
 

  
    
   

 
   

    
    

 
  

18.404/6.840 Lecture 5 

Last time: 
- Context free grammars (CFGs) 
- Context free languages (CFLs) 
- Pushdown automata (PDA) 
- Converting CFGs to PDAs 

Today: (Sipser §2.3, §3.1) 
- Proving languages not Context Free 
- Turing machines 
- T-recognizable and T-decidable languages 

1 



   

            

     

     
       

              

             
          

           

  

    

 

    

 

Equivalence of CFGs and PDAs 

Recall Theorem: ! is a CFL iff some PDA recognizes ! 
Done. 
Need to know the fact, not the proof 

Corollaries: 
1) Every regular language is a CFL. 
2) If ! is a CFL and " is regular then ! ∩ " is a CFL. 
Proof sketch of (2):  
While reading the input, the finite control of the PDA for ! simulates the DFA for ". 

Note 1: If ! and " are CFLs then ! ∩ " may not be a CFL (will show today). 
Therefore the class of CFLs is not closed under ∩. 

Note 2: The class of CFLs is closed under ∪,∘,∗ (see Pset 2). 

2 



    

          

           
        

    
  
  

      

     

 
      

    
  

 
 

 

    

 
 

   
 

  

Proving languages not Context Free 

Let ! = 0$1$2$ ' ≥ 0}. We will show that ! isn’t a CFL. 

Pumping Lemma for CFLs: For every CFL *, there is a + 
such that if , ∈ * and , ≥ + then , = ./012 where 
1) ./30132 ∈ * for all 4 ≥ 0 
2) /1 ≠ ε 
3) /01 ≤ + , = 

≥ + 

. / 0 1 2 ∈ * 

Informally: All long strings in * are pumpable and stay in *. ∈ * 1 2. / /
≤ + 
0 1 

3 



   
      

     
    
  
  

  

    

 
  

  

 
       

    
  

   

  

  

  
 

 

   

 
    

Pumping Lemma – Proof 
Pumping Lemma for CFLs:   For every CFL !, there is a " 
such that if # ∈ ! and # ≥ " then # = '()*+ where 
1) '(,)*,+ ∈ ! for all - ≥ 0 
2) (* ≠ ε 

E3) ()* ≤ " 

Proof by picture: 

R

R

E R 
E 

R 

' ( * + R
R 

)
( ) * 

Generates '(()**+ ' 
Generates ')+ 

+ 

= '(1)*1+ = '(2)*2+
# = ' ( ) * + Long # → “cutting and pasting” argument 

tall parse tree 

4 



   

     

     

        

       

             

      

         

         

 

     

      

       

       
  

 

  

     
    

  
  

  
 

 

   

  

    

       

   

   

 

  
 

   

…cutting and pasting

…start with the smallest parse tree for !
…pick the lowest repetition of a variable

Pumping Lemma – Proof details 

For ! ∈ # where ! ≥ %, we have ! = '()*+ where: 

1) '(,)*,+ ∈ # for all - ≥ 0 
2) (* ≠ ε 

3) ()* ≤ % 

Let 1 = the length of the longest right hand side of a rule (E → E+T) 

= the max branching of the parse tree E 
E 

Let ℎ = the height of the parse tree for !. E + T  

A tree of height ℎ and max branching 1 has at most 14 
leaves. 

So ! ≤ 14 . 

5Let % = 1 + 1 where 8 = # variables in the grammar. 

5 |5|So if ! ≥ % > 1 then ! > 1 and so ℎ > 8 

R 

R 
. 

Thus at least 8 + 1 variables occur in the longest path. ! = 

use ! > 1 5 

set % = 1 5 + 1 

' ( ) * + 
So some variable ; must repeat on a path. 

5 

want

ℎ > 8 



    

 
      

       
           

         
        

        
     

                

      
     

    
  
  

 

 
     
     

         

           
             
          

 
      

    
  

  

   
 

 

       

       
 

   

 

  

Proof by Contradiction:
Assume (to get a contradiction) that ! is a CFL .
The CFL pumping lemma gives * as above. Let + = 0,1,2, ∈ !. 
Pumping lemma says that can divide + = ./012 satisfying the 3 conditions.
Condition 3 ( /01 ≤ *) implies that /01 cannot contain both 0s and 2s.
So ./40142 has unequal numbers of 0s, 1s, and 2s.
Thus ./40142 ∉ !, violating Condition 1. Contradiction!
Therefore our assumption (! is a CFL) is false. We conclude that ! is not a CFL .

Example 1 of Proving Non-CF 

Pumping Lemma for CFLs:   For every CFL 7, there is a * 
such that if + ∈ 7 and + ≥ * then + = ./012 where 

1) ./80182 ∈ 7 for all 9 ≥ 0 
2) /1 ≠ ε 
3) /01 ≤ * 

Let ! = 0$1$2$ ' ≥ 0} 
Show: ! is not a CFL 

Check-in 5.1 
Let 7; = 0$1$2< ', > ≥ 0} (equal #s of 0s and 1s) + = 00⋯ 0011⋯ 1122⋯ 22 

Let 74 = 0<1$2$ ', > ≥ 0} (equal #s of 1s and 2s) . 
≤ * 

/ 0 2 
Observe that PDAs can recognize 7; and 74. What can we now conclude? 

