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Abstract 

The physical mechanisms of sub-diffusion are overviewed. Long waiting 
times may occur for extended objects (polymers) diffusing through regular 
traps or regular objects through complicated traps (beads through a gel). 
Sinai’s problem incorporates random transition rates and Kramer’s escape 
problem incorporates random traps. The thermal phase transition from 
sub- to normal diffusion is examined for Kramer’s escape from exponentially 
distributed wells. Percolation clusters are introduced and examples are given 
of random walks on a fractal set. Walk on a comb is formulated and walk 
on a Sierpinski gasket is shown to be sub-diffusive. Random walk of a tracer 
particle through arrays of fluid convection rolls is shown to be sub-diffusive. 
The non-separable continuous random walk is introduced. 

1 Physical Mechanisms of sub-diffusion 
< τ >= ∞ 

Here we present several physical mechanisms for sub-diffusion: random 
walks in 1) disordered media, 2) fractal sets and 3) fluid mechanics. 

1.1 Diffusion in disordered media 

Long waiting times may occur for extended objects diffusing through 
regular traps. For example, polymer chains may experience long trapping 
times in gel electrophoresis (regular traps). Regular objects may also diffuse 
through complicated traps. An example is a bead in a polymer solution or 
gel. 

Disorder may be introduced into physical problems through traps or tran
sition rates. Sinai’s problem incorporates random transition rates; Kramer’s 
escape problem utilizes random traps. 

1 
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Example 1. Sinai’s problem 

Consider the motion of a random walker in a random force field in one

dimension 1 . We characterize this as a random walk on the integers (Fig. 1),

with probability p of stepping to the right. Here p is the random variable,

with < p >= 1/2. The result is that < x2 >∼ (log t)4 .


Figure 1: The Sinai problem is an example of a random walk with random tran
sition rates. Here, the walk iis on the integers, with < p >= 1/2 and hence 
< x2 >∼ (log t)4 . 

Example 2: Kramer’s escape problem 

Consider a random walk over potential wells of depth v shown above. In 
this example, we assume the probability of moving at each position decreases 
as the wells increase in depth: 

1 −v/v0p(v) = e (1) 
v0 

For the dimension d ≥ 3, a return to same site is rare, and such a walk 
is called a “transient walk.” At each step we typically sample a new well 
depth v independently 2 . Kramer studied the rate to escape, re. As re 0 
and τe →∞, we have the approximation 

→

v 
re ∼ e− 

kT (2) 

1G. Sinai, Theory Prob. Appl. 27, 256 (1982)) 
2M. Bekele, G. Ananthakrishan and N. Kumar. Mean first passage time approach to the 

problem of optimal barrier subdivision for Kramers escape rate. Physica A. 270, 149 (1999) 
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which is valid in the low kT limit. As a result, the mean waiting time to

escape τ may be written as


v 
τ ∼ τ0e kT ∼1/re (3) 

where τ0 is a characteristic time scale. Therefore, the PDF for the waiting

time τ between steps may be written


dV 
ψ(τ) ≈ P (v)	 (4)

dτ 

where the randomness in ψ is assumed to stem from v rather than τ . Using

v = kT log( τ

τ 
0 
) we may express ψ as


� � kT 

1 τ − 
v0 kT 

ψ(τ) ∼ 
v0 τ0 τ 

(5) 

kT 1 ∼	 (6)kT 1+	kT 
v0v0τ0 

v0	 τ

Recall that sub-diffusion occurs if 0 < γ < 1 and 

1 
ψ(τ)	 ∼ (7)

t1+γ 

2 γ< x > ∼ t	 (8) 
< x > ∼ 0	 (9) 

Alternatively, normal diffusion occurs if < τ ><∞ and 

ψ(τ) = O(1/τ2)	 (10) 

In this Kramer’s escape problem, 

kT 
γ = (11) 

v0 

kt 

So, for T < Tc = v0/k, have sub-diffusion with width ∼ e 2v0 . For T > Tc we

have normal diffusion with width ∼

√
τ .
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1.2 Random walks (< τ >< ∞) on fractal sets 

Here we consider random walks on sets with only certain spaces capable of

being occupied.


Percolation clusters • 

We model percolation as a random coloring of a simple lattice, cubic (Fig.

2) or triangular. We occupy each site in the lattice with probability p (Fig.

2). This process generates clusters of points. Here p may be considered as

a concentration of particles so that we expect p fraction of the sites to be

occupied.


Figure 2: Percolation clusters on a square grid. The probability of occupying a 
site is p. 

Figure 3: Percolation clusters. The clusters behavior changes from subcritical to 
supercritical at p = pc. As the length scale of the domain increases, L →∞, then 
the second largest length scale ξ�(pc) also increases.(Aside: Red bonds are those 
that if cut, one loses spanning.) 
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The coloring may be described as subcritical or supercritical, as the prob 

ability p varies (Fig. 3). The length scale ξ(p) is referred to as the correlation

length, the length over which the probability that two points are part of the

same cluster is greater than some fixed probability. For the subcritical case

(small p), the length scale L of the domain is much larger than the length

scale of the largest cluster, ξ: L� ξ(p). The transition into the supercritical

region occurs at p = pc; the value of pc varies with the domain under con 

sideration. As p → pc, the correlation length ξ → ∞. This occurs because

two points arbitrarily far apart have a finite probability to be in the same

cluster for p = pc.


