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Lecture 3: Central Limit Theorem 

Scribe: Jacy Bird 
(Division of Engineering and Applied Sciences, Harvard) 

February 8, 2003 

The goal of today’s lecture is to investigate the asymptotic behavior of PN (εx) for large N . We 
use Laplace’s Method to show that a well-behaved random variable tends to a multivariate normal 
distribution. This lecture also introduces normalized cumulants and briefly describes how these 
affect the distribution shape. 

General Distribution 

As we saw in previous lecture, the probability density function for the random-walk position after 
N independent steps, XN , is given by 

� ddk 
PN (x) = 

� 

e ik·x 
N 

p̂n(k) 

� 

. (1) 
−� (2λ)d 

n=1 

In the case where p(x) is iid, Equation (1) simplifies to 

PN (x) = 
� 

e ik·x ( ̂p(k))N d
dk 

. (2) 
−� (2λ)d 

Here we have defined p(x) to be the PDF for each displacement and PN (x) to be the PDF 
for the position, XN , after N (IID) steps. Thus it follows that there are two moment generating 
functions (MGF) of interest: p̂(k) is the MGF for xn and P̂N (k) is the MGF for XN . Likewise, we 
can define a cumulant generating function (CGF) for steps xn and XN . As we saw in Lecture #2, 
the CGF for steps xn is defined as 

ω(k) = log p̂(k) (3) 
1 

= −ic1 · k c k + . . . k − 
2 

· 
2 
· 

Since cumulants for IID random variables are additive, the cumulant generating function for XN is 
denoted ωN = (k) log P̂N (k) = Nω(k). As shown in Lecture #2, the variance of the distribution, 
δ2 

N , equals C2,N = Nc2 which is equivalent to Nδ2 . Thus the width of the distribution, δN , scales 
like 

∼
N . 

Shape of the Distribution for Large N 

The exact expression for PN (x) becomes increasingly complex as N increases; however, for suffi
ciently large N the distribution tends to a general shape. In the last section (and last lecture), 
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Figure 1: The dominant contribution of the integral occurs within a region ψ away from the maxi
mum point as N � ≡. 

it was showed that the width of this distribution scales as 
∼
N . In this section we are going to 

investigate the 
∼
N scaling more formally and use Laplace’s Method to derive the asymptotic dis

tribution shape. For a review of Asymptotic Methods, the reader is referred to Bender and Orszag 
(1978)1 . Laplace’s Method takes advantage of the fact that the dominant contribution of an integral 
f (k)eN ω(x,k)dk for large N occurs a small distance, ψ, from the max π(k) (Fig. 1). 

We run into potential problems if we let x and N both go to infinity, as will be discussed 
in a later lecture. Therefore for the time being, we will only look at the ”central region” of the 
distribution. 

Let’s begin by rewriting Equation (2) in terms of the cumulant generating function, 

ddk 
PN (x) = e ik·x+N �(k) 

(2λ)d (4) 
allk 

For large N , the dominant contribution of the integral is near the origin, so we can collapse the 
limits of integration to a small region around the origin (this approximation introduces exponentially 
small error). Thus for large N , 

ddk 

|k|<ψ 
N �(k) 

(2λ)d (5)PN (x) e ik·x e 

The next step is to Taylor expand ω(k) about the origin which as was done in Equation (3). This 
leads to 

k c k+...
2PN (x) e ik·x e

−iN c1 ·k− N ·
2
· ddk 

(6) 
|k|<ψ (2λ)d 

See Bender and Orszag, Advanced Mathematical Methods for Scientists and Engineers, Sec. 6.4 (Springer, 1978), 
for a detailed discussion on Laplace’s Method. 
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For sufficiently large N we can truncate the series after the k c k term. Now we expand the 
2

