18.404/6.840 Lecture 23

Last time:

- $EQ_{\text{REX}\uparrow}$ is EXPSPACE-complete
- Thus $EQ_{\text{REX}\uparrow} \notin \text{PSPACE}$
- Oracles and P versus NP

Today: (Sipser §10.2)

- Probabilistic computation
- The class BPP
- Branching programs

Probabilistic TMs

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

if for every w, $\Pr[M \text{ gives the wrong answer about } w \in A] \le \epsilon$ *i.e.*, $w \in A \to \Pr[M \text{ rejects } w] \le \epsilon$ $w \notin A \to \Pr[M \text{ accepts } w] \le \epsilon$.

The Class BPP

Defn: BPP = {*A*| some poly-time PTM decides *A* with error $\epsilon = 1/3$ }

Amplification lemma: If M_1 is a poly-time PTM with error $\epsilon_1 < 1/2$ then, for any $0 < \epsilon_2 < 1/2$, there is an equivalent poly-time PTM M_2 with error ϵ_2 . Can strengthen to make $\epsilon_2 < 2^{-\text{poly}(n)}$.

Proof idea: $M_2 =$ "On input w

1. Run M_1 on w for k times and output the majority response."

Details: Calculation to obtain k and the improved error probability.

Significance: Can make the error probability so small it is negligible.

NP and BPP

Check-in 23.1

Example: Branching Programs

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP *B* with query nodes $x_1, ..., x_m$ describes a Boolean function $f: \{0,1\}^m \rightarrow \{0,1\}$: Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

5

Example: For $x_1 = 1$, $x_2 = 0$, $x_3 = 1$

BPs are *equivalent* if they describe the same Boolean function. **Defn:** $EQ_{BP} = \{\langle B_1, B_2 \rangle | B_1 \text{ and } B_2 \text{ are equivalent BPs (written } B_1 \equiv B_2) \}$

Theorem: $EQ_{\rm BP}$ is coNP-complete (on pset 6)

```
EQ_{\rm BP} \in \text{BPP} ?
Instead, consider a restricted problem.
```


Read-once Branching Programs

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: $EQ_{\text{ROBP}} = \{\langle B_1, B_2 \rangle | B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \}$

Theorem: $EQ_{\text{ROBP}} \in \text{BPP}$

Check-in 23.2

Assuming (as we will show) that $EQ_{\text{ROBP}} \in \text{BPP}$, can we use that to show $EQ_{\text{BP}} \in \text{BPP}$ by converting branching programs to read-once branching programs?

- (a) Yes, there is no need to re-read inputs.
- (b) No, we cannot do that conversion in general.
- (c) No, the conversion is possible but not in polynomial-time.

$EQ_{\text{ROBP}} \in \text{BPP}$

Theorem: $EQ_{\text{ROBP}} \in \text{BPP}$

Proof attempt: Let M ="On input $\langle B_1, B_2 \rangle$

- 1. Pick k random input assignments and evaluate B_1 and B_2 on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*.
 - If they always agree on those assignments then accept."

What k to chose?

If $B_1 \equiv B_2$ then they always agree so $\Pr[M \text{ accepts } \langle B_1, B_2 \rangle] = 1$ If $B_1 \not\equiv B_2$ then want $\Pr[M \text{ accepts } \langle B_1, B_2 \rangle] \leq \frac{1}{3}$ so want $\Pr[M \text{ rejects } \langle B_1, B_2 \rangle] \geq \frac{2}{3}$.

But B_1 and B_2 may disagree rarely, say in 1 of the 2^m possible assignments. That would require exponentially many samples to have a good chance of finding a disagreeing assignment and thus would require $k > (2/3)2^m$. But then this algorithm would use exponential time.

Try a different idea: Run B_1 and B_2 on <u>non-Boolean inputs</u>.

Boolean Labeling

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1 and off the execution path with 0. Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

Label edges from nodes

Label nodes from incoming edges

Arithmetization Method

Method: Simulate \land and \lor with + and \times .

$$\begin{array}{rcl} \wedge b & \rightarrow & a \times b = ab \\ \overline{a} & \rightarrow & (1-a) \\ \wedge b & \rightarrow & a+b-ab \end{array}$$

Replace Boolean labeling with arithmetical labeling Inductive rules: Start node labeled 1

 a_1

a₂

$$a (1a - \Lambda \overline{x_i})^{0} a^{1} a A_i x$$

 $a_1 \forall a_2 \forall a_3$

a3

Works because the BP is acyclic. The execution path can enter a node at most one time.

Non-Boolean Inputs

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Quick review of today

- 1. Defined probabilistic Turing machines
- 2. Defined the class BPP
- 3. Sketched the amplification lemma
- 4. Introduced branching programs and read-once branching programs
- 5. Started the proof that $EQ_{\text{ROBP}} \in \text{BPP}$
- 6. Introduced the arithmetization method

11

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.