18.404/6.840 Lecture 23

Last time:

- $E Q_{\text {REX }}$ is EXPSPACE-complete
- Thus $E Q_{\text {REX }} \notin$ PSPACE
- Oracles and P versus NP

Today: (Sipser §10.2)

- Probabilistic computation
- The class BPP
- Branching programs

Probabilistic TMs

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

$\operatorname{Pr}[$ branch $b]=2^{-k}$ where b has k coin flips
$\operatorname{Pr}[M$ accepts $w]=\sum_{b \text { accepts }} \operatorname{Pr}[$ branch $b]$
$\operatorname{Pr}[M$ rejects $w]=1-\operatorname{Pr}[M$ accepts $w]$

branch b

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ
if for every $w, \operatorname{Pr}[M$ gives the wrong answer about $w \in A] \leq \epsilon$
i.e., $w \in A \rightarrow \operatorname{Pr}[M$ rejects $w] \leq \epsilon$
$w \notin A \rightarrow \operatorname{Pr}[M$ accepts $w] \leq \epsilon$.

The Class BPP

Defn: BPP $=\{A \mid$ some poly-time PTM decides A with error $\epsilon=1 / 3\}$
Amplification lemma: If M_{1} is a poly-time PTM with error $\epsilon_{1}<1 / 2$ then, for any $0<\epsilon_{2}<1 / 2$, there is an equivalent poly-time PTM M_{2} with error ϵ_{2}. Can strengthen to make $\epsilon_{2}<2^{-\operatorname{poly}(n)}$.

Proof idea: $M_{2}=$ "On input w

1. Run M_{1} on w for k times and output the majority response."

Details: Calculation to obtain k and the improved error probability.
Significance: Can make the error probability so small it is negligible.

NP and BPP

Check-in 23.1
Which of these are known to be true? Check all that apply.
(a) BPP is closed under union.
(b) BPP is closed under complement.
(c) $\mathrm{P} \subseteq \mathrm{BPP}$
(d) BPP \subseteq PSPACE

Example: Branching Programs

Defn: A branching program (BP) is a directed, acyclic (no cycles) graph that has

1. Query nodes labeled x_{i} and having two outgoing edges labeled 0 and 1.
2. Two output nodes labeled 0 and 1 and having no outgoing edges.
3. A designated start node.

BP B with query nodes x_{1}, \ldots, x_{m} describes a Boolean function $f:\{0,1\}^{m} \rightarrow\{0,1\}$:
Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For $x_{1}=1, x_{2}=0, x_{3}=1$
BPs are equivalent if they describe the same Boolean function.
Defn: $E Q_{\mathrm{BP}}=\left\{\left\langle B_{1}, B_{2}\right\rangle \mid B_{1}\right.$ and B_{2} are equivalent BPs (written $B_{1} \equiv B_{2}$) $\}$
Theorem: $E Q_{\mathrm{BP}}$ is coNP-complete (on pset 6)
$E Q_{\mathrm{BP}} \in \mathrm{BPP}$?

Instead, consider a restricted problem.

Read-once Branching Programs

Defn: A BP is read-once if it never queries a variable more than once on any path from the start node to an output.

Defn: $E Q_{\text {ROBP }}=\left\{\left\langle B_{1}, B_{2}\right\rangle \mid B_{1}\right.$ and B_{2} are equivalent read-once BPs$\}$
Theorem: $E Q_{\text {ROBP }} \in \operatorname{BPP}$
Check-in 23.2
Assuming (as we will show) that $E Q_{\text {Robp }} \in B P P$, can we use that to show $E Q_{\mathrm{BP}} \in \mathrm{BPP}$ by converting branching programs to read-once branching programs?
(a) Yes, there is no need to re-read inputs.
(b) No, we cannot do that conversion in general.
(c) No, the conversion is possible but not in polynomial-time.

Not read-once

$E Q_{\text {ROBP }} \in \operatorname{BPP}$

Theorem: $E Q_{\text {ROBP }} \in \operatorname{BPP}$
Proof attempt: Let $M=$ "On input $\left\langle B_{1}, B_{2}\right\rangle$

1. Pick k random input assignments and evaluate B_{1} and B_{2} on each one.
2. If B_{1} and B_{2} ever disagree on those assignments then reject.

If they always agree on those assignments then accept."
What k to chose?
If $B_{1} \equiv B_{2}$ then they always agree so $\operatorname{Pr}\left[M\right.$ accepts $\left.\left\langle B_{1}, B_{2}\right\rangle\right]=1$
If $B_{1} \not \equiv B_{2}$ then want $\operatorname{Pr}\left[M\right.$ accepts $\left.\left\langle B_{1}, B_{2}\right\rangle\right] \leq \frac{1}{3}$
so want $\operatorname{Pr}\left[M\right.$ rejects $\left.\left\langle B_{1}, B_{2}\right\rangle\right] \geq 2 / 3$.
But B_{1} and B_{2} may disagree rarely, say in 1 of the 2^{m} possible assignments. That would require exponentially many samples to have a good chance of finding a disagreeing assignment and thus would require $k>(2 / 3) 2^{m}$.
 But then this algorithm would use exponential time.

Try a different idea: Run B_{1} and B_{2} on non-Boolean inputs.

Boolean Labeling

Alternative way to view BP computation
Show by example: Input is $x_{1}=0, x_{2}=1, x_{3}=1$

The BP follows its execution path.
Label all nodes and edges on the execution path with 1 and off the execution path with 0 .
Output the label of the output node 1.
Obtain the labeling inductively by using these rules:

Label edges from nodes

Label nodes from incoming edges

Arithmetization Method

Method: Simulate \wedge and \vee with + and \times.

Replace Boolean labeling with arithmetical labeling Inductive rules:
Start node labeled 1

Works because the BP is acyclic.
The execution path can enter a node at most one time.

Non-Boolean Inputs

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_{1}=2, x_{2}=3$

Recall labeling rules:

Check-in 23.3

What is the output for this branching program using the arithmetized interpretation if $x_{1}=1, x_{2}=y$?
(a) $(1-y)$
(b) $(y+1)$
(c) y

Quick review of today

1. Defined probabilistic Turing machines
2. Defined the class BPP
3. Sketched the amplification lemma
4. Introduced branching programs and read-once branching programs
5. Started the proof that $E Q_{\text {ROBP }} \in B P P$
6. Introduced the arithmetization method

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