· · 
limits of integration back to ≡ to ≡ (again, this only introduces exponentially small errors). Thus 
for sufficiently large N , 

ddk 
e
−iN c1·k− N 

2
k c k 

2 
·ik xPN (x) (7)··e� 

allk (2λ)d 

ddk1
2
k·(N c 

2
)·kik·(x−N c1)e

− (8)e 
(2λ)d 

The next step is to transform this expression into a Gaussian integral. More specifically we want


to transform e− 1
2
k·(N c 

2
)·k to e−w 2 /2 . Provided that c 

2 
is positive definite and symmetric, we define 

Nc k (9)w � 
2 
· 

Note 1: It’s worth reviewing what is meant by the square root of a matrix (or 2nd order tensor). 
From linear algebra we know that M can be decomposed into QAQT , where Q is orthogonal 
(Q−1 = QT , Q = 1) and A is diagonal (Aij = aiαij with ai > 0 being the eigenvalues of M).| |
In general, we can define M raised to the � power as M� � QA�QT . Here A� is diagonal with 

� 1(A�)ij = ai αij . Hence, the square root of M is defined above with � = 2 . 

Returning to the distribution, we make the change of variable 

w = Nc k (10)
2 

dd w = 
� Nc 

� ddk (11)
2 

= Nd/2 �� 
� 

� c � ddk (12)
2 

� � �dIn these equations 
�

∼
c 
2
� is the determinant of ∼c 

2 
and equals i=1 

∼
ai where ai are the eigenvalues 

of c . With the substitution, Equation (8) is rewritten as 

1
2 dd

− 
2 wi(x−N c1 )· N c w w 

e−
·

PN (x) � (13)
2 2e 
d 
2(2λ)d N � c �

2 

x−N c1∼
cEquation (13) can be further simplified by defining a new variable, z �

2 

21 wiz dd w w e−PN (x) � (14)
2
·e 

(2λ)d N 
d 
2 
� c �

2 

The above equation [Equation (14)] is expressed in terms of a multivariate Gaussian distribution. 
However, this distribution can also be interpreted as a product of d 1-D Gaussian distributions taken 
separately. Thus Equation (14) can be rewritten as 

iz1 e− 
2
1 
2 

w 
iz2 e− 

2
2 
2 

w1 dw1 dw2
PN (x) � . . .
 (15)
e e 

2λ 
·


2λd 
2 
� c �

2 
−� −�

N 
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w 
Noting that integrals in the above equation are inverse Fourier Transforms of the Gaussian e− 2 , 

we simplify the expression to 

z z 

∼
2λ 

· ∼
2λ 

2
2 
2 

2
1 
2 

⎝
 � ⎝ 
e− e−1 

PN (x) (16). . . 

N 
d 
2 
� c �

2 

2 
z 

e−
PN (x) 

2 

(17) 
d 
2(2λN)
 � c �

2 

The transform to z can also be viewed as the definition of a new random variable. In the last 
few steps, we have actually shown that the scaled random variable 

ZN = (X −Nc1)(Nc 2)
− 1

2 = (XN − →XN ) ·∞ c−1/2 
2,N 

(18) 

has a PDF, πN (z), that tends to a multivariate standard normal distribution 

e−z 2 /2 

πN (z) � . (19)
(2λ)d/2 

This result is known as the Multidimensional Central Limit Theorem (CLT). 

Note 2: PN (x) dd x = πN (z) dd z 

Note 3: For d = 1, ZN = X−N c1 since c2 = δ2 . The CLT only applies to the ”central region” of 
α
�
N 

PN (x) where z = O(1). This implies that in multiple dimensions vcXN = Nc1 + O( Nc 
2
) which 

reduces to XN = Nc1 + O(δ
∼
N) when d = 1. 

Note 4: Note: An explicit assumption throughout has been the existence of c1 and c . If c is not 
2 2 

finite, the CLT does not hold.


