18.404/6.840 Lecture 8

Last time:

- Decision procedures for automata and grammars $A_{\text {DFA }}, A_{\text {NFA }}, E_{\text {DFA }}, E Q_{\text {DFA }}, A_{\text {CFG }}, E_{\text {CFG }}$ are decidable A_{TM} is T-recognizable

Today: (Sipser §4.2)

- $A_{\text {TM }}$ is undecidable
- The diagonalization method
- $\overline{A_{\mathrm{TM}}}$ is T-unrecognizable
- The reducibility method
- Other undecidable languages

Recall: Acceptance Problem for TMs

Let $A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\}$
Today's Theorem: A_{TM} is not decidable
Proof uses the diagonalization method, so we will introduce that first.

The Size of Infinity

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.
Defn: Say that set A and B have the same size if there is
a $\underbrace{\text { one-to-one }}_{x \neq y \rightarrow}$ and $\underbrace{\text { onto }}_{\text {Range }(f)=B}$ function $f: A \rightarrow B$
$f(x) \neq f(y) \quad$ "surjective" We call such an f a 1-1 correspondence
"injective"
Informally, two sets have the same size if we can pair up their members.
This definition works for finite sets.
Apply it to infinite sets too.

Countable Sets

Let $\mathbb{N}=\{1,2,3, \ldots\}$ and let $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
Show \mathbb{N} and \mathbb{Z} have the same size

$$
\begin{array}{r|r}
n & f(n) \\
\hline \mathbb{N} & \mathbb{Z}
\end{array}
$$

Let $\mathbb{Q}^{+}=\{m / n \mid m, n \in \mathbb{N}\}$
Show \mathbb{N} and \mathbb{Q}^{+}have the same size

Defn: A set is countable if it is finite or it has the same size as \mathbb{N}.
Both \mathbb{Z} and \mathbb{Q}^{+}are countable.

\mathbb{R} is Uncountable - Diagonalization

Let $\mathbb{R}=$ all real numbers (expressible by infinite decimal expansion)
Theorem: \mathbb{R} is uncountable
Proof by contradiction via diagonalization: Assume \mathbb{R} is countable
So there is a 1-1 correspondence $f: \mathbb{N} \rightarrow \mathbb{R}$

n	$f(n)$	
1		
2		
3		
4		
5		
6		
7		
\vdots		Diago

Demonstrate a number $x \in \mathbb{R}$ that is missing from the list.

$$
x=0 .
$$

differs from the $n^{\text {th }}$ number in the $n^{\text {th }}$ digit
so cannot be the $n^{\text {th }}$ number for any n.
Hence x is not paired with any n. It is missing from the list.
Therefore f is not a 1-1 correspondence.

\mathbb{R} is Uncountable - Corollaries

Let $\mathcal{L}=$ all languages

Corollary 1: \mathcal{L} is uncountable
Proof: There's a 1-1 correspondence from \mathcal{L} to \mathbb{R} so they are the same size.
Observation: $\Sigma^{*}=\{\varepsilon, 0,1,00,01,10,11,000, \ldots\}$ is countable.

Let $\mathcal{M}=$ all Turing machines
Observation: \mathcal{M} is countable.
Because $\{\langle M\rangle \mid M$ is a TM $\} \subseteq \Sigma^{*}$.
Corollary 2: Some language is not decidable.
Because there are more languages than TMs.
We will show some specific language A_{TM} is not decidable.

Check-in 8.1

Hilbert's $1^{\text {st }}$ question asked if there is a set of intermediate size between \mathbb{N} and \mathbb{R}. Gödel and Cohen showed that we cannot answer this question by using the standard axioms of mathematics.
How can we interpret their conclusion?
(a) We need better axioms to describe reality.
(b) Infinite sets have no mathematical reality so Hilbert's $1^{\text {st }}$ question has no answer.

