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1 Inverse function problem #01.

Statement: Inverse function problem #01.

Consider the following equation
y = x+ sin(x) = f(x), (1.0.1)

where, in particular, f(0) = 0 and f ′(0) = 2 = 0. The inverse function theorem guarantees that: there is a
neighborhood of x = 0 where f has a unique inverse, x = X(y), such that X(0) = 0. Furthermore, since f
is an analytic function, X is an analytic function. This means that X has a Taylor series

∑∞
X = xn y

n, (1.0.2)
n=0

which converges for |λ| small enough. Find x1, x3, x5, and xn for all even n.
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2 Find and classify bifurcations problem #01.

Statement: Find and classify bifurcations problem #01.

For equation (2.0.1) below, find the values of r at which a bifurcation occurs, and classify them as saddle-
node, transcritical, supercritical pitchfork, or subcritical pitchfork. Finally, sketch the bifurcation diagram
of fixed points x∗ versus r.

dx x2

= r
dt

− . (2.0.1)
1 + x2

3 Irreversible switch using a saddle node and a transcritical bifurcation.

Statement: Irreversible switch using a saddle node and a transcritical bifurcation.

Imagine a system1 with a controlling parameter r, and with (at most) two distinct stable equilibrium states:
x1 = x1(r) and x2 = x2(r). In particular, such that infinity is unstable — that is: for every solution x = x(t)
there exists a constant M > 0 such that |x| < M for t large enough. Furthermore:

A. There is a value r = rs = switch value such that: for r > rs both states exist and are stable — so that
the system can be in either one of them.

B. For r < rs only the state x1 exists and it is stable.

C. Both x1(r) and x2(r) are continuous functions of r (though, maybe, not smooth), and |x1(r)− x2(r)|
is bounded away from zero.

Such a system, if started in the state x2 for r > rs, remains in x2 for as long as r varies (slowly enough)
in the range r > rs. Once r crosses below the threshold rs, the system switches to x1, and remains there
for all values of r. A switch back to x2 is not produced by slow variations in r. The condition in item C

is important, for otherwise small perturbations could produce an “accidental” switch if x1 and x2 get very
close.

Remark 3.0.1 A “standard” (reversible) switch [e.g.: a thermostat], operates using hysteresis. For such
systems there are two switching values r1 < r2, with only x2 stable for r > r2, only x1 stable for r < r1, and
both states stable for r1 ≤ r ≤ r2. Then the system jumps from x2 to x1 as r is lowered below r1, and back
to x2 as r is raised above r2. ♣

Construct an irreversible switch, using a 1-D system of the form

dx
= f(x, r), (3.0.1)

dt
1 A “switch”.
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with the behavior caused by two bifurcations: a trans-critical and a saddle node (no other

bifurcations should occur!) Then draw the bifurcation diagram.

Hint: It is very easy to construct an explicit example in which f in equation (3.0.1) is a cubic polynomial
in x, and it is linear in the parameter r.

Remark 3.0.2 (Switch uniqueness). Even for a 1-D system such as the one in (3.0.1), there is an infinite
number of possible bifurcation diagrams that yield a switch, with various types of bifurcations involved.2

However, if the restriction that there should be only two bifurcations (one saddle-node and one transcritical)
is imposed, then there are only two possible topologies for the switch bifurcation diagram. This problem asks
you to produce an example of one such switch. ♣

4 Toy model for shell buckling.

Statement: Toy model for shell buckling.

Hold a ping-pong ball between your thumb and index fingers and squeeze it. If you do not apply enough
force, the ball will deform slightly with a purely elastic response. But, if you push hard enough, the ball will
buckle and you will make a (permanent) dent on it — and the ball will be ruined. This is the phenomena
of (thin) shell buckling.

Shell buckling is a very rich phenomena,3 way beyond the scope of this course. Here we will study an
extremely simplified (1-D) version of this phenomena (the emphasis here being on “toy” model) where all
the geometrical richness of the original setting is gone, and only the buckling bifurcation remains.

 k k

 m

 rod
 support  support

Figure 0.1: Toy model for shell buckling. A bead of mass m (black square) can slide along a rigid vertical

rod (in red). The bead is connected by two equal springs (in blue), with spring constant k, to two supports

placed symmetrically on each side of the rod. See the text for further details.