For the supercritical case, p is large enough that the random walker’s

trajectory reaches most of the domain. Therefore, the correlation length is

meaningless, so we consider instead ξ�, the length over which points have

a finite probability o be connected but not through the largest cluster that

spans the domain. Hence, ξ�(p) is the second largest length scale for the

walker’s trajectory, and is much smaller than L: L � ξ�(p). As the length

scale of the domain increases, L → ∞, then the second largest length scale

ξ�(pc) also increases (Fig. 3).


At the critical occupational probability pc, we have L << ξ(p), and the

largest clusters are random fractals (Fig. 4).


Figure 4: At the critical occupational probability pc for percolation clusters to 
form, we have interesting behavior. Here, L << ξ(p), and the largest clusters are 
random fractals. 
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Now we consider simulated walks on critical percolation clusters, fractals

that appear for p = pc. Diffusion in such heterogeneous media containing

inhomogeneities of various scales has anomalous properties. We consider

walks such that


2 2ν< x >∼ t , ν < 1/2 (12) 

Example: diffusion on a comb. 

Figure 5: A random walk on a comb, in which < τ >= ∞ on the side branches. 
The red bond are those that when cut, the walk loses spanning. 

Consider a walk on a cluster represented as an infinitely extended back
bone and a large number of lateral side branches3 (Fig. 5). The later 
branches serve as traps where the particle spends most of its time: on these 
side branches, < τ >= ∞. 

Here, ψ(t) = f(t) = first return time in branch. 

Example: Walk on the Sierpinski gasket (a deterministic fractal) 

First we define the fractal dimension. The fractal dimension Df is a 
non-integer dimension described by the relation:Mass M = no. of sites = 
LDf 

3M ∼ 2LDf (13) 

3 = 2Df ⇒ Df = 
log 3 

< 2 (14)
log 2 

Exact (“real-space”) renormalization group analysis 
A random walk on the Sierpinski gasket may be examined using this method 

3a) E.W. Montroll and M.F. Schlesinger, in Studies in Statistical Mechanics, Vol. 11, J. 
Leibowitz and E.W. Motroll (eds.) North-Holland, Amsterdam (1984) p.1. 
b). J.-P. Bouchard and A Georges, Phys. Rep. 195, 127 (1990). 
c). M.B. Isichenko, Rev. Mod. Phys. 64, 961 (1992). d). Lubashevskii, I.A. and Zemlyanov, 
A.A. Continuum description of anomalous diffusion on a comb structure. J. Exp. Theor. Phys. 
87 (4), 700 (1998). 
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Figure 6: Sierpinski gasket. Random walk on this deterministic fractal may be 
studied using exact renormalization group analysis. 

which exploits self similarity via recursions 4 . Here it is assumed that the 
characteristic length scale goes to infinity (ξ → ∞ or ξ � L). Assume the 
mean first passage time τ to travel from one point to an adjacent one is 
known. One enters the triangle at the top vertex and exits at the lower right 
or lower left vertex. Let τ � be the time it takes to exit the triangle beginning 
from the entering point shown in Fig. 7. There are two kinds of points that 
the walker must pass through, labeled A and B. Note that in Fig. 7 there 
are two points labeled A. We calculate the time to exit τ �; the time a to 
exit given that we start from point A; and the time b to exit given that we 
start from point B. This gives us three equations, which we use to solve 
for the three unknowns, a, b, and τ � in terms of the known time τ . First 
we calculate a, the time to exit starting from point A (Fig. 8). There are 
four equally likely paths, A1 through A4, that a random walker at point A 
may take. So, P (A1) = P (A2) = · · · = 1/4. The path A1 takes time τ + τ � 

because it takes time τ to reach the starting point and time τ � to exit from 
the starting point. The path A2 takes time τ + a because it takes time τ 
to reach point A and time a to exit from point A. The path A3 takes time 

4Goldstein, S. Random walks and diffusions on fractals. Percolation theory and ergodic theory 
of infinite particle systems. IMA Math. Appl., Vol. 8, Kesten, H. (ed.), Springer; Berlin, 
Heidelberg, New York (1987), 121–129). Also in: Barlow M.T., Perkins A., Brownian motion on 
the Sierpinski gasket, Probab. Th. Rel. Fields, 79 (1988) 543–623. 
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Figure 7: The walk on the Sierpinski gasket. The time to exit may be calculated 
using renormalization group analysis. 

