
 

  
   

 
 

    
  

 
 

  
  

      

 

 

 

18.404/6.840 Lecture 8 

Last time: 
- Decision procedures for automata and grammars
!DFA , !NFA , &DFA , &'DFA , !CFG , &CFG are decidable 
!TM is T-recognizable 

Today: (Sipser §4.2) 
- !TM is undecidable 
- The diagonalization method 
- !TM is T-unrecognizable 
- The reducibility method 
- Other undecidable languages 
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Recall: Acceptance Problem for TMs 

Let !TM = { &,( | & is a TM and & accepts (} 
Today’s Theorem: !TM is not decidable 

Proof uses the diagonalization method, 
so we will introduce that first. 
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& ≠ ( → 

# & ≠ # ( 
Range (#) = " 

“surjective” 

The Size of Infinity 

How to compare the relative sizes of infinite sets? 

Cantor (~1890s) had the following idea. 

Defn: Say that set ! and " have the same size if there is 
a one-to-one and onto function #: ! → " 

We call such an # a 1-1 correspondence 
“injective” 

Informally, two sets have the same size if we can pair up their members. 

This definition works for finite sets. 

Apply it to infinite sets too. 

#: © Source unknown. All rights reserved. This content is 
excluded from our Creative Commons license. For 
more information, see https://ocw.mit.edu/fairuse. 
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1 0
2 1
3 1
4 2
5 2
6 3
7 3
⋮ ⋮

1 1/1
2 2/1
3 1/2
4 3/1
5 3/2
6 2/3
7 1/3
⋮ ⋮

Countable Sets 

Let ℕ = {1,2,3, … } and let ℤ = {… , −2, −1,0,1,2, … } 

Defn: A set is countable if it is finite 
or it has the same size as ℕ. 

Both ℤ and ℚ" are countable. 
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ℚ" 1 2 3 4 …

1 1/1 1/2 1/3 1/4
2 2/1 2/2 2/3 2/4 …
3 3/1 3/2 3/3 3/4

4 4/1 4/2 4/3 4/4
⋮ ⋮

Show ℕ and ℤ have the same size 

Let ℚ" = 1⁄2 3, 4 ∈ ℕ}
Show ℕ and ℚ" have the same size

4 6(4)
1 0
2 -1
3 1
4 -2
5 2
6 -3
7 3
⋮ ⋮

ℕ ℤ

4 6(4)
1 1/1
2 2/1
3 1/2
4 3/1
5 3/2
6 2/3
7 1/3
⋮ ⋮

ℕ ℚ"



  

       

   
        

      

        

      
        

         
     

 

 

 
 

   

   
 

 

 

 

 

  

 

  
 

 
  

 
 

 

2.718281828…
3.141592653…
0.000000000…
1.414213562…
0.142857242…
0.207879576…
1.234567890…

⋮

7
4
0
2
5
9
8

7 ≠4 ≠0 ≠ ≠5 ≠9 ≠8

ℝ is Uncountable – Diagonalization 

Let ℝ = all real numbers (expressible by infinite decimal expansion) 

Theorem: ℝ is uncountable 
Proof by contradiction via diagonalization: Assume ℝ is countable 

So there is a 1-1 correspondence #:ℕ → ℝ 

Demonstrate a number + ∈ ℝ that is missing from the list. 

+ = 0.8516182…

≠ 2 

differs from the ' th number in the ' th digit 
so cannot be the ' th number for any '.
Hence + is not paired with any '. It is missing from the list. 
Therefore # is not a 1-1 correspondence. 
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' #(')
1 72.718281828…
2 43.141592653…
3 00.000000000…
4 21.414213562…
5
6
7
⋮ ⋮

0.142857242…5
0.207879576…9
1.234567890…8

Diagonalization



   

  

    
             

     

   
   

  

      
      

        

 

 

 
       

     
     

     
    

     
       

     

 

 

 
  

      

 
 
     

 

Σ∗ { ', 0, 1, 00, 01, 10, 11, 000, …

0 ∈ ℒ { 0, 00, 01, …

4 0 .0 1 0 1 1 0 0 0 …

ℝ is Uncountable – Corollaries 

Let ℒ = all languages 

Corollary 1: ℒ is uncountable 
Proof: There’s a 1-1 correspondence from ℒ to ℝ so they are the same size. 

Observation: Σ∗ = {', 0,1,00,01,10,11,000, … } is countable. 