A sketch depicting the model is shown in figure 0.1. Further assumptions and notation are:
2 This is the subject of another problem: “Irreversible switches; classification.”
3 Lots of interesting and important questions arise. For example: What is the shape of the dent that forms? The dent’s edges

have sharp corners: why these corners form, and how do they propagate as further pressure is applied?
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1. Idealize the bead as a point mass.

2. Let x be the vertical distance, along the rod, of the bead from the horizontal line joining the spring
supports. Let x > 0 if the bead is above the supports and x < 0 if below.

3. Let h > 0 be the distance of the spring supports from the rod, and let L > 0 be the springs equilibrium
length. Assume L > h, so that the springs are under compression for x = 0.

4. Hook’s law applies to the springs. Thus they exert a force of magnitude F = k (`− L), where ` is the
spring length, along the spring axis, pushing if ` < L, and pulling if ` > L.

5. When the bead slides along the rod, the motion is opposed by a friction force of magnitude b ẋ, where
b > 0 is a constant.

6. Because the rod is rigid, we need to consider only the vertical components of the various forces that
act on the bead. These forces are: (i) Gravity, of magnitude mg, pointing down. (ii) The forces by
the springs. (iii) Friction along the rod.

PROBLEM TASKS:

A. Derive an ode for the bead position, and write it in appropriate a-dimensional variables.4

B. Assume that friction is large, so that inertia can be neglected. Exactly which a-dimensional number
has to be small for friction to be “large”?

C. Analyze the bifurcations that occur for the equation resulting from item B, as the bead mass changes
— in this toy model, increasing the bead mass plays the role of squeezing harder on the ping-pong ball.
What type of bifurcation(s) occur?

Hint: It is a bad idea to try to do this by attempting to solve for the critical points and bifurcation thresholds

analytically. A qualitative, graphical, analysis is the best way to go.

D. The picture in figure 0.1 corresponds, in this toy model, to the ping-pong ball in a more-or-less spherical
shape. What is the “buckled” state?

E. What a-dimensional parameter controls when bifurcations happen?
Assume that the ratio γ = L/h > 1 is kept fixed. (4.0.1)

5 Bifurcations in the circle problem #04.

Statement: Bifurcations in the circle problem #04.

For equation (5.0.1) find the values of r at which a bifurcation occurs, and classify them as saddle-node,
transcritical, supercritical pitchfork, or subcritical pitchfork. Finally, sketch the bifurcation diagram for the

4 Suggestion: to a-dimensionalize use h for length and b/(2 k) for time.
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fixed points versus r, including the flow direction and the stability of the various branches of solutions (solid
lines for stable branches and dashed ones for unstable ones).

dθ
= (r )

dt
− sin(θ)) sin(θ , (5.0.1)

where θ is an angle (in radians). Note that the bifurcation diagram — which is periodic in θ — should be
for a 2π range in θ, and a range of r that includes all the bifurcations.

6 Problem 03.04.08 - Strogatz

(Find and classify bifurcations).

Statement for problem 03.04.08.

For the following equation, find the values of r at which bifurcations occur, and classify those as saddle
node, transcritical or pitchfork (supercritical or subcritical). Finally, sketch the bifurcation diagram of fixed
points, x∗ versus r.

dx x
= r x

dt
− . (6.0.1)

1 + x2

Extra question: Notice that something “strange” happens for r = 0 in the bifurcation diagram. Is this a
bifurcation? If so, which type? Does the “principle of conservation of stability” apply? Hint: look at the
equation satisfied by y = 1/x.

7 Problem 03.04.11 - Strogatz

(An interesting bifurcation diagram).

Statement for problem 03.04.11.

(An interesting bifurcation diagram). Consider the system

dx
= rx

dt
− sin(x) . (7.0.1)

A. For the case r = 0, find and classify the fixed points, and sketch the vector field.
B. Show that, when r > 1, there is only one fixed point. What kind of fixed point is it?
C. As r decreases from ∞ to 0, classify all the bifurcations that occur.
D. For 0 < r � 1, find an approximate formula for the values of r at which bifurcations occur.
E. Now classify all the bifurcations that occur as r decreases from 0 to −∞.
F. Plot the bifurcation diagram for −∞ < r <∞, and indicate the stability of the various branches of

fixed points.
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8 Problem 03.04.14 - Strogatz (Subcritical Pitchfork).