A_{TM} is undecidable

Recall $A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\}$
Theorem: $A_{T M}$ is not decidable
Proof by contradiction: Assume some TM H decides A_{TM}.
So H on $\langle M, w\rangle= \begin{cases}\text { Accept } & \text { if } M \text { accepts } w \\ \text { Reject } & \text { if not }\end{cases}$
Use H to construct TM D
$D=$ "On input $\langle M\rangle$

1. Simulate H on input $\langle M,\langle M\rangle\rangle$
2. Accept if H rejects. Reject if H accepts."
D accepts $\langle M\rangle$ iff M doesn't accept $\langle M\rangle$.
D accepts $\langle D\rangle$ iff D doesn't accept $\langle D\rangle$.
Contradiction.

Why is this proof a diagonalization?

| All | All TM descriptions: | | |
| :--- | :--- | :--- | :--- | :--- |
| TMs | $\left\langle M_{1}\right\rangle\left\langle M_{2}\right\rangle\left\langle M_{3}\right\rangle\left\langle M_{4}\right\rangle$ | \ldots | $\langle D\rangle$ |
| M_{1} | | | |
| M_{2} | | | |
| M_{3} | | | |
| M_{4} | | | |
| \vdots | | | |
| D | | | |

Check-in 8.2

Recall the Queue Automaton (QA) defined in Pset 2.
It is similar to a PDA except that it is deterministic
and it has a queue instead of a stack.
Let $A_{\mathrm{QA}}=\{\langle B, w\rangle \mid B$ is a QA and B accepts $w\}$
Is A_{QA} decidable?
(a) Yes, because QA are similar to PDA and $A_{\text {PDA }}$ is decidable.
(b) No, because "yes" would contradict results we now know.
(c) We don't have enough information to answer this question.

$\overline{A_{\text {TM }}}$ is T-unrecognizable

Theorem: If A and \bar{A} are T-recognizable then A is decidable Proof: Let TM M_{1} and M_{2} recognize A and \bar{A}. Construct TM T deciding A.
$T=$ "On input w

1. Run M_{1} and M_{2} on w in parallel until one accepts.
2. If M_{1} accepts then accept.

If M_{2} accepts then reject."
Corollary: $\overline{A_{\mathrm{TM}}}$ is T-unrecognizable
Proof: $A_{\text {TM }}$ is T-recognizable but also undecidable

Check-in 8.3

From what we've learned, which closure properties can we prove for the class of T-recognizable languages? Choose all that apply.
(a) Closed under union.
(b) Closed under intersection.
(c) Closed under complement.
(d) Closed under concatenation.
(e) Closed under star.

The Reducibility Method

Use our knowledge that A_{TM} is undecidable to show other problems are undecidable.

Defn: $H A L T_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ halts on input $w\}$
Theorem: $H A L T_{\mathrm{TM}}$ is undecidable
Proof by contradiction, showing that A_{TM} is reducible to $H A L T_{\mathrm{TM}}$:
Assume that $H A L T_{\mathrm{TM}}$ is decidable and show that A_{TM} is decidable (false!).
Let TM R decide $H A L T_{\mathrm{TM}}$.
Construct TM S deciding $A_{\text {TM }}$.
$S=$ "On input $\langle M, w\rangle$

1. Use R to test if M on w halts. If not, reject.
2. Simulate M on w until it halts (as guaranteed by R).
3. If M has accepted then accept.

If M has rejected then reject.
TM S decides A_{TM}, a contradiction. Therefore $H A L T_{\mathrm{TM}}$ is undecidable.

Quick review of today

1. Showed that \mathbb{N} and \mathbb{R} are not the same size to introduce the Diagonalization Method.
2. A_{TM} is undecidable.
3. If A and \bar{A} are T-recognizable then A is decidable.
4. $\overline{A_{\mathrm{TM}}}$ is T-unrecognizable.
5. Introduced the Reducibility Method to show that $H A L T_{\mathrm{TM}}$ is undecidable.

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

