} y\right] \mathrm{d} x
\end{aligned}
$$

To get finally:

$$
\tau=\frac{1}{D} \int_{0}^{x_{1}} \mathrm{~d} x e^{\phi(x) / k T} \int_{0}^{x} \mathrm{~d} y e^{-\phi(y) / k T}
$$

(b) Kramers Mean Escape Rate. We use the saddle-point asymptotics to evaluate the integrals as $k T \rightarrow 0$.

$$
\int_{0}^{x} e^{-\phi(y) / k T} \mathrm{~d} y \sim \frac{1}{2} \sqrt{\frac{2 \pi k T}{\phi^{\prime \prime}(0)}} e^{-\phi(0) / k T}=\sqrt{\frac{\pi k T}{2 K_{0}}}
$$

So that:

$$
\int_{0}^{x_{1}} \mathrm{~d} x e^{\phi(x) / k T} \int_{0}^{x} \mathrm{~d} y e^{-\phi(y) / k T} \sim \sqrt{\frac{\pi k T}{2 K_{0}}} \int_{0}^{x_{1}} e^{\phi(x) / k T} \mathrm{~d} x
$$

with:

$$
\int_{0}^{x_{1}} e^{\phi(x) / k T} \mathrm{~d} x \sim \frac{1}{2} \sqrt{-\frac{2 \pi k T}{\phi^{\prime \prime}\left(x_{1}\right)}} e^{\phi\left(x_{1}\right) / k T}=\sqrt{\frac{\pi k T}{2 K_{1}}} e^{E / k T}
$$

Finally:

$$
R=\frac{1}{\tau} \sim R_{0}(T)=\frac{2 D \sqrt{K_{0} K_{1}}}{\pi k T} e^{-E / k T} \propto e^{-E / k T}
$$

(c) First Correction to the Kramers Escape Rate. In the next derivation, we will use the following relation:

$$
\begin{aligned}
\int_{-\infty}^{+\infty} e^{-a x^{2}+b x^{3}+c x^{4}} \mathrm{~d} x & \sim \int_{-\infty}^{+\infty}\left(1+b x^{3}+c x^{4}+\frac{b^{2} x^{6}}{2}\right) e^{-a x^{2}} \mathrm{~d} x \\
& =\sqrt{\frac{\pi}{a}}\left(1+\frac{3}{4} \frac{c}{a^{2}}+\frac{15}{16} \frac{b^{2}}{a^{3}}\right)
\end{aligned}
$$

Using saddle-point asymptotics with the previous formula:

$$
\int_{0}^{x} e^{-\phi(y) / k T} \mathrm{~d} y \sim \frac{1}{2} \sqrt{\frac{2 \pi k T}{\phi^{\prime \prime}(0)}}\left(1-\frac{k T}{8} \frac{\phi^{(4)}(0)}{\left[\phi^{\prime \prime}(0)\right]^{2}}+\frac{5 k T}{24} \frac{\left[\phi^{(3)}(0)\right]^{2}}{\left[\phi^{\prime \prime}(0)\right]^{3}}\right) e^{-\phi(0) / k T}
$$

Since the well is symmetric, $\phi^{(3)}(0)=0$, we end up with:

$$
\int_{0}^{x} e^{-\phi(y) / k T} \mathrm{~d} y \sim \sqrt{\frac{\pi k T}{2 K_{0}}}\left(1-\frac{k T}{8} \frac{M_{0}}{K_{0}^{2}}\right)
$$

with $M_{0}=\phi^{(4)}(0)$. The same way:

$$
\int_{0}^{x_{1}} e^{\phi(x) / k T} \mathrm{~d} x \sim \frac{1}{2} \sqrt{-\frac{2 \pi k T}{\phi^{\prime \prime}\left(x_{1}\right)}}\left(1+\frac{k T}{8} \frac{\phi^{(4)}\left(x_{1}\right)}{\left[\phi^{\prime \prime}\left(x_{1}\right)\right]^{2}}-\frac{5 k T}{24} \frac{\left[\phi^{(3)}\left(x_{1}\right)\right]^{2}}{\left[\phi^{\prime \prime}\left(x_{1}\right)\right]^{3}}\right) e^{\phi\left(x_{1}\right) / k T}
$$

that we write:

$$
\int_{0}^{x_{1}} e^{\phi(x) / k T} \mathrm{~d} x \sim \sqrt{\frac{\pi k T}{2 K_{1}}}\left(1+\frac{k T}{8} \frac{M_{1}}{K_{1}^{2}}-\frac{5 k T}{24} \frac{L_{1}^{2}}{K_{1}^{3}}\right) e^{E / k T}
$$

with $L_{1}=\phi^{(3)}\left(x_{1}\right)$ and $M_{1}=\phi^{(4)}\left(x_{1}\right)$. We write then:

$$
\begin{aligned}
\tau & \sim \frac{1}{R_{0}(T)}\left(1-\frac{k T}{8} \frac{M_{0}}{K_{0}^{2}}\right)\left(1+\frac{k T}{8} \frac{M_{1}}{K_{1}^{2}}-\frac{5 k T}{24} \frac{L_{1}^{2}}{K_{1}^{3}}\right) \\
& \sim \frac{1}{R_{0}(T)}\left[1+\frac{k T}{8}\left(\frac{M_{1}}{K_{1}^{2}}-\frac{M_{0}}{K_{0}^{2}}-\frac{5}{3} \frac{L_{1}^{2}}{K_{1}^{3}}\right)\right]
\end{aligned}
$$

that is:

$$
R(T) \sim R_{0}(T)\left[1-\frac{k T}{8}\left(\frac{M_{1}}{K_{1}^{2}}-\frac{M_{0}}{K_{0}^{2}}-\frac{5}{3} \frac{L_{1}^{2}}{K_{1}^{3}}\right)\right]
$$

with:

$$
\begin{array}{ll}
K_{0}=\phi^{\prime \prime}(0) & L_{1}=\phi^{(3)}\left(x_{1}\right) \\
K_{1}=-\phi^{\prime \prime}\left(x_{1}\right) & \\
M_{1}=\phi^{(4)}(0) \\
h_{1}\left(x_{1}\right)
\end{array}
$$


[^0]:    ${ }^{1}$ Solution written by Thierry Savin (2003). Used with permission.
    ${ }^{2}$ The function $U_{1}(x)$ is denoted $g_{0}(x)$ in Lecture 18 notes from 2005, and some of this derivation can also be found there.

