18.404/6.840 Lecture 5

Last time:

- Context free grammars (CFGs)
- Context free languages (CFLs)
- Pushdown automata (PDA)
- Converting CFGs to PDAs

Today: (Sipser §2.3, §3.1)

- Proving languages not Context Free
- Turing machines
- T-recognizable and T-decidable languages

Equivalence of CFGs and PDAs

Recall Theorem: A is a CFL iff some PDA recognizes A
\rightarrow Done.

- Need to know the fact, not the proof

Corollaries:

1) Every regular language is a CFL.
2) If A is a CFL and B is regular then $A \cap B$ is a CFL.

Proof sketch of (2):
While reading the input, the finite control of the PDA for A simulates the DFA for B.
Note 1: If A and B are CFLs then $A \cap B$ may not be a CFL (will show today).
Therefore the class of CFLs is not closed under \cap.
Note 2: The class of CFLs is closed under U,o,* (see Pset 2).

Proving languages not Context Free

Let $B=\left\{0^{k} 1^{k} 2^{k} \mid k \geq 0\right\}$. We will show that B isn't a CFL.
Pumping Lemma for CFLs: For every CFL A, there is a p
such that if $s \in A$ and $|s| \geq p$ then $s=u v x y z$ where

1) $u v^{i} x y^{i} z \in A$ for all $i \geq 0$
2) $v y \neq \varepsilon$
3) $|v x y| \leq p$

Informally: All long strings in A are pumpable and stay in A.

Pumping Lemma - Proof

Pumping Lemma for CFLs: For every CFL A, there is a p

such that if $s \in A$ and $|s| \geq p$ then $s=u v x y z$ where

1) $u v^{i} x y^{i} z \in A$ for all $i \geq 0$
2) $v y \neq \varepsilon$
3) $|v x y| \leq p$

Generates uvvxyyz

$$
=u v^{2} x y^{2} z
$$

${ }^{u}$ Generates $u x z$

$$
=u v^{0} x y^{0} z
$$

"cutting and pasting" argument

Pumping Lemma - Proof details

For $s \in A$ where $|s| \geq p$, we have $s=u v x y z$ where:

1) $u v^{i} x y^{i} z \in A$ for all $i \geq 0$
2) $v y \neq \varepsilon$
3) $|v x y| \leq p$

Let $b=$ the length of the longest right hand side of a rule $\quad(\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T})$
$=$ the max branching of the parse tree Let $h=$ the height of the parse tree for $s . \quad \mathrm{E}+\mathrm{T}$

A tree of height h and max branching b has at most b^{h} leaves. So $|s| \leq b^{h}$.

Let $p=b^{|V|}+1$ where $|V|=\#$ variables in the grammar.
So if $|s| \geq p>b^{|V|}$ then $|s|>b^{|V|}$ and so $h>|V|$.
Thus at least $|V|+1$ variables occur in the longest path.
So some variable R must repeat on a path.

Example 1 of Proving Non-CF

Pumping Lemma for CFLs: For every CFL A, there is a p
such that if $s \in A$ and $|s| \geq p$ then $s=u v x y z$ where

1) $u v^{i} x y^{i} z \in A$ for all $i \geq 0$
2) $v y \neq \varepsilon$
3) $|v x y| \leq p$

Let $B=\left\{0^{k} 1^{k} 2^{k} \mid k \geq 0\right\}$
Show: B is not a CFL

Check-in 5.1

Let $A_{1}=\left\{0^{k} 1^{k} 2^{l} \mid k, l \geq 0\right\} \quad$ (equal $\# s$ of 0 s and 1 s)
Let $A_{2}=\left\{0^{l} 1^{k} 2^{k} \mid k, l \geq 0\right\} \quad$ (equal $\# s$ of 1 s and 2 s)
Observe that PDAs can recognize A_{1} and A_{2}. What can we now conclude?
$s=\frac{00 \cdots 0011 \cdots 1122 \cdots 22}{u \Gamma^{v}{ }^{\top} x^{\top} y^{\top} \quad z} \begin{gathered} \\ <\leq p \rightarrow\end{gathered}$
a) The class of CFLs is not closed under intersection.
b) The Pumping Lemma shows that $A_{1} \cup A_{2}$ is not a CFL.
c) The class of CFLs is closed under complement.

