18.404/6.840 Lecture 14

(midterm replaced lecture 13)

Last time:

- $\operatorname{TIME}(t(n))$
$-\mathrm{P}=\mathrm{U}_{k} \operatorname{TIME}\left(n^{k}\right)$
- PATH \in P

Today: (Sipser §7.2-§7.3)

- NTIME ($t(n)$)
- NP
- P vs NP problem
- Dynamic Programming
- Polynomial-time reducibility

Quick Review

Defn: $\operatorname{TIME}(t(n))=\{B \mid$ some deterministic 1-tape TM M decides B and M runs in time $O(t(n))\}$
Defn: $\mathrm{P}=\mathrm{U}_{k} \operatorname{TIME}\left(n^{k}\right)$
$=$ polynomial time decidable languages
PATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph with a path from s to $t\}$
Theorem: PATH $\in \mathrm{P}$
HAMPATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph with a path from s to t that goes through every node of G \}
HAMPATH \in P ?

[connection to factoring]

Nondeterministic Complexity

In a nondeterministic TM (NTM) decider, all branches halt on all inputs.
Defn: An NTM runs in time $t(n)$ if all branches halt within $t(n)$ steps on all inputs of length n.

Defn: $\operatorname{NTIME}(t(n))=\{B \mid$ some 1-tape NTM decides B and runs in time $O(t(n))\}$
Defn: NP $=U_{k} \operatorname{NTIME}\left(n^{k}\right)$
$=$ nondeterministic polynomial time decidable languages

- Invariant for all reasonable nondeterministic models
- Corresponds roughly to easily verifiable problems

Computation tree for NTM on input w.

all branches halt within $t(n)$ steps

HAMPATH $\in \mathrm{NP}$

Theorem: HAMPATH \in NP
Proof:
"On input $\langle G, s, t\rangle$ (Say G has m nodes.)

1. Nondeterministically write a sequence (v1) (V_{2}, \ldots, v_{m} of m nodes.
2. Accept if $v_{1}=s$
$v_{m}=t$
each $\left(v_{i}, v_{i+1}\right)$ is an edge and no v_{i} repeats.
3. Reject if any condition fails."

COMPOSITES $\in \mathrm{NP}$

Defn: COMPOSITES $=\{x \mid x$ is not prime and x is written in binary $\}$

$$
=\{x \mid x=y z \text { for integers } y, z>1, x \text { in binary }\}
$$

Theorem: COMPOSITES \in NP
Proof: "On input x

1. Nondeterministically write y where $1<y<x$.
2. Accept if y divides x with remainder 0 . Reject if not."

Note: Using base 10 instead of base 2 wouldn't matter because can convert in polynomial time. \qquad
Bad encoding: write number k in unary: $1^{k}=\overparen{111 \cdots 1}$, exponentially longer.
Theorem (2002): COMPOSITES $\in \mathrm{P}$
We won't cover this proof.

Intuition for P and NP

NP = All languages where can verify membership quickly
$\mathrm{P}=$ All languages where can test membership quickly
Examples of quickly verifying membership:

- HAMPATH: Give the Hamiltonian path.
- COMPOSITES: Give the factor.

The Hamiltonian path and the factor are called short certificates of membership.
Check-in 14.1
Let $\overline{H A M P A T H}$ be the complement of HAMPATH.
So $\langle G, s, t\rangle \in \overline{H A M P A T H}$ if G does not have a Hamiltonian path from s to t.
Is $\overline{\text { HAMPATH }} \in$ NP?
(a) Yes, we can invert the accept/reject output of the NTM for HAMPATH.
(b) No, we cannot give a short certificate for a graph not to have a Hamiltonian path.
(c) I don't know.

Recall $A_{\text {CFG }}$

Recall: $A_{\mathrm{CFG}}=\{\langle G, w\rangle \mid G$ is a CFG and $w \in L(G)\}$
Theorem: $A_{\text {CFG }}$ is decidable
Proof: $D_{\text {A-CFG }}=$ "On input $\langle G, w\rangle$

1. Convert G into Chomsky Normal Form.
2. Try all derivations of length $2|w|-1$.
3. Accept if any generate w. Reject if not.

