- Balancing a broom.

Statement:

Consider the problem of balancing a broom upright, by placing it on a surface that moves up and down in some prescribed manner. Specifically:
Assume a rough flat horizontal surface, which oscillates up and down following some prescribed law (that is, at any time the surface can be described by the equation $y=Y(t)$, where y is the vertical coordinate, and Y is some oscillatory function). On this surface we place a broom, in upright position, with the sweeping side pointing up. ${ }^{2}$ Question: Can we prescribe Y in such a way that the broom remains upright - i.e.: the position is stable?

In order to answer the question, consider the following idealized situation:
A) Replace the broom by a mass m, placed at the upper end of (massless) rigid rod of length L. Let the displacement of the rod from the vertical position be given by the angle θ, with $\theta=0$ corresponding to the rod standing vertical, and the mass on the upper end.
B) The bottom of the rod is attached to a hinge that allows it to rotate in a plane. Thus the motion of the rod is restricted to occur on a plane.
C) Assume that friction can be neglected.
D) The hinge to which the rod is attached oscillates up and down, with position $x=0$ and $y=Y(t)-x$ is the horizontal coordinate on the plane where the rod moves. The mass is then at $x=L \sin (\theta)$ and $y=Y+L \cos (\theta)$ - we measure angles clockwise from the top.

Now, do the following:

(1)

Use Newton's laws to derive the equation of motion for the mass m. You should obtain a second order ODE for the angle θ, with coefficients depending on the parameters g (the acceleration of gravity) and the length of the $\operatorname{rod} L-$ in addition to the forcing function $Y=Y(t)$.

Hint: Only two forces act on the mass m, namely: gravity and a force $F=F(t)$ along the rod. The force F has just the right strength to keep the (rigid) rod at constant length L - this is enough to determine F, though you do not need to calculate it.

[^0](2)

You should notice that adding a constant velocity to the hinge motion (that is: $Y \rightarrow Y+v t$, where v is a constant) does not change the equation of motion. Why should this be so? What physical principle is involved?

(3)

Write down the (linearized) equations for small perturbations of the equilibrium position $(\theta=0)$ that we wish stabilized. Stability occurs if and only if $Y=Y(t)$ can be selected so that the solutions of this linear equation do not grow in time - strictly speaking we should also consider the possible effects of nonlinearity, but we will ignore this issue here.

(4)

You should notice that it is possible to stabilize $\theta=0$ by taking $Y=-a t^{2}$, where $a>0$ is a constant acceleration. How large does a have to be for this to happen? Give a justification of this result based on physical reasoning, without involving any equations (this is something you should have been able to predict before you wrote a single equation).

(5)

Of course, the "solution" found in (4) is not very satisfactory, since Y grows without bound in it. Consider now oscillatory forcing functions of the form:

$$
\begin{equation*}
Y=\ell \cos (\omega t) \tag{1}
\end{equation*}
$$

where $\ell>0$ and $\omega>0$ are constants (with dimensions of length and time ${ }^{-1}$, respectively).

> The objective is to find conditions on (ℓ, ω) that guarantee stability.

The next steps will lead you through this process, but first: Nondimensionalize the (linearized) stability equation. In doing so it is convenient to use the time scale provided by the forcing to nondimensionalize time - i.e.: let the nondimensional time be $\tau=\omega t$.
This step should lead you to an equation describing the evolution of the angle θ (valid for small angles), involving two nondimensional parameters. One of them, $\epsilon=\ell / L$, measures the amplitude
of the oscillations in terms of the length of the rod. The other measures the time scale of the forcing (as given by $1 / \omega$) in terms of the time scale of the gravitational instability - a function of g and L. Call this second parameter μ - note that in the equation only μ^{2} appears, not μ itself. (6)

Find the stability range for μ as a function of ϵ, for the values $0<\epsilon \leq 0.6$ - it is enough to pick a few values of ϵ, say $\epsilon=0.1,0.2,0.3,0.4,0.5,0.6$, and then to compute the stability range for each of them.

Note/hint: This step will require not just analysis, but some numerical computation. So as not to be forced to explore all possible values of μ when looking for the stability ranges (numerically an impossible task), you should notice that the analysis for $\epsilon=0$ can be done exactly - and should provide you with a good hint as to where to look.

(7)

Write the period $p=\frac{2 \pi}{\omega}$ of the forcing, in terms of the nondimensional parameter μ, and the parameters g and L. The results of part (6) should provide you with the period ranges (for a given oscillation amplitude) where stability occurs. Use this information to provide a rough explanation of why it is relatively easy to balance a broom on the palm of your hand (using the strategy outlined in this problem - try it), and why you will not be able to balance a pencil.

(8)

For $0 \leq \epsilon \ll 1$ and $0 \leq \mu \ll 1$ you should be able to obtain analytical approximations for the stable ranges. Do so, and compare your results with those of part (6).

Hint: Floquet theory provides a function (the Floquet Trace $\alpha=\alpha(\mu, \epsilon)$) that characterizes linearized stability - stability if and only if $|\alpha| \leq 1$. Compute this function for μ and ϵ small.

[^0]: ${ }^{1}$ MIT, Department of Mathematics, room 2-337, Cambridge, MA 02139.
 ${ }^{2}$ Because the surface is rough, the contact point of the broom with the surface will not move relative to the surface.