Statement for problem 03.04.14.

(Subcritical Pitchfork). Consider the system

dx
= rx+ x3

dt
− x5 , (8.0.1)

which exhibits a subcritical pitchfork bifurcation.

a) Find algebraic expressions for all the fixed points as r varies.

b) Sketch the vector fields as r varies. Be sure to indicate all the fixed points and their stability.

c) Calculate rc, the parameter value at which the nonzero fixed points are born in a saddle-node bifur-
cation.

9 Problem 03.06.06 - Strogatz (Patterns in fluids).

Statement for problem 03.06.06.

(Patterns in fluids). G. Ahlers (1989)5 gives a fascinating review of experiments on one-dimensional
patterns in fluid systems. In many cases, the patterns first emerge via supercritical or subcritical pitchfork
bifurcations from a spatially uniform state. Near the bifurcation, the dynamics of the amplitude of the
patterns are given approximately by

dA
τ = εA
dt

− gA3 in the supercritical case, (9.0.1)

or
dA

τ = εA− gA3 − kA5 in the subcritical case. (9.0.2)
dt

Here A = A(t) is the amplitude of the pattern, τ > 0 is a typical time scale, and ε is a small dimensionless pa-
rameter that measures the distance from the bifurcation. The parameter g is positive in the supercritical
case, whereas g < 0 and k > 0 in the subcritical case. (In this context, the equation τȦ = εA− gA3

is often called the Landau equation.)

a) Dubois and Bergé (1978)6 studied the supercritical bifurcation that arises in Rayleigh–Bénard convec-
tion, and showed experimentally that the steady state amplitude depends on ε according to the power
law A∗ ∝ εβ, where β = 0.50± 0.01. What does the Landau equation predict?

5Ahlers, G. (1989) Experiments on bifurcations and one-dimensional patterns in nonlinear systems far from equilibrium. In

D. L. Stein, ed. Lectures in the Science of Complexity (Addison-Wesley, Reading, MA).
6Dubois, M., and Bergé, P. (1978) Experimental study of the velocity field in Rayleigh–Bénard convection. J. Fluid Mech.

85, 641.
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b) The equation τȦ = εA− gA3 − kA5 is said to undergo a transcritical7 bifurcation when g = 0; this
case is the borderline between supercritical and subcritical bifurcation. Find the relation between A∗

and ε when g = 0.

c) In experiments on Taylor–Couette vortex flow, Aitta et al. (1985)8 were able to change the parameter
g continuously from positive to negative by varying the aspect ratio of their experimental set-up.
Assuming that the equation is modified to

dA
= h+ εA

dt
− gA3 − kA5 , (9.0.3)

where h > 0 is a slight imperfection, sketch the bifurcation diagram of A∗ versus ε in the three cases:
g > 0, g = 0, and g < 0. Then look up at the actual data in Aitta et al. (1985, figure 2) or see Ahlers
(1989, figure 15).

d) In the experiments of part (c), the amplitude A(t) was found to evolve toward a steady state in the
manner shown in figure 2 of the book (page 88) — redrawn from Ahlers (1989), figure 18. The results
are for the imperfect subcritical case g < 0, h = 0. In the experiments, the parameter ε was switched
at t = 0 from a negative value to a positive value εf (in the figure εf increases from the bottom to the
top.)

Explain intuitively why the curves have this strange shape. Why do the curves for large εf go almost
straight up to their steady state, whereas the curves for small εf rise to a plateau before increasing
sharply to their final level? (Hint: Graph Ȧ versus A for different εf .)

10 Problem 04.01.01 - Strogatz (Define a flow in circle).

Statement for problem 04.01.01.

For which real values of a does the equation

dθ
= sin(aθ)

dt

give a well defined vector field on the circle?

THE END.

7WARNING: This is a rather unfortunate choice of name! Do not to confuse this situation with the transcritical

bifurcation introduced in section 3.2 of the book. They are not the same thing!
8Aitta, A., Ahlers, G., and Cannell, D. S. (1985) Transcritical phenomena in rotating Taylor–Couette flow. Phys. Rev. Lett.

54, 673.
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