1 

a) The class of CFLs is not closed under intersection. 
b) The Pumping Lemma shows that 7; ∪ 74 is not a CFL . 
c) The class of CFLs is closed under complement. 

Check-in 5.1 6 



    

 
      

     

             

           

   

       

             

           

          

      

     

    

  

  

     

    
  

  

   
 

 

    

    

    
 

    

       

   

   

   

ut ./ can be pumped and stay inside !. Bad choice of ..

Example 2 of Proving Non-CF 

Pumping Lemma for CFLs:   For every CFL 8, there is a -
such that if . ∈ 8 and . ≥ - then . = 23456 where 

1) 23:45:6 ∈ 8 for all ; ≥ 0 
2) 35 ≠ ε 

3) 345 ≤ -
Let ! = ## # ∈ Σ∗} . Σ = {0,1}. 
Show: ! is not a CFL. 

Assume (for contradiction) that ! is a CFL. 

The CFL pumping lemma gives - as above. Need to choose . ∈ !. Which .? 

Try ./ = 001001 ∈ !. B 

Try .1 = 00100010 ∈ !. 

Show .1 cannot be pumped .1 = 23456 satisfying the 3 conditions. 

Condition 3 implies that 345 does not overlap two runs of 0s or two runs of 1s. 

Therefore, in 2314516, two runs of 0s or two runs of 1s have unequal length. 

So 2314516 ∉ ! violating Condition 1. Contradiction! Thus ! is not a CFL. 

7 

./ = 000 ⋯ 001000 ⋯ 001 

2 3 4 5 6 

.1 = 0⋯ 01⋯ 10⋯ 01⋯ 1 

2 3 5 64 



  

      

     

     

         

  

Turing Machines (TMs) 

head 

˽ ˽
a b a . . .b b

Finite 
read/write input tape 

control 

1) Head can read and write 

2) Head is two way (can move left or right) 

3) Tape is infinite (to the right) 

4) Infinitely many blanks “
˽

“ follow input 

5) Can accept or reject any time (not only at end of input) 

8 



  

  
           

  
     

     
         
       

 

 

 
           

        
        
       

   
    

 

TM – example 

TM recognizing ! = a#b#c# $ ≥ 0 
∗ 1) Scan right until ˽ while checking if input is in a ∗ b ∗ c , reject if not. 

2) Return head to left end. head 
input tape 

3) Scan right, crossing off single a, b, and c. ˽ ˽a a a b b b c c cFinite 
4) If the last one of each symbol, accept. control 
5) If the last one of some symbol but not others, reject. 
6) If all symbols remain, return to left end and repeat from (3). accept 

Check-in 5.2 
How do we get the effect of “crossing off” with a Turing machine? 
a) We add that feature to the model. 
b) We use a tape alphabet Γ = {a, b, c, a, b, c, ˽ }. 
c) All Turing machines come with an eraser. 

Check-in 5.2 9 



  

      

 

   

           

       

     

       

 

    

    

 

 

      

      

     

       

         

  

       
 

 

    

    

   

 

 

   

          

   

TM – Formal Definition 

Defn: A Turing Machine (TM) is a 7-tuple (", Σ, Γ, &, '(, 'acc , 'rej)
Σ input alphabet 

Γ tape alphabet (Σ ⊆ Γ)

&: Q×Γ → "×Γ× {L, R} (L = Left, R = Right) 

& ', a = (5, b, R) 

On input 6 a TM 7 may halt (enter 'acc or 'rej) Check-in 5.3 
or 7 may run forever (“loop”). 

This Turing machine model is deterministic. 

So 7 has 3 possible outcomes for each input 6: How would we change it to be nondeterministic? 

1. Accept 6 (enter 'acc ) a) Add a second transition function. 

2. Reject 6 by halting (enter 'rej ) b) Change & to be &: Q×Γ → 8( "×Γ× {L, R} ) 
3. Reject 6 by looping (running forever) c) Change the tape alphabet Γ to be infinite. 

10 Check-in 5.3 



  

      
  

    

       

     
      

   

    

    

  

      

    

TM Recognizers and Deciders 

Let ! be a TM. Then " ! = $ ! accepts $}. 
Say that ! recognizes & if & = "(!). 
Defn: & is Turing-recognizable if & = "(!) for some TM !. 

Defn: TM ! is a decider if ! halts on all inputs. 

Say that ! decides & if & = "(!) and ! is a decider. 
Defn: & is Turing-decidable if & = "(!) for some TM decider !. 

11 

T-recognizable 

T-decidable 

CFLs 

regular 



   

        
       

   

      

  

Quick review of today 

1. Proved the CFL Pumping Lemma as a tool 
for showing that languages are not context 
free. 

2.  Defined Turing machines (TMs).  

3.  Defined TM deciders (halt  on al l  inputs).  

4.  T-recognizable and T-decidable languages.  

12 



   

            

MIT OpenCourseWare 
https://ocw.mit.edu 

18.404J / 18.4041J / 6.840J Theory of Computation 
Fall 2020 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms



