Problem Set Number 10, 18.385j/2.036j
 MIT (Fall 2014)

Rodolfo R. Rosales (MIT, Math. Dept.,Cambridge, MA 02139)
November 19, 2014
Due Fri., December 05, 2014.
1 Problem 09.06.02 - Strogatz. Pecora and Carroll's approach
Statement for problem 09.06.02
Pecora and Carroll's approach for signal transmission/reception using the Lorenz system. In the pioneering work of Pecora and Carroll 1 one of the receiver variables is simply set equal to the corresponding transmitter variable. For instance, if $x(t)$ is used as the transmitter drive signal, then the receiver equations are

$$
\left.\begin{array}{rl}
x_{r}(t) & \equiv x(t), \tag{1.1}\\
\frac{d y_{r}}{d t} & =r x(t)-y_{r}-x(t) z_{r}, \\
\frac{d z_{r}}{d t} & =x(t) y_{r}-b z_{r},
\end{array}\right\}
$$

where the first equation is not a differential equation. 2 Their numerical simulations, and a heuristic argument, suggested that $y_{r}(t) \rightarrow y(t)$ and $z_{r}(t) \rightarrow z(t)$ as $t \rightarrow \infty$, even if there were differences in the initial conditions.
Here are the steps for simple proof of the result stated above, due to He and Vaidya. ${ }^{3}$
A. Show that the error dynamics are governed by:

$$
\left.\begin{array}{rl}
e_{x}(t) & \equiv 0, \tag{1.2}\\
\frac{d e_{y}}{d t} & =-e_{y}-x(t) e_{z}, \\
\frac{d e_{z}}{d t} & =x(t) e_{y}-b e_{z},
\end{array}\right\}
$$

[^0]where $e_{x}=x-x_{r}, e_{y}=y-y_{r}$, and $e_{z}=z-z_{r}$.
B. Show that $V=\left(e_{y}\right)^{2}+\left(e_{z}\right)^{2}$ is a Liapunov function.
C. What do you conclude?

2 Hill equation problem \#04 (with damping)

Statement: Hill equation problem \#04 (with damping)

Let $\mathcal{S}=\mathcal{S}(\xi)$ be a periodic (of period 2π) function - i.e.: $\mathcal{S}(\xi+2 \pi)=\mathcal{S}(\xi)$. Consider now the damped Hill equation problem

$$
\begin{equation*}
\ddot{x}+2 \nu \dot{x}+\left(k^{2}+a^{2} \mathcal{S}(\omega t)\right) x=0 \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{\nu}, \boldsymbol{k}, \boldsymbol{a}, \boldsymbol{\omega}>\mathbf{0}$ are constants - note that the coefficients period is $\boldsymbol{T}=\frac{\mathbf{2 \pi}}{\boldsymbol{\omega}}$. Problem tasks:

1. Write the equations in the standard form $\dot{X}=\mathcal{A}(\omega t) X$, where \mathcal{A} is a 2×2 matrix with period 2π and X is a two-vector.
2. Write the Floquet multipliers $\boldsymbol{\lambda}_{\boldsymbol{j}}$ in terms of $\boldsymbol{\alpha}=\frac{1}{2} \operatorname{Tr}(\boldsymbol{R})$, where \boldsymbol{R} is the Floquet matrix.

Hint. $\Delta=\operatorname{det}(R)$ can be computed explicitly.
3. Write the stability/instability condition in terms of $\boldsymbol{\alpha}$.
4. Find the function $\boldsymbol{\alpha}_{\mathbf{0}}=\lim _{\boldsymbol{a} \rightarrow \mathbf{0}} \boldsymbol{\alpha}$. Then use it to identify the places, if any, where an instability may occur for $0<a \ll 1$. That is, the values $\boldsymbol{k}=\boldsymbol{k}_{*}$ such that, for $0<a \ll 1$, instabilities can arise for k near k_{*} only.
Hint. For a small instabilities only arise near k 's where a Floquet multiplier satisfies $\left|\lambda_{j}\right|=1$ for $a=0$.
5. Plot $\boldsymbol{\alpha}_{\mathbf{0}}$ versus $\boldsymbol{k} / \boldsymbol{\omega}$, with $\boldsymbol{\nu} / \boldsymbol{\omega}$ fixed, in a graph that includes the neutral stability curves. Use the range $\mathbf{0} \leq \boldsymbol{k} / \boldsymbol{\omega} \leq 5.1$ and take $\boldsymbol{\nu} / \boldsymbol{\omega}=\mathbf{0} .06,0.20,0.50$.
The neutral stability curves are lines in the $\alpha-k$ plane such that: a Floquet multiplier satisfies $\left|\lambda_{j}\right|=1$ when/where the graph of α intersects the curve. You should know these curves from item 3.
Hint: when solving item 4 you should find that α_{0} is a function of k / ω and ν / ω only, while the neutral stability boundary depends on ν / ω only.
6. Plot $\boldsymbol{\alpha}_{\mathbf{0}}$ versus $\boldsymbol{k} / \boldsymbol{\omega}$, with $\boldsymbol{\nu}$ a function of \boldsymbol{k}, in a graph that includes the neutral stability curves. Use the range $\mathbf{0} \leq \boldsymbol{k} / \boldsymbol{\omega} \leq 5.1$ and take $\boldsymbol{\nu}=0.06 \boldsymbol{k}, \mathbf{0 . 1 2} k, 0.10 \frac{k^{2}}{\omega}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.385J / 2.036J Nonlinear Dynamics and Chaos

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Pecora, L. M., and Carroll, T. L., Synchronization in chaotic systems. Phys. Rev. Lett. 64:821, (1990).
 ${ }^{2}$ This equation replaces the first equation $\dot{x_{r}}=\sigma\left(y_{r}-x_{r}\right)$ in a Lorenz system for $\left(x_{r}, y_{r}, z_{r}\right)$. Then x is used to replace x_{r} in the other two equations. The Lorenz system constants are σ, r, b.
 ${ }^{3} \mathrm{He}, \mathrm{R}$. , and Vaidya, P. G., Analysis and synthesis of synchronous periodic and chaotic systems. Phys. Rev. A, 46:7387 (1992).