Note 5: For a more rigorous derivation of the CLT, the reader is referred to

W. Feller, An Introduction to Theory of Probability. Vol. I,II (1970). 
Gnedenko, Kolmogorov (1968). 

Note 6: Equation (19) is an asymptotic solution and it appears that the mean, c1, and variance, c 
2 
, 

of the distribution are of importance. However as we will see in the next section and in subsequent 
lectures, higher cumulants become important when we either look at smaller N or if we investigate 
the tails of the distribution. 
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Figure 2: Effect of skewness on distribution Figure 3: Effect of kurtosis on distribution 
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Convergence in the Central Region 

For simplicity, let’s consider d=1, though it is not difficult to generalize to higher dimensions. We 
begin again with the distribution 

PN (x) = e ikx e N �(k) dk 
2λ−� 

We apply Laplace’s Method to higher orders of asymptotic expansion as N remains� ≡ (ZN 

fixed). The first step is to note that the dominate contribution to the integral occurs near k = 0, 
so we taylor expand ω(k) about the origin producing 

� ψ 
N [−ic1k− 1 c2k2+ i c3k3+ 1 c4k4+...] dk 

PN (x) = e ikx e 2 3! 4! (20) 
−ψ 2λ 

where the imaginary numbers result from the definition of the cumulants. Substituting w = δ 
∼
N k 

and z = x−N c1 , the above equation reduces to 
α
�
N 

� ψ 
πN (z) � e−i�z �

2 �3 (i�)3 
�4 (i�)4 

e− 
2 e 3! 

� 
N 

+ 
4! N +··· d�

, (21) 
−ψ 2λ 

c3 c4where �3 = 
α3 , �4 = 

α4 , ... �m = cm are the normalized cumulants of p(x). The normalized αm 

cumulants play a large role in determining the distribution shape (Fig. 2 and Fig. 3). For sufficiently 
large N , we can truncate the Taylor series and then expand the limits of integration back to −≡ 
to ≡. That is, as N � ≡ 

� ⎞ 
�
2 �3 (i�)3 

�4 (i�)4 1 �3 (i�)6 
�5 d� 

πN (z) � 
� 

e i�z e− 
2 1 + + + 

� �2 

+ O . (22)
3! 

∼
N 4! N 2 3! N N 

∼
N 2λ−� 

The topics in the last part of this lecture where presented more thoroughly in 2003. To the 
readers benefit, I have included part of the 2003 notes by David Vener. 
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Noticing that 
�	

dn � 
2	 2 

(i�)n 
e−i�z e− �

2 = (−1)n 
� 

e−i�z e− 
2 

dzn −�	 −� 

allows us to rewrite Equation (22) as 

2 � ⎠	 ⎛ ⎞ 
z	 � � 

5 � 
e− 

2 �3 1 1 �4 1 �3 
�2	

z
πN (z) � 1 + H3 (z) + H4 (z) + H6 (z) + O , (23)∼

2λ 3! 
∼
N N 4! 2 3!	 N 

∼
N 

where Hn (z) is the nth Hermite polynomial defined by 

2	 2dn 
z	 z 

e− 
2 � (−1)n 

Hn (z) e
− 

2 . 
dzn 

Note 7: The Hermite polynomials come up in many different places in mathematical physics, 
including, perhaps most prominently, in the eigenfunctions for the quantum harmonic oscillator. 
The first few Hermite polynomials are 

H1 = z, 

H2 = z 2 − 1, 

H3 = z 3 − 3z, 

H4 = z	4 − 6z + 3, 
5H5 = z − 10z 3 + 15z, 
6 2H6 = z − 15z 4 + 15z − 15. 

Therefore, as N � ≡ we can write Equation (23) as 

2 
z �	 � 

e− 
2 h3 (z) h4 (z)

πN (z) � 1 + + + , (24)∼
2λ 

∼
N N 

· · · 

where 

�3
h3 (z) = H3 (z) ,	 (25)

3! 
� �2

�4 1 �3
h4 (z) = H4 (z) + H6 (z) .	 (26)

4! 2 3! 

Note 8: In 1 dimension, this general expansion related to the CLT is often called the ‘Edgeworth 
expansion’ in the mathematical literature. (See, e.g. W. Feller, An Introduction to Probability, Vol. 
2.) In more dimensions when related to random flights, expansions of this type are sometimes called 
‘Gram-Charlier Expansions’. (See, e.g. B. Hughes, Random Walks and Random Environments.) 


