

18.404/6.840 Lecture 23

Last time:
- !"#$%↑ is EXPSPACE-complete
- Thus !"#$%↑ ∉ PSPACE
- Oracles and P versus NP

Today: (Sipser §10.2)
- Probabilistic computation
- The class BPP
- Branching programs

1

Probabilistic TMs

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM
where each computation step has 1 or 2 possible choices.

deterministic coin flip step -
step each choice has 50% probability

Pr[branch !] = 2&' where ! has (coin flips

Pr[" accepts #] = + Pr[branch !]

Pr[" rejects #] = 1 − Pr[" accepts #]
b accepts

computation tree
for " on #

branch !

Defn: For 7 ≥ 0 say PTM " decides language : with error probability 7
if for every #, Pr[" gives the wrong answer about # ∈ :] ≤ 7
i.e., # ∈ : → Pr[" rejects #] ≤ 7

∉ : → Pr[" accepts #] ≤ 7.
2

Defn: BPP = " some poly-time PTM decides " with error # = ⁄% & }

Amplification lemma: If '% is a poly-time PTM with error #% < ⁄%) then,
for any 0 < #) < ⁄%), there is an equivalent poly-time PTM ') with error #).
Can strengthen to make #) < 2−,-./ 0 .

Proof idea: ') = “On input 1
1. Run '% on 1 for 2 times and output the majority response.”

Details: Calculation to obtain 2 and the improved error probability.

Significance: Can make the error probability so small it is negligible.

The Class BPP

3

NP and BPP

Computation trees
for ! on "

" ∈ $

NP

≥ 1 accepting

Few accepting Many rejecting

BPP

Many accepting Few
rejecting

all rejecting

" ∉ $

Check-in 23.1

Check-in 23.1
Which of these are known to be true?
Check all that apply.
(a) BPP is closed under union.
(b) BPP is closed under complement.
(c) P ⊆ BPP
(d) BPP ⊆ PSPACE

4

Example: Branching Programs

Defn: A branching program (BP) is a directed, acyclic (no cycles) graph that has
1. Query nodes labeled !" and having two outgoing edges labeled 0 and 1.
2. Two output nodes labeled 0 and 1 and having no outgoing edges.
3. A designated start node.

BP # with query nodes !$, … , !' describes a Boolean function (: 0,1 ' → {0,1}:
Follow the path designated by the query nodes’ outgoing edges
from the start note until reach an output node.

Example: For !$ = 1, !/ = 0, !0 = 1 we have (101 = 0 = output.

BPs are equivalent if they describe the same Boolean function.
Defn: 12BP = #$, #/ #$ and #/ are equivalent BPs (written #$ ≡ #/) }

Theorem: 12BP is coNP-complete (on pset 6)

12BP ∈ BPP ? Unknown. That would imply NP ⊆ BPP and would be surprising!
Instead, consider a restricted problem.

!$

!0 !$!/

!/ !0

0 1

0 1 0 1

0
1 0 1 0

1

0 1

5

Read-once Branching Programs

Defn: A BP is read-once if it never queries a variable more than once
on any path from the start node to an output.

Defn: !"ROBP = (), (+ () and (+ are equivalent read-once BPs}
Theorem: !"ROBP ∈ BPP .)

./ .) .+

.+ ./

0 1

0 1 0 1

0
1 0 1 0

1

0 1

Not read-once

Check-in 23.2

Check-in 23.2
Assuming (as we will show) that !"ROBP ∈ BPP,
can we use that to show !"BP ∈ BPP by converting
branching programs to read-once branching programs?
(a) Yes, there is no need to re-read inputs.
(b) No, we cannot do that conversion in general.
(c) No, the conversion is possible but not in polynomial-time.

6

!"ROBP ∈ BPP

Theorem: !"ROBP ∈ BPP
Proof attempt: Let (= “On input *+, *-
1. Pick . random input assignments and evaluate *+ and *- on each one.
2. If *+ and *- ever disagree on those assignments then reject.

If they always agree on those assignments then accept.”

What . to chose?
If *+ ≡ *- then they always agree so Pr[(accepts *+, *-] = 1
If *+ ≢ *- then want Pr[(accepts *+, *-] ≤ ⁄+ 3

so want Pr[(rejects *+, *-] ≥ ⁄- 3 .

But *+ and *- may disagree rarely, say in 1 of the 26 possible assignments.
That would require exponentially many samples to have a good chance of
finding a disagreeing assignment and thus would require . > ⁄- 3 26.
But then this algorithm would use exponential time.

Try a different idea: Run *+ and *- on non-Boolean inputs.

8+0 1

0 1

*+
890 1

0 1

*-

7

!"

!# !#

0 1

0 1

!$!$

0
1 0

1

0
1 0

1

1

1

1

1

1

1

1

0

0

0
0

0

0

0
0

0

0

Boolean Labeling

Show by example: Input is !" = 0, !# = 1, !$ = 1
The BP follows its execution path.
Label all nodes and edges on the execution path with 1
and off the execution path with 0.
Output the label of the output node 1.

Alternative way to view BP computation

Obtain the labeling inductively by using these rules:

'

' ∧ !) ' ∧ !)
'"

'#
'$

'" ∨ '# ∨ '$

!)
0 1

Label edges from nodes Label nodes from incoming edges

8

Arithmetization Method

Method: Simulate ∧ and ∨ with + and ×.

%&
0 1

'

' (1 − %&) ' %&

',
'-

'.
', + '- + '.

%,

%- %-

0 1

0 1

%. %.

0
1 0

1

0
1 0

1

Replace Boolean labeling with arithmetical labeling
Inductive rules:
Start node labeled 1

' ∧ / → '×/ = '/
' → 1 − '

' ∨ / → ' + / − '/

Works because the BP is acyclic.
The execution path can enter a node
at most one time.

' ∧ %&' ∧ %& ', ∨ '- ∨ '.

9

!"

!# !#

0 1

0 1

0 1 0
1

Non-Boolean Inputs
Use the arithmetized interpretation of the BP’s computation
to define its operation on non-Boolean inputs.

Example: !" = 2, !# = 3 Output = −7

!(
0 1

)

) (1 − !()) !(
)"

)#
)-

)" +)# +)-

1

−1 = 1 1 − 2 1 2 = 2

2

8 = 2 + 6

2 = −1 1 − 3

−3 = −1 3 2 3 = 6

2 1 − 3 = −4

−1

−3 + −4 = −7

Recall labeling rules:

Revised 4 for 56ROBP: “On input ;", ;#
1. Pick a random non-Boolean input assignment.
2. Evaluate ;" and ;# on that assignment.
3. If ;" and ;# disagree then reject.

If they agree then accept.”

Correctness proof… after Thanksgiving.

Check-in 23.3

Check-in 23.3
What is the output for this branching program using
the arithmetized interpretation if !" = 1, !# = < ?
(a) (1 − <)
(b) (< + 1)
(c) <

10

Quick review of today

1. Defined probabilistic Turing machines

2. Defined the class BPP

3. Sketched the amplification lemma

4. Introduced branching programs and read-once branching programs

5. Started the proof that !"ROBP ∈ BPP

6. Introduced the arithmetization method

11

MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

