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1 Problems 08.07.05/06/07 - Strogatz

(Another driven overdamped system)

Statement for problems 08.07.05/06/07

A. By considering an appropriate Poincaré map, prove that the system

dθ
+ sin θ = sin t (1.1)

dt

has at least two periodic solutions. Can you say anything about their stability?

B. Give a mechanical interpretation for equation (1.1).

C. Plot a computer generated phase portrait for the system in (1.2). Check that the answer agrees with
the results in part A.

Hint. Regard the system as a vector field on a cylinder:

dt dθ
= 1 and = sin t

dt dt
− sin θ. (1.2)

Sketch the nullclines and thereby infer the shape of certain key trajectories that can be used to bound the
periodic solutions. For instance, sketch the trajectory through P = (t, θ) = 1 π (1, 1).
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2 Problem 141003 - Newton’s Method in the complex plane

Statement for problem 141003

Suppose that you want to solve an equation, g(x) = 0. Then you can use Newton’s method, which is as follows:
Assume that you have a “reasonable” guess, x0, for the value of a root. Then the sequence xn+1 = f(xn),
n ≥ 0, where f(x) = x− g(x) , (2.1)

g′(x)
converges (very fast) to the root.

Remark 2.0.1 (The idea). Assume an approximate solution g(xa) ≈ 0. Write xb = xa + δx to improve it, where δx
is small. Then 0 = g(xa + δx) ≈ g(xa) + g′(xa) δx ⇒ δ x ≈ − g(xa)

g′(x ) , and (2.1) follows.
Of course, if x0 is not close to a root, the method may not converge.

a

Even if it converges, it may converge to a root that
is far away from x0, not necessarily the closest root. In this problem we investigate the behavior of Newton’s method in

the complex plane, for arbitrary starting points.

Consider iterations of the map in the complex plane generated by Newton’s method for the roots of z3−1 = 0.
That is (

2 1
zn+1 = f(zn) = +

3 3 z3
n

)
zn, n ≥ 0, (2.2)

where 0 < |z0| <∞ is arbitrary. Note that

1
ζ1 = 1, ζ i 2π/3 1 i 4π/3

2 = e = ( 1 +
√

− i 3), and ζ3 = e = (
2 2

−1− i
√

3), (2.3)

are the roots of z3 = 1.

Your tasks: Write a computer program to calculate the orbits {zn}∞n=0. Then, for every 1 initial point z0,
draw a colored dot at the position of z0, where the colors are picked as follows:

zn → ζ1, cyan. zn → ζ2, magenta. zn → ζ3, yellow. No convergence, black. (2.4)
What do you see? Do blow ups of the limit regions between zones.

Hint. Deciding that the sequence converges is easy: once zn gets “close enough” to one of the roots, then the very
design of Newton’s method guarantees convergence. Thus, given a z0, compute zN for some large N , and check if
|zN − ζj | < δ for one of the roots and some “small” tolerance δ — which does not have to be very small, in fact
δ = 0.25 is good enough. You can get pretty good pictures with N = 50 iterations on a 150× 150 grid. A larger N is
needed when refining near the boundary between zones.

Hint. If you use MatLab, do not plot “points”. Instead, plot “regions”, where the color of each pixel is decided by z0
— use the command image(x, y, C) to plot. Why? Because using points leaves a lot of unpainted space in the figure,
and gives much larger file sizes.

3 Coupled oscillators #01

Statement: Coupled oscillators #01

In this problem we present an example of the process described in § 4.1, and consider the coupling of two
oscillators with a stable, and strongly attracting, limit cycle each. The oscillators are very simple, with trivial

1 Numerically this means: choose a sufficiently fine grid in a rectangle, and pick every point in the grid. For example, select the

square −2 < x < 2 and −2 < y < 2, where z0 = x + i y.
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equations in polar coordinates. This simplifies the analysis enormously, but the principles illustrated here
are valid for the coupling of more generic oscillators.

Consider the following equations for two coupled oscillators

ẋj = −ωj yj + λj (R2
j − x2

j − y2
j )xj + Fj(x1, y1, x2, y2), (3.1)

ẏ 2
j = ωj xj + λj (Rj − x2

j − y2
j ) yj +Gj(x1, y1, x2, y2), (3.2)

where j = 1 or j = 2, and
(a) ωj > 0, Rj > 0 and λj > 0, are constants, with λj � 1,
(b) Fj and Gj are some functions — these are the coupling terms.

Using the fact that λj � 1, write√ reduced equations for the two phases θ1 and θ2, defined by xj = rj cos θj

and y 2
j = rj sin θj , where rj = xj + y2

j . In particular, consider the following cases

1. What form do the reduced equations take when the Fj and Gj are only functions of the variables
η = x1 x2 + y1 y2 and ξ = y1 x2 − x1 y2.