Chomsky Normal Form (CNF):
$\mathrm{A} \rightarrow \mathrm{BC}$
$\mathrm{B} \rightarrow \mathrm{b}$
Let's always assume G is in CNF.
Theorem: $A_{\text {CFG }} \in N P$
Proof: "On input $\langle G, w\rangle$

1. Nondeterministically pick some derivation of length $2|w|-1$.
2. Accept if it generates w. Reject if not.

Attempt to show $A_{\text {CFG }} \in P$

Theorem: $A_{\text {CFG }} \in P$
Proof attempt:
Recursive algorithm C tests if G generates w, starting at any specified variable R.
$C=$ "On input $\langle G, w, \mathrm{R}\rangle$

1. For each way to divide $w=x y$ and for each rule $\mathrm{R} \rightarrow \mathrm{ST}$
2. Use C to test $\langle G, x, \mathrm{~S}\rangle$ and $\langle G, y, \mathrm{~T}\rangle$
3. Accept if both accept
4. Reject if none of the above accepted."

Then decide $A_{\text {CFG }}$ by starting from G^{\prime} s start variable.
C is a correct algorithm, but it takes non-polynomial time.
(Each recursion makes $O(n)$ calls and depth is roughly $\log n$.)
Fix: Use recursion + memory called Dynamic Programming (DP)
Observation: String w of length n has $O\left(n^{2}\right)$ substrings $w_{i} \cdots w_{j}$ therefore there are only $O\left(n^{2}\right)$ possible sub-problems $\langle G, x, S\rangle$ to solve.

DP shows $A_{\text {CFG }} \in P$

Theorem: $A_{\text {CFG }} \in P$
Proof : Use DP (Dynamic Programming) = recursion + memory.
$D=$ "On input $\langle G, w, R\rangle$

1. For each way to divide $w=x y$ and for each rule $\mathrm{R} \rightarrow \mathrm{ST}$
2. Use D to test $\langle G, x, \mathrm{~S}\rangle$ and $\langle G, y, \mathrm{~T}\rangle$
3. Accept if both accept
same as before
4. Reject if none of the above accepted."

Then decide $A_{\text {CFG }}$ by starting from G's start variable.
Check-in 14.2
Suppose B is a CFL.
Does that imply that $B \in \mathrm{P}$?
(a) Yes
(b) No.

$A_{\text {CFG }} \in$ P \& Bottom-up DP

Theorem: $A_{\text {CFG }} \in \mathrm{P}$
Proof : Use bottom-up DP.
$D=$ "On input $\langle G, w\rangle$

1. For each w_{i} and variable R

Solve for substrings
of length 1
2. For $k=2, \ldots, n$ and each substring u of w where $|u|=k$ and variable R Solve $\langle G, u, \mathrm{R}\rangle$ by checking for each $\mathrm{R} \rightarrow \mathrm{ST}$ and each division $u=x y$ if both $\langle G, x, S\rangle$ and $\langle G, y, T\rangle$ were positive.

Solve for substrings of length k by using previous answers for substrings of length $<k$.
3. Accept if $\langle G, w, S\rangle$ is positive where S is the original start variable.
4. Reject if not."

Total number of calls is $O\left(n^{2}\right)$ so time used is polynomial.
Often, bottom-up DP is shown as filling out a table.

Satisfiability Problem

Defn: A Boolean formula ϕ has Boolean variables (True/FALSE values) and Boolean operations AND (\wedge), OR (V), and NOT (\neg).

Defn: ϕ is satisfiable if ϕ evaluates to True for some assignment to its variables.
Sometimes we use 1 for True and 0 for False.
Example: Let $\phi=(x \vee y) \wedge(\bar{x} \vee \bar{y})$ (Notation: \bar{x} means $\neg x)$
Then ϕ is satisfiable ($x=1, y=0$)
Defn: $S A T=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$
Theorem (Cook, Levin 1971): \quad SAT $\in P \rightarrow P=N P$
Proof method: polynomial time (mapping) reducibility

Check-in 14.3

Is $S A T \in N P ?$
(a) Yes.
(b) No.
(c) I don't know.
(d) No one knows.

Polynomial Time Reducibility

Defn: A is polynomial time reducible to $B\left(A \leq_{\mathrm{p}} B\right)$ if $A \leq_{\mathrm{m}} B$ by a reduction function that is computable in polynomial time.

Theorem: If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$ then $A \in \mathrm{P}$.

f is computable in polynomial time

Quick review of today

1. $\operatorname{NTIME}(t(n))$ and $N P$
2. HAMPATH and COMPOSITES $\in \mathrm{NP}$
3. P versus NP question
4. $A_{\text {CFG }} \in P$ via Dynamic Programming
5. The Satisfiability Problem SAT
6. Polynomial time reducibility

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

