18.404/6.840 Lecture 8

Last time:

- Decision procedures for automata and grammars $A_{\rm DFA}$, $A_{\rm NFA}$, $E_{\rm DFA}$, $EQ_{\rm DFA}$, $A_{\rm CFG}$, $E_{\rm CFG}$ are decidable $A_{\rm TM}$ is T-recognizable

Today: (Sipser §4.2)

- $A_{\rm TM}$ is undecidable
- The diagonalization method
- $\overline{A_{\mathrm{TM}}}$ is T-unrecognizable
- The reducibility method
- Other undecidable languages

Recall: Acceptance Problem for TMs

Let $A_{\text{TM}} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$ **Today's Theorem:** A_{TM} is not decidable Proof uses the diagonalization method, so we will introduce that first.

The Size of Infinity

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set *A* and *B* have the same size if there is a one-to-one and onto function $f: A \rightarrow B$

Informally, two sets have the same size if we can pair up their members.

This definition works for finite sets.

Apply it to infinite sets too.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Countable Sets

Let $\mathbb{N} = \{1, 2, 3, ...\}$ and let $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ Show \mathbb{N} and \mathbb{Z} have the same size $n \quad f(n)$ \mathbb{Z} \mathbb{N} Let $\mathbb{Q}^+ = \{ \frac{m}{n} \mid m, n \in \mathbb{N} \}$ Show ${\mathbb N}$ and ${\mathbb Q}^+$ have the same size $n \mid f(n)$ \mathbb{Q}^+ 1 2 3 4 \mathbb{Q}^+ \mathbb{N} 1/1 1/2 1/3 1/4 1 2/1+2/2 2/3 2/4 2 • • • 3/1+3/2+3/3 3 3/4 **4/1**+**4/2**+**4/3**+**4/4** 4 •••

Defn: A set is <u>countable</u> if it is finite or it has the same size as \mathbb{N} .

Both \mathbb{Z} and \mathbb{Q}^+ are countable.

4

\mathbb{R} is Uncountable – Diagonalization

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: \mathbb{R} is uncountable Proof by contradiction via diagonalization: Assume \mathbb{R} is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

\mathbb{R} is Uncountable – Corollaries

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathcal{L} is uncountable Proof: There's a 1-1 correspondence from \mathcal{L} to \mathbb{R} so they are the same size.

Observation: $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$ is countable.

Let $\mathcal{M} =$ all Turing machines **Observation:** \mathcal{M} is countable. Because $\{\langle M \rangle | M \text{ is a TM}\} \subseteq \Sigma^*$.

Corollary 2: Some language is not decidable. Because there are more languages than <u>TMs</u>.

We will show some specific language $A_{\rm TM}$ is not decidable.

Check-in 8.1

Hilbert's 1^{st} question asked if there is a set of intermediate size between \mathbb{N} and \mathbb{R} . Gödel and Cohen showed that we cannot answer this question by using the standard axioms of mathematics. How can we interpret their conclusion?

- (a) We need better axioms to describe reality.
- (b) Infinite sets have no mathematical reality so Hilbert's 1st question has no answer.

$A_{\rm TM}$ is undecidable

7

Recall $A_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

Theorem: $A_{\rm TM}$ is not decidable

Proof by contradiction: Assume some TM H decides A_{TM} .

So *H* on $\langle M, w \rangle = \begin{cases} Accept & \text{if } M \text{ accepts } w \\ Reject & \text{if not} \end{cases}$

Use *H* to construct TM *D* D = "On input $\langle M \rangle$

1. Simulate H on input $\langle M, \langle M \rangle \rangle$

2. Accept if H rejects. Reject if H accepts."

 $D \text{ accepts } \langle M \rangle \text{ iff } M \text{ doesn't accept } \langle M \rangle .$ $D \text{ accepts } \langle D \rangle \text{ iff } D \text{ doesn't accept } \langle D \rangle .$ Contradiction.

Why is this proof a diagonalization?

Check-in 8.2

Recall the Queue Automaton (QA) defined in Pset 2. It is similar to a PDA except that it is deterministic and it has a queue instead of a stack.

Let $A_{QA} = \{ \langle B, w \rangle | B \text{ is a QA and } B \text{ accepts } w \}$

Is $A_{\rm QA}$ decidable?

(a) Yes, because QA are similar to PDA and A_{PDA} is decidable.

(b) No, because "yes" would contradict results we now know.

(c) We don't have enough information to answer this question.

$A_{\rm TM}$ is T-unrecognizable

Theorem: If A and \overline{A} are T-recognizable then A is decidable Proof: Let TM M_1 and M_2 recognize A and \overline{A} .

Construct TM T deciding A.

T = "On input w

- 1. Run M_1 and M_2 on w in parallel until one accepts.
- 2. If M_1 accepts then *accept*. If M_2 accepts then *reject*."

Corollary: $A_{\rm TM}$ is T-unrecognizable

Proof: A_{TM} is T-recognizable but also undecidable

Check-in 8.3

From what we've learned, which closure properties can we prove for the class of T-recognizable languages?

Choose all that apply.

- (a) Closed under union.
- (b) Closed under intersection.
- (c) Closed under complement.
- (d) Closed under concatenation.
- (e) Closed under star.

The Reducibility Method

Use our knowledge that $A_{\rm TM}$ is undecidable to show other problems are undecidable.

Defn: $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$

Theorem: $HALT_{TM}$ is undecidable

Proof by contradiction, showing that $A_{\rm TM}$ is reducible to $HALT_{\rm TM}$:

Assume that $HALT_{TM}$ is decidable and show that A_{TM} is decidable (false!). Let TM R decide $HALT_{TM}$. Construct TM S deciding A_{TM} .

S = "On input $\langle M, w \rangle$

- 1. Use *R* to test if *M* on *w* halts. If not, reject.
- 2. Simulate *M* on *w* until it halts (as guaranteed by *R*).
- 3. If *M* has accepted then *accept*.
 - If *M* has rejected then *reject*.

TM S decides $A_{\rm TM}$, a contradiction. Therefore $HALT_{\rm TM}$ is undecidable.

Quick review of today

- 1. Showed that \mathbb{N} and \mathbb{R} are not the same size to introduce the Diagonalization Method.
- **2.** A_{TM} is undecidable.
- 3. If A and \overline{A} are T-recognizable then A is decidable.
- 4. $\overline{A_{\rm TM}}$ is T-unrecognizable.
- 5. Introduced the Reducibility Method to show that $HALT_{TM}$ is undecidable.

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.