Example 2 of Proving Non-CF

Pumping Lemma for CFLs: For every CFL A, there is a p
such that if $s \in A$ and $|s| \geq p$ then $s=u v x y z$ where

1) $u v^{i} x y^{i} z \in A$ for all $i \geq 0$
2) $v y \neq \varepsilon$
3) $|v x y| \leq p$

Let $F=\left\{w w \mid w \in \Sigma^{*}\right\} . \quad \Sigma=\{0,1\}$.
Show: F is not a CFL.
Assume (for contradiction) that F is a CFL.
The CFL pumping lemma gives p as above. Need to choose $s \in F$. Which s ?
Try $s_{1}=0^{p} 10^{p} 1 \in F$.
Try $s_{2}=0^{p} 1^{p} 0^{p} 1^{p} \in F$.
Show s_{2} cannot be pumped $s_{2}=u v x y z$ satisfying the 3 conditions.
Condition 3 implies that $v x y$ does not overlap two runs of 0 s or two runs of 1 s . Therefore, in $u v^{2} x y^{2} z$, two runs of Os or two runs of $1 s$ have unequal length.

$$
\begin{aligned}
& s_{1}=\frac{000 \cdots 001000 \cdots 001}{\left.u\right|_{\substack{v \\
x^{\prime} y^{\prime} \\
\leftarrow \leq p \rightarrow}} z} \\
& s_{2}=\frac{0 \cdots 01 \cdots 10 \cdots 01 \cdots 1}{\left.u\right|_{\substack{\left.v\right|^{\prime} \mid \\
\\
\\
f \leq p \rightarrow}} y^{\mid} \quad z}
\end{aligned}
$$ So $u v^{2} x y^{2} z \notin F$ violating Condition 1. Contradiction! Thus F is not a CFL.

Turing Machines (TMs)

1) Head can read and write
2) Head is two way (can move left or right)
3) Tape is infinite (to the right)
4) Infinitely many blanks " \llcorner " follow input
5) Can accept or reject any time (not only at end of input)

TM - example

TM recognizing $B=\left\{\mathrm{a}^{k} \mathrm{~b}^{k} \mathrm{c}^{k} \mid k \geq 0\right\}$

1) Scan right until - while checking if input is in $a^{*} b^{*} c^{*}$, reject if not.
2) Return head to left end.
3) Scan right, crossing off single a, b, and c.
4) If the last one of each symbol, accept.

Check-in 5.2
How do we get the effect of "crossing off" with a Turing machine?
a) We add that feature to the model.
b) We use a tape alphabet $\Gamma=\{a, b, c, \not \subset, \not \subset, \not \subset,-\checkmark\}$.
c) All Turing machines come with an eraser.

TM - Formal Definition

Defn: A Turing Machine (TM) is a 7-tuple ($Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {acc }}, q_{\text {rej }}$)
Σ input alphabet
Γ tape alphabet $(\Sigma \subseteq \Gamma)$
$\delta: ~ Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\} \quad(L=$ Left, $R=$ Right $)$ $\delta(q, \mathrm{a})=(r, \mathrm{~b}, \mathrm{R})$

On input w a TM M may halt (enter $q_{\text {acc }}$ or $q_{\text {rej }}$) or M may run forever ("loop").

So M has 3 possible outcomes for each input w :

1. Accept w (enter $q_{\text {acc }}$)
2. Reject w by halting (enter $q_{\text {rej }}$)
3. Reject w by looping (running forever)

Check-in 5.3

This Turing machine model is deterministic.
How would we change it to be nondeterministic?
a) Add a second transition function.
b) Change δ to be $\delta: \mathrm{Q} \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})$
c) Change the tape alphabet Γ to be infinite.

TM Recognizers and Deciders

Let M be a TM. Then $L(M)=\{w \mid M$ accepts $w\}$.
Say that M recognizes A if $A=L(M)$.
Defn: A is Turing-recognizable if $A=L(M)$ for some TM M.

Defn: TM M is a decider if M halts on all inputs.

Say that M decides A if $A=L(M)$ and M is a decider.
Defn: A is Turing-decidable if $A=L(M)$ for some TM decider M.

Quick review of today

1. Proved the CFL Pumping Lemma as a tool for showing that languages are not context free.
2. Defined Turing machines (TMs).
3. Defined TM deciders (halt on all inputs).
4. T-recognizable and T-decidable languages.

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