τ + b because it takes time τ to reach point B and time b to exit from point 
B. Lastly, the path A4 takes time τ because it takes time τ to reach the 
exit point. Hence, we may write the time a as 

a = E(time to exit starting from A) (15) 
= P (A1)A1 + P (A2)A2 + P (A3)A3 + P (A4)A4 (16) 

= 
1 
4 
(τ + τ �) + 

1 
4 
(τ + a) + 

1 
4 
(τ + b) + 

1 
4 
τ (17) 

= τ + 
1 
4 
(τ � + a + b) (18) 

Similarly, we may calculate the time to escape b given a start from point B 
(Fig. 9). At point B, there are two possible kinds of paths, B1 and B2. So 
P (B1) = P (B2) = 1/2. Path B1 takes time τ to exit. Path B2 takes time 
τ + a to exit. Hence we may write 

1 1 
b =

2 
τ + 

2
(τ + a) (19) 
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Figure 8: The possible paths that may occur in time a.


Figure 9: The possible paths that may occur in time b 

Finally, we write τ �, the time to exit beginning from the starting point. 
At the starting point, we may only travel to point A. Therefore, 

τ � = τ + a (20) 

Using three equations (18),(19) and (20) to solve for three unknowns, we 
find 

τ � = 5τ, a = 4τ, b = 3τ (21) 

We assume that the time τ is a function of the length of the triangle, L: 
τ(L) = L1/ν . The time τ � is the time to exit the triangle of length 2L. 
Together, (2L)1/ν = τ � = 5τ = 5L1/ν . Multiplying by ν gives 

2L = 5ν L (22) 
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where the coefficient ν satisfies 2 = 5ν and thus 

ν = 
log2 

= 
1 

< 1/2 (23)
log5 2.32


Hence, this a random walk through the Sierpinski gasket is a sub-diffusive

process.


1.3 Experiment: advection-diffusion in a linear ar

ray of convection rolls


Figure 10: A tracer particle moving in a one-dimensional array of convection rolls 
undergoes convection and molecular diffusion (Bouchard and Georges, 1990). Dif
ferent visits to a given roll lead to different diffusion histories; hence the total travel 
time t will be the sum of independent variables. 

Consider the motion of a tracer particle in a one-dimensional array of 
convection rolls5 (Fig. 12). The particle both convects along flow lines and 
undergoes molecular diffusion (D0), which allows jumps between flow lines. 
The observation is that the rolls act as equally spaced traps with a release 
time distribution decaying as ψ(τ ) = τ −1+µ for τ ≤ L2/D0 where L is the 
diameter of the roll. The return from finite interval may lead to sub-diffusion 
at smaller times 

2 γ x ∼ t → t, t � L2/D (24) 

Note in fluids, we often find superdiffusion with ν > 1/2 How? The problem 
cannot be a Levy flight because < σ2 >= ∞ 

5Bouchard, J.-P. Georges, A. Anomalous diffusion in disordered media: statistical mechanics, 
models and physical applications. Phys. Rep. 195:4 and 5, 127-293 (1990) 
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1.4 Experiment: n traps in a ring 

Figure 11: Solomon, Weeks, Swinney examined the chaotic transport of tracer 
particles laminar fluid flow through a circular chain of n vortices in a rotating 
annulus. 

Solomon, Weeks, Swinney 19936 examined the chaotic transport of tracer 
particles laminar fluid flow through a circular chain of n vortices in a rotat
ing annulus. Although the velocity field is laminar, passive tracers in the 
flow have chaotic trajectories, intermittently sticking near the vortices as in 
Bouchard Georges. They found that the variance of the displacement grows 
with time as tγ with γ = 1.65. The flight times have power law distributions: 

1 1 
p(passing n traps) ∼ 

1+α ∼ 
t1+α (25) 

n

where α ∼ 1.3 < 2, which indicates that the trajectories can be described 
quantitatively as Levy flights. Levy motion and anomalous diffusion has 
been analyzed theoretically2 for model system and these analyses yield an 
exponent γ = 3 − α, that is 1.65 should equal 1.33. Swinney et al state that 
the measured values of α and γ are in good accord with this relation when 
considering uncertainty in the exponent values. 

6T. H. Solomon, Eric R. Weeks, and Harry L. Swinney.”Observation of anomalous diffusion 
and Levy flights in a two-dimensional rotating flow”, ”Observation of anomalous diffusion and 
Levy flights in a two-dimensional rotating flow”, Phys. Rev. Lett. 71 3975-3978 (1993). 



� 
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2 Non-separable CTRW 

Now we introduce the non-separable continuous random walk (Lec 20) in

which we will examine leapers and creepers. A step with size �r and duration

t has the joint PDF φ


φ(�r, t) =� p(�r)ψ(t) (26) 

That is the distributions for the waiting time ψ and step length p can no

longer be separated. Each �r and time t are random but not independent:


φ = p(�r|t)ψ(t) (27) 

Let Ψ(�r, t) be the PDF of a displacement �r at time t since the last turning 
point and having taken no “steps”. 

Then 

∞
Ψ(�r, t) = p(�r|t) ψ(t�)dt� (28) 

t 

if the turning point has not been reached yet. Hence we only need ψ(t), p(�r|t) 
to obtain φ and Ψ. 


