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1 Simple Poincaré Map for a limit cycle #02

Statement: Simple Poincaré Map for a limit cycle #02

Consider the following autonomous phase plane system

dx
= (x2 + y4) ν x− ν x3 − x2 y 2

4 − ν x y
dt

− 4 y3 ,

where ν > 0. (1.1)
dy


= (x2 + y4)

(
(
ν y + 1 x3 − ν x2 y + x y2 ν

)
dt 4 4 − y3 ,



This system has a periodic solution (show this), which can be written

)
in


the form

dΦ
x = 2 cos Φ, y = sin Φ, where = 2 (x2 + y4) = 2 (1 + cos2 Φ)2. (1.2)

dt

This solution produces an orbit going through the point x = 0, y = 1 in the phase plane. The orbit is an
ellipse, as (1.2) shows.1

Construct (either numerically 2 or analytically) a Poincaré map near this orbit, and use it to show that

the orbit is a stable limit cycle. Define the Poincaré map z → u = P (z) as follows:

1 Note that Φ is a strictly increasing function of time.
2 If you do it numerically, keep ν as a variable and check your answers for several values — say: ν = 0.1, 0.5, 1, 2, 5.
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• For every sufficiently small z, let x = X(t, z) and y = Y (t, z) be the solution of (1.1) defined by
X(0, z) = 0 and Y (0, z) = 1 + z.

• For this solution the polar angle θ in the phase plane is an increasing function of time, starting at
θ = 1 π for t = 0. Thus, there is a time t = tz at which the

2

solution reaches θ = 5 π (note that tz is a function of z). Then take u = Y (tz, z)− 1.
2

Hint. Because tz is a function of z, unknown a priori, the definition of the Poincaré map above is a bit
awkward to implement. To avoid having to calculate tz for each solution, it is a good idea to use a parameter
other than time to describe the orbits. For example, if the equations are written in terms of a parameter
such as the polar angle — namely dx = F (x, y) and dy = G(x, y), then the Poincaré map is easier

dθ dθ

to describe, as θ varies from θ = 1 π to θ = 5 π in every one of the orbits needed to compute u = P (z2 2 ).
Note that this is just a “for example”, using the polar angle is not the best choice. You may want to scale
the variables first, so that the limit circle is a circle, not an ellipse. ♣

2 Bifurcations in the torus #01

Statement: Bifurcations in the torus #01

Bifurcations in the torus, phase-locking, and oscillator death. This problem is based on a paper on systems
of neural oscillators by G. B. Ermentrout and N. Kopell,3 where they illustrate the notion of oscillator death
(see § 3) with the following model

θ̇1 = ω1 + sin θ ˙
1 cos θ2 and θ2 = ω2 + sin θ2 cos θ1, (2.1)

where ω1, ω2 > 0. Here θ1 and θ2 are to be interpreted as the phases of two coupled stable and attracting
limit cycle oscillators, which are assumed to “survive” the coupling, so that the notion of their “individual
phases” remains — see § 3.

a. Classify all the different behaviors that the solutions to (2.1) have, as the parameters vary in the
positive quadrant of the [ω1, ω2]–plane. Do a diagram in this quadrant, indicating the regions that
correspond to each behavior.

The final answer should look something like this: (i) In such and such region the solutions are attracted to
a limit cycle [Note that this is phase locking]. (ii) In such and such region the solutions are attracted
to a stable node [Note that this is oscillator death]. (iii) In such and such region the solutions are
quasi-periodic with two periods [Phase locking fails]. (iv) . . .
Plus a drawing of the regions . . . will all the statements properly justified.

b. Draw the bifurcation curves in the [ω1, ω2]–plane. Describe each bifurcation.
3 Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math. 50:125 (1990).
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Hints. I did not find an elegant way to analyze the system geometrically. The hints below lead you to an
approach that is (mostly) analytical, but allows a systematic and thorough investigation.

h1. Consider the equations satisfied by φ = θ1 + θ2 and ψ = θ1 − θ2.

h2. You may find the following result useful
Let α > 1. Then the solutions to the equation χ̇ = α+ sinχ
can be written in the form χ = µ (t− t0) +X(µ (t− t0)),
where µ > 0 is a constant, X is 2π-periodic,
X(0) = 0, and t0 is an arbitrary constant.

Furthermore: µ is an increasing function of α, with lim µ = 0 and lim µ =
α→1 α→∞

∞.

All this follows from the results in § 2.1, upon using a change of variables that transforms χ̇ = α+ sinχ
into (2.2). In particular, note that the “µ” in § 2.1 (call it µ̃) is related to the one here by µ = α µ̃,
with κ = 1/α.

2.1 Notes on first order equation with a periodic right hand side

These are notes with facts useful for this problem. They are not a problem.

Consider the equation
φ̇ = 1− κ sinφ, where 0 < κ < 1. (2.2)

Since φ̇ ≥ 1− κ > 0, φ is monotone increasing. The statements below apply.

1. There is a constant 0 < µ < 1, and a function Φ = Φ(ζ) — periodic of period 2π — such that any
solution to (2.2) has the form

φ = µ (t− t0) + Φ(µ (t− t0)), (2.3)

where t0 is a constant and Φ(0) = 0.

2. Note that sin(φ) is periodic in M = average(sinφ) = 1−µ > 0, (2.4)
t, of period T = , with

κ2π
µ

where M is defined by the first equality — M = M(κ) only, since µ depends on κ only.

3. Let φ be the solution to (2.2) defined by φ (0) = 0 — i.e.: set t0 = 0 in (2.3). Then∗ ∗

1
Θ(µ t)

∫ t

= (sin(φ (s))−M) ds =
0

∗ − Φ(µ t), (2.5)
κ

where Θ is defined by the first equality.

4. Assume that 0 < κ� 1. Then a Poincaré-Lindstedt expansion yields

2 1
φ = µ t− κ (1− cos(µ t)) +O(κ ) and µ = 1− κ2 +O(κ4). (2.6)∗ 2

1
It follows that T = 2π + π κ2 +O(κ4) and M = κ+O(κ3).
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5. Assume that 0 < 1− κ� 1. Then µ = O(
√

1− κ) (2.7)

In case you are curious as to how to show the above applies, here are some hints.

a. Define T > 0 as the (unique) time at which φ (T ) = 2π — why is the solution unique?∗

b. Show that φ (t+ T ) = 2π + φ (t) — sub-hint: both sides are solutions!∗ ∗

c. Define Φ by Φ(µ t) = φ (t)− µ t, with µ = 2π/T , and show that Φ is periodic of period 2π.∗

d. Write the general solution in terms of φ .∗

e. Show that T = O 1/
√

1− κ as κ→ 1 — sub-hint: critical slowing-down.

f. To show that µ <

(
1, use (2.2)

)
and separation of variables to write T as an integral over φ from 0 to

2π. Then show T > 2π

g. To show (2.4), take the average of (2.2).

h. To obtain the second equality in (2.5), substitute φ = µ t+ Φ(µ t) into (2.2), and obtain a formula∗

for sin(φ ) in terms of Φ.∗

3 Notes: coupled oscillators, phase locking, etc.

These are notes with facts useful for the problems. They are not a problem.

3.1 On phases and frequencies

Consider a system made by two coupled oscillators, where each of the oscillators (when not coupled) has a
stable attracting limit cycle. Let the limit cycle solutions for the two oscillators be given by ~x1 = F~1(ω1 t)
and ~x2 = F~2(ω2 t), where ~x1 and ~x2 are the vectors of variables for each of the two systems, the F~j are
periodic functions of period 2π, and the ωj are constants (related to the limit cycle periods by ωj = 2π/Tj).
In the un-coupled system, the two limit cycle orbits make up a stable attracting invariant torus for the
evolution. Assume now that either the coupling is weak, or that the two limit cycles are strongly stable.
Then the stable attracting invariant torus survives for the coupled system.4 The solutions (on this torus)
can be (approximately) represented by

≈ ~ ( ) and ≈ ~~x1 F1 θ1 ~x2 F2(θ2), (3.1)

where θ1 = θ1(t) and θ2 = θ2(t) satisfy some equations, of the general form

θ̇1 = ω1 +K1(θ1, θ2) and θ̇2 = ω2 +K2(θ1, θ2). (3.2)
4 With a (slightly) changed shape and position.



18.385 MIT, (Rosales) Coupled oscillators, phase locking, oscillator death, etc.

Here K1 and K2 are the “projections” of the coupling terms along the oscillator limit cycles. For example,
take K1(θ1, θ2) = sin θ1 cos θ2 and K2(θ1, θ2) = sin θ2 cos θ1. Another example is the one in § 8.6 of Strogatz’
book (Nonlinear Dynamics and Chaos), where a model system with

K1(θ1, θ2) = −κ1 sin(θ1 − θ2) and K2(θ1, θ2) = κ2 sin(θ1 − θ2)
is introduced, with constants κ1, κ2 > 0. Note that:

1. In (3.2), K1 and K2 must be 2π-periodic functions of θ1 and θ2.

2. The phase space for (3.2) is the invariant torus T , on which θ1 and θ2 are the angles. We can also
think of T as a 2π × 2π square with its opposite sides identified. On T a solution is periodic if and
only if θ1(t+ T ) = θ1(t) + 2nπ and θ2(t+ T ) = θ2(t) + 2mπ, where T > 0 is the period, and both n

and m are integers.

3. In the “Coupled oscillators # 01” problem an example of the process leading to (3.2) is presented.

4. The θj ’s are the oscillator phases. One can also define oscillator frequencies, even when the θj ’s
do not have the form θj = ωj t, with ωj constant. The idea is that, near any time t0 we can write
θj = θj(t0) + θ̇j(t0) (t− t0) + . . ., identifying θ̇j(t0) as the local frequency. Hence, we define the oscil-

lator frequencies by ω̃j = θ̇j . These frequencies are, of course, generally not constants.

5. The notion of phases can survive even if the limit cycles cease to exist (i.e.: oscillator death). For
example: if the equations for θ1 and θ2 have an attracting critical point. We will see examples where
this happens in the problems, e.g.: “Bifurcations in the torus # 01”.

3.2 Phase locking and oscillator death

The coupling of two oscillators, each with a stable attracting limit cycle, can produce many behaviors. Two
of particular interest are

1. Often, if the frequencies are close enough, the system phase locks. This means that a stable periodic
solution arises, in which both oscillators run at some composite frequency, with their phase difference
kept constant. The composite frequency need not be constant. In fact, it may periodically oscillate
about a constant average value.

2. However, the coupling may also suppress the oscillations, with the resulting system having a stable
steady state. This even if none of the component oscillators has a stable steady state. This is oscillator

death. It can happen not only for coupled pairs of oscillators, but also for chains of oscillators with
coupling to the nearest neighbors.

On the other hand, we note that it is also possible to produce an oscillating system, with a stable oscillation,
by coupling non-oscillating systems (e.g., the coupling of excitable systems can do this).

THE END.
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