Let ℳ = all Turing machines 
Observation: ℳ is countable. 
Because . . is a TM} ⊆ Σ∗ . 

Corollary 2: Some language is not decidable. 
Because there are more languages than TMs. 

We will show some specific language 0TM is not decidable. 

Check-in 8.1 
Hilbert’s 1st question asked if there is a set of 
intermediate size between ℕ and ℝ. Gödel and 
Cohen showed that we cannot answer this question 
by using the standard axioms of mathematics. 
How can we interpret their conclusion? 
(a) We need better axioms to describe reality. 
(b) Infinite sets have no mathematical reality so 

Hilbert’s 1st question has no answer. 

Check-in 8.1 
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acc rej acc acc . . .

rej rej rej rej

acc acc acc acc . . .

rej rej acc acc

⋮
rej acc rej rej ?

!TM is undecidable

Recall !TM = { &,( | & is a TM and & accepts (} 
Theorem: !TM is not decidable 
Proof by contradiction: Assume some TM + decides !TM. 

Accept if & accepts (So + on &,( = , Why is this proof a diagonalization? Reject if not 

Use + to construct TM -
- = “On input 〈&〉

1. Simulate + on input 〈&, & 〉 
2. Accept if + rejects. Reject if + accepts.”

- accepts 〈&〉 iff & doesn’t accept & . 
- accepts 〈-〉 iff - doesn’t accept - . 
Contradiction. 
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〈&0〉 〈&1〉 〈&2〉 〈&3〉 . . . 〈-〉
&0 acaccc rej acc acc . . .

&1 rej rerejj rej rej

&2 acc acc acaccc acc . . .

&3 rej rej acc acaccc

⋮ ⋮
- rej acc rej rej ?

All TM descriptions:All 
TMs



 

 
       

           
      

     

 

       

      

         

      

 

 

Check-in 8.2 
Recall the Queue Automaton (QA) defined in Pset 2. 
It is similar to a PDA except that it is deterministic 
and it has a queue instead of a stack. 

Let !QA = { &,( | & is a QA and & accepts (} 
Is !QA decidable? 

(a) Yes, because QA are similar to PDA and !PDA is decidable. 

(b) No, because “yes” would contradict results we now know. 

(c) We don’t have enough information to answer this question. 

8 Check-in 8.2 



        
     

   

 
      

   
    

   
       

  
 

 

 
     

       
   

 
 
 
 
    

 

   
   

 

 

   
 

 

 

 

- =

decidable

T-recognizable

Complement of
T recognizable

co-T-recognizable

!TM!TM

!TM is T-unrecognizable 

Theorem: If ! and ! are T-recognizable then ! is decidable 
Proof: Let TM $% and $& recognize ! and !. 

Construct TM ' deciding !. 

' = “On input )
1. Run $% and $& on ) in parallel until one accepts. 
2.   If $% accepts then accept. 

If $& accepts then reject.” 

Corollary: !TM is T-unrecognizable 
Proof: !TM is T-recognizable but also undecidable 

Check-in 8.3 
From what we’ve learned, which closure properties 
can we prove for the class of T-recognizable languages? 
Choose all that apply. 

(a) Closed under union. 
(b) Closed under intersection. 
(c) Closed under complement. 
(d) Closed under concatenation. 
(e) Closed under star. 

Check-in 8.3 
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The Reducibility Method 

Use our knowledge that !TM is undecidable to show other 
problems are undecidable. 
Defn: $!%&TM = (, * ( halts on input *} 
Theorem: $!%&TM is undecidable 
Proof by contradiction, showing that !TM is reducible to $!%&TM: 
Assume that $!%&TM is decidable and show that !TM is decidable (false!). 
Let TM , decide $!%&TM. 
Construct TM - deciding !TM. 
- = “On input (, * 

1.  Use , to test if ( on * halts. If not, reject. 
2. Simulate ( on * until it halts (as guaranteed by ,). 
3.  If ( has accepted then accept. 

If ( has rejected then reject. 
TM - decides !TM, a contradiction. Therefore $!%&TM is undecidable. 
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Quick review of today 

1. Showed that ℕ and ℝ are not the same size 
to introduce the Diagonalization Method. 

2. #TM is undecidable. 

3. If # and # are T-recognizable then # is decidable. 

4. #TM is T-unrecognizable. 

5. Introduced the Reducibility Method to show that
&#'(TM is undecidable. 
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