18.404/6.840 Lecture 14 (midterm replaced lecture 13)

Last time:

- TIME(t(n))
- $P = \bigcup_k TIME(n^k)$ - $PATH \in P$
- **Today:** (Sipser §7.2 §7.3)
- NTIME(t(n))
- NP
- P vs NP problem
- Dynamic Programming
- Polynomial-time reducibility

Quick Review

Defn: $TIME(t(n)) = \{B \mid \text{some deterministic 1-tape TM } M \text{ decides } B$ and M runs in time $O(t(n))\}$

Defn: $P = \bigcup_k TIME(n^k)$

= polynomial time decidable languages

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph with a path from } s \text{ to } t \}$ **Theorem:** $PATH \in P$

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph with a path from } s \text{ to } t$ that goes through every node of G }

 $HAMPATH \in P$? [connection to factoring]

Nondeterministic Complexity

In a nondeterministic TM (NTM) decider, all branches halt on all inputs.

Defn: An NTM <u>runs in time</u> t(n) if all branches halt within t(n) steps on all inputs of length n.

Defn: NTIME $(t(n)) = \{B \mid \text{some 1-tape NTM decides } B \text{ and runs in time } O(t(n)) \}$

Defn: $NP = \bigcup_k NTIME(n^k)$

= nondeterministic polynomial time decidable languages

- Invariant for all reasonable nondeterministic models
- Corresponds roughly to easily verifiable problems

Computation tree for NTM on input *w*.

all branches halt within t(n) steps

$HAMPATH \in NP$

Theorem: $HAMPATH \in NP$ Proof:

"On input $\langle G, s, t \rangle$ (Say G has m nodes.)

- 1. Nondeterministically write a sequence (v_1, v_2, \dots, v_m) of m nodes.
- 2. Accept if $v_1 = s$ $v_m = t$ each (v_i, v_{i+1}) is an edge and no v_i repeats. 3. Reject if any condition fails."

$COMPOSITES \in NP$

Defn: $COMPOSITES = \{x \mid x \text{ is not prime and } x \text{ is written in binary}\}$ = $\{x \mid x = yz \text{ for integers } y, z > 1, x \text{ in binary}\}$

Theorem: $COMPOSITES \in NP$

Proof: "On input *x*

- 1. Nondeterministically write y where 1 < y < x.
- 2. Accept if y divides x with remainder 0. Reject if not."

Note: Using base 10 instead of base 2 wouldn't matter because can convert in polynomial time. $k = \frac{k}{111}$

Bad encoding: write number k in unary: $1^k = 111 \cdots 1$, exponentially longer.

Theorem (2002): $COMPOSITES \in P$ We won't cover this proof.

Intuition for P and NP

NP = All languages where can <u>verify</u> membership quickly

P = AII languages where can <u>test</u> membership quickly

Examples of quickly verifying membership:

- *HAMPATH*: Give the Hamiltonian path.
- COMPOSITES: Give the factor.

The <u>Hamiltonian path</u> and the <u>factor</u> are called **short certificates** of membership.

Recall A_{CFG}

Recall: $A_{CFG} = \{\langle G, w \rangle | G \text{ is a } CFG \text{ and } w \in L(G)\}$

Theorem: A_{CFG} is decidable

Proof: $D_{A-CFG} = "On input \langle G, w \rangle$

- 1. Convert *G* into Chomsky Normal Form.
- 2. Try all derivations of length 2|w| 1.
- 3. Accept if any generate w. Reject if not.

Chomsky Normal Form (CNF): $A \rightarrow BC$ $B \rightarrow b$ Let's always assume G is in CNF.

Theorem: $A_{CFG} \in NP$

Proof: "On input $\langle G, w \rangle$

- 1. Nondeterministically pick some derivation of length 2|w| 1.
- 2. Accept if it generates w. Reject if not.

Attempt to show $A_{\rm CFG} \in {\rm P}$

Theorem: $A_{CFG} \in P$

Proof attempt:

Recursive algorithm C tests if G generates w, starting at any specified variable R.

- C = "On input $\langle G, w, \mathsf{R} \rangle$
 - 1. For each way to divide w = xy and for each rule $R \rightarrow ST$
 - 2. Use C to test $\langle G, x, S \rangle$ and $\langle G, y, T \rangle$
 - 3. *Accept* if both accept
 - 4. *Reject* if none of the above accepted."

Then decide A_{CFG} by starting from G's start variable.

C is a correct algorithm, but it takes non-polynomial time. (Each recursion makes O(n) calls and depth is roughly $\log n$.)

Fix: Use recursion + memory called *Dynamic Programming* (DP) **Observation:** String w of length n has $O(n^2)$ substrings $w_i \cdots w_j$ therefore there are only $O(n^2)$ possible sub-problems $\langle G, x, S \rangle$ to solve.

DP shows $A_{CFG} \in P$

Theorem: $A_{CFG} \in P$ Proof : Use DP (Dynamic Programming) = recursion + memory. D ="On input $\langle G, w, R \rangle$

- 1. For each way to divide w = xy and for each rule $R \rightarrow ST$
- 2. Use D to test $\langle G, x, S \rangle$ and $\langle G, y, T \rangle$
- 3. *Accept* if both accept
- 4. *Reject* if none of the above accepted."

Then decide $A_{\rm CFG}$ by starting from G's start variable.

Total number of calls is $O(n^2)$ so time used is polynomial.

Alternately, solve all smaller sub-problems first: "bottom up"

same as before

Check-in 14.2

Suppose *B* is a CFL. Does that imply that $B \in P$? (a) Yes (b) No.

Check-in 14.2

$A_{\rm CFG} \in P$ & Bottom-up DP

3. Accept if (G, w, S) is positive where S is the original start variable.

4. Reject if not."

Total number of calls is $O(n^2)$ so time used is polynomial.

Often, bottom-up DP is shown as filling out a table.

Satisfiability Problem

Defn: A *Boolean formula* ϕ has Boolean variables (True/False values) and Boolean operations And (Λ), Or (V), and Not (\neg).

Defn: ϕ is *satisfiable* if ϕ evaluates to TRUE for some assignment to its variables. Sometimes we use 1 for True and 0 for False.

Example: Let $\phi = (x \lor y) \land (\overline{x} \lor \overline{y})$ (Notation: \overline{x} means $\neg x$) Then ϕ is satisfiable (x=1, y=0)

Defn: $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem (Cook, Levin 1971): $SAT \in P \rightarrow P = NP$ **Proof method:** polynomial time (mapping) reducibility

Check-in 14.3

- Is $SAT \in NP$?
- (a) Yes.
- (b) No.
- (c) I don't know.
- (d) No one knows.

Polynomial Time Reducibility

Defn: A is <u>polynomial time reducible</u> to B ($A \leq_P B$) if $A \leq_m B$ by a reduction function that is computable in polynomial time.

Theorem: If $A \leq_{P} B$ and $B \in P$ then $A \in P$.

Idea to show $SAT \in P \rightarrow P = NP$

Quick review of today

- 1. NTIME(t(n)) and NP
- 2. *HAMPATH* and *COMPOSITES* \in NP
- 3. P versus NP question
- 4. $A_{CFG} \in P$ via Dynamic Programming
- 5. The Satisfiability Problem SAT
- 6. Polynomial time reducibility

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.