2. What form do the reduced equations take when G1 = G2 = 0, F1 =
R2

−α R1 x2, and F2 =
R2

−β x1 — where α and β are constants.
R1

Hint. Write the equations in polar coordinates.2 Then consider what happens in a neighborhood of the limit
cycles for the two oscillators when de-coupled — i.e.: rj not too far from Rj. In this context, argue 3 that
the dependence on the radial variables can be made trivial.

4 Notes: coupled oscillators, phase locking, etc.

These are notes with facts useful for the problems. They are not a problem.

4.1 On phases and frequencies

Consider a system made by two coupled oscillators, where each of the oscillators (when not coupled) has a
stable attracting limit cycle. Let the limit cycle solutions for the two oscillators be given by ~x1 = F~1(ω1 t)
and ~x2 = F~2(ω2 t), where ~x1 and ~x2 are the vectors of variables for each of the two systems, the F~j are
periodic functions of period 2π, and the ωj are constants (related to the limit cycle periods by ωj = 2π/Tj).
In the un-coupled system, the two limit cycle orbits make up a stable attracting invariant torus for the
evolution. Assume now that either the coupling is weak, or that the two limit cycles are strongly stable.
Then the stable attracting invariant torus survives for the coupled system.4 The solutions (on this torus)
can be (approximately) represented by

~x1 ≈ ~F1(θ1) and ~x2 ≈ ~F2(θ2), (4.1)

2 Recall that rj ṙj = xj ẋj + yj ẏj and r2 ˙
j θj = xj ẏj − yj ẋj .

3 Use arguments similar to the one introduced to describe relaxation oscillations, e.g.: for the van der Pol equation. Another

example occurs when justifying that inertial terms can be neglected in the limit of a large viscosity.
4 With a (slightly) changed shape and position.
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where θ1 = θ1(t) and θ2 = θ2(t) satisfy some equations, of the general form

θ̇1 = ω1 +K1(θ1, θ2) and θ̇2 = ω2 +K2(θ1, θ2). (4.2)

Here K1 and K2 are the “projections” of the coupling terms along the oscillator limit cycles. For example,
take K1(θ1, θ2) = sin θ1 cos θ2 and K2(θ1, θ2) = sin θ2 cos θ1. Another example is the one in § 8.6 of Strogatz’
book (Nonlinear Dynamics and Chaos), where a model system with

K1(θ1, θ2) = −κ1 sin(θ1 − θ2) and K2(θ1, θ2) = κ2 sin(θ1 − θ2)
is introduced, with constants κ1, κ2 > 0. Note that:

1. In (4.2), K1 and K2 must be 2π-periodic functions of θ1 and θ2.

2. The phase space for (4.2) is the invariant torus T , on which θ1 and θ2 are the angles. We can also
think of T as a 2π × 2π square with its opposite sides identified. On T a solution is periodic if and
only if θ1(t+ T ) = θ1(t) + 2nπ and θ2(t+ T ) = θ2(t) + 2mπ, where T > 0 is the period, and both n

and m are integers.

3. In the “Coupled oscillators # 01” problem an example of the process leading to (4.2) is presented.

4. The θj ’s are the oscillator phases. One can also define oscillator frequencies, even when the θj ’s
do not have the form θj = ωj t, with ωj constant. The idea is that, near any time t0 we can write
θj = θj(t0) + θ̇j(t θ̇0) (t− t0) + . . ., identifying j(t0) as the local frequency. Hence, we define the oscil-

lator frequencies by ω̃j = θ̇j . These frequencies are, of course, generally not constants.

5. The notion of phases can survive even if the limit cycles cease to exist (i.e.: oscillator death). For
example: if the equations for θ1 and θ2 have an attracting critical point. We will see examples where
this happens in the problems, e.g.: “Bifurcations in the torus # 01”.

4.2 Phase locking and oscillator death

The coupling of two oscillators, each with a stable attracting limit cycle, can produce many behaviors. Two
of particular interest are

1. Often, if the frequencies are close enough, the system phase locks. This means that a stable periodic
solution arises, in which both oscillators run at some composite frequency, with their phase difference
kept constant. The composite frequency need not be constant. In fact, it may periodically oscillate
about a constant average value.

2. However, the coupling may also suppress the oscillations, with the resulting system having a stable
steady state. This even if none of the component oscillators has a stable steady state. This is oscillator

death. It can happen not only for coupled pairs of oscillators, but also for chains of oscillators with
coupling to the nearest neighbors.

On the other hand, we note that it is also possible to produce an oscillating system, with a stable oscillation,
by coupling non-oscillating systems (e.g., the coupling of excitable systems can do this).

THE END.
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