Problem Set Number 10, 18.385j/2.036j MIT (Fall 2014)

Rodolfo R. Rosales (MIT, Math. Dept., Cambridge, MA 02139)

November 19, 2014

Due Fri., December 05, 2014. 1 Problem 09.06.02 - Strogatz. Pecora and Carroll's approach

Statement for problem 09.06.02

Pecora and Carroll's approach for signal transmission/reception using the Lorenz system. In the pioneering work of Pecora and Carroll¹ one of the receiver variables is simply set *equal* to the corresponding transmitter variable. For instance, if x(t) is used as the transmitter drive signal, then the receiver equations are

$$\left.\begin{array}{ll}
x_r(t) &\equiv x(t), \\
\frac{dy_r}{dt} &= r x(t) - y_r - x(t) z_r, \\
\frac{dz_r}{dt} &= x(t) y_r - b z_r,
\end{array}\right\}$$
(1.1)

where the first equation is **not** a differential equation.² Their numerical simulations, and a heuristic argument, suggested that $y_r(t) \to y(t)$ and $z_r(t) \to z(t)$ as $t \to \infty$, even if there were differences in the initial conditions.

Here are the steps for simple proof of the result stated above, due to He and Vaidya.³

A. Show that the error dynamics are governed by:

$$e_x(t) \equiv 0,$$

$$\frac{de_y}{dt} = -e_y - x(t) e_z,$$

$$\frac{de_z}{dt} = x(t) e_y - b e_z,$$

$$(1.2)$$

¹ Pecora, L. M., and Carroll, T. L., Synchronization in chaotic systems. Phys. Rev. Lett. 64:821, (1990).

² This equation replaces the first equation $\dot{x_r} = \sigma (y_r - x_r)$ in a Lorenz system for (x_r, y_r, z_r) . Then x is used to replace x_r in the other two equations. The Lorenz system constants are σ , r, b.

³ He, R., and Vaidya, P. G., *Analysis and synthesis of synchronous periodic and chaotic systems*. Phys. Rev. A, **46:**7387 (1992).

where $e_x = x - x_r$, $e_y = y - y_r$, and $e_z = z - z_r$.

- **B.** Show that $V = (e_y)^2 + (e_z)^2$ is a Liapunov function.
- C. What do you conclude?

2 Hill equation problem #04 (with damping)

Statement: Hill equation problem #04 (with damping)

Let $S = S(\xi)$ be a periodic (of period 2π) function — i.e.: $S(\xi + 2\pi) = S(\xi)$. Consider now the damped Hill equation problem

$$\ddot{x} + 2\nu \dot{x} + \left(k^2 + a^2 \mathcal{S}(\omega t)\right) x = 0, \qquad (2.1)$$

where $\nu, k, a, \omega > 0$ are constants — note that the coefficients period is $T = \frac{2\pi}{\omega}$.

Problem tasks:

- **1.** Write the equations in the standard form $\dot{X} = \mathcal{A}(\omega t) X$, where \mathcal{A} is a 2 × 2 matrix with period 2 π and X is a two-vector.
- 2. Write the Floquet multipliers λ_j in terms of $\alpha = \frac{1}{2} \operatorname{Tr}(R)$, where R is the Floquet matrix. Hint. $\Delta = \det(R)$ can be computed explicitly.
- **3.** Write the stability/instability condition in terms of α .
- **4.** Find the function $\alpha_0 = \lim_{a \to 0} \alpha$. Then use it to identify the places, if any, where an instability may occur for $0 < a \ll 1$. That is, the values $\mathbf{k} = \mathbf{k}_*$ such that, for $0 < a \ll 1$, instabilities can arise for k near k_* only.

Hint. For a small instabilities only arise near k's where a Floquet multiplier satisfies $|\lambda_j| = 1$ for a = 0.

- 5. Plot α₀ versus k/ω, with ν/ω fixed, in a graph that includes the neutral stability curves. Use the range 0 ≤ k/ω ≤ 5.1 and take ν/ω = 0.06, 0.20, 0.50. The neutral stability curves are lines in the α-k plane such that: a Floquet multiplier satisfies |λ_j| = 1 when/where the graph of α intersects the curve. You should know these curves from item 3. Hint: when solving item 4 you should find that α₀ is a function of k/ω and ν/ω only, while the neutral stability boundary depends on ν/ω only.
- **6.** Plot α_0 versus k/ω , with ν a function of k, in a graph that includes the neutral stability curves. Use the range $0 \le k/\omega \le 5.1$ and take $\nu = 0.06 k, 0.12 k, 0.10 \frac{k^2}{\omega}$.

 $\mathbf{2}$

THE END.

18.385J / 2.036J Nonlinear Dynamics and Chaos $\mathsf{Fall}\ \mathsf{2014}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.