

18.404/6.840 Lecture 22

Last time:
- Finished NL = coNL
- Time and Space Hierarchy Theorems

Today: (Sipser §9.2)
- A “natural” intractable problem
- Oracles and P versus NP

1

PSPACE

NL

)*+,

E 22

E #/
E #0

. . .

. . .

Review: Hierarchy Theorems

Theorems:
SPACE ! " # ⊆, SPACE " # for space constructible ".

TIME ! " # / log " # ⊆, TIME " # for time constructible ".

TIMSPACE 22

TIM
SPACE #/

SPACE #0

TIM

TIME #.SPACE #. Check-in 22.1
Which of these are known to be true?
Check all that apply.
(a) TIME 22 ⊆, TIME 2234

TIME 2.2Corollary: NL ⊆, PSPACE
(b) TIME 22 ⊆,

Implies)*+, ∉ NL because the polynomial-time reductions in (c) NTIME #.

the proof that)*+, is PSPACE-complete can be done in log space.
⊆, PSPACE

(d) NP ⊆, PSPACE

2 Check-in 22.1

Exponential Complexity Classes

Defn: EXPTIME = ⋃" TIME 2 $%

EXPSPACE = ⋃" SPACE 2 $%

≠
Time Hierarchy Theorem

L ⊆ NL
≠

⊆ P ⊆ NP ⊆ PSPACE
≠

⊆ EXPTIME ⊆ EXPSPACE

Space Hierarchy Theorem
Defn: & is EXPTIME-complete if
1) & ∈ EXPTIME
2) For all (∈ EXPTIME, (≤* &
Same for EXPSPACE-complete

Theorem: If B is EXPTIME-complete then & ∉ P intractable
Theorem: If B is EXPSPACE-complete then & ∉ PSPACE (and & ∉ P)

Next will exhibit an EXPSPACE-complete problem

3

A “Natural” Intractable Problem

Defn: !"REX = '(, '* '(and '* are equivalent regular expressions}
Theorem: !"REX ∈ PSPACE
Proof: Later (if time) or exercise (uses Savitch’s theorem).

-
Notation: If ' is a regular expression write '- to mean '' ⋯' (exponent is written in binary).
Defn: !"/01↑ = '(, '* '(and '* are equivalent regular expressions with exponentiation}
Theorem: !"/01↑ is EXPSPACE-complete
Proof: 1) !"/01↑ ∈ EXPSPACE

2) If 3 ∈ EXPSPACE then 3 ≤5 !"/01↑
1) Given regular expressions with exponentiation '(and '*,
expand the exponentiation by using repeated concatenation and then use !"REX ∈ PSPACE.
The expansion is exponentially larger, so gives an EXPSPACE algorithm for !"/01↑.
2) Let 3 ∈ EXPSPACE be decided by TM 6 in space 2 8

9
.

Give a polynomial-time reduction : mapping 3 to !"/01↑.
4

Pad all configurations with blanks
to have length 2 -.

2

Showing ! ≤# $%&'(↑

Theorem: $%&'(↑ is EXPSPACE-complete
Proof continued: Let ! ∈ EXPSPACE decided by TM + in space 2 -

. .
Give a polynomial-time reduction / mapping ! to $%&'(↑.

/ 0 = 23, 25
0 ∈ ! iff 6 23 = 6 25

Construct 23 so that 6 23 all strings except a rejecting computation history for + on 0.=
Construct 25 = Δ∗ (Δ is the alphabet for computation histories, i.e., Δ = Γ ∪ % ∪ #) •

…˽ ˽ ababa abababaIJ0305 ⋯0- # ⋯ # ⋯ # ⋯ Ireject ⋯

Q3 = Qstart Q5 Qreject

Check-in 22.2
Roughly estimate the size of
the rejecting computation
history for + on 0.

(a) 2- (c) 25 T
.

(b) 2 -
.

Check-in 22.2 5

23 construction: 23 = 2<=>?@A=BA ∪ 2<=>?CDEF ∪ 2<=>?BFGFHA
Rejecting computation history for + on 0:

2 -
.

2 -
. -.

2 AL

! ≤# $%&'(↑ (*+,-./0,10)

Construct *2 to generate all strings except a rejecting computation history for 3 on 4.
*2 = *+,-./0,10 ∪ *+,-.789: ∪ *+,-.1:;:<0
Rejecting computation history for 3 on 4:

= >424? ⋯ 4A ˽ ⋯
2 A

L

… ˽ # ababa abababa # ⋯ # ⋯
2 A

L

= reject ⋯

H2 = Hstart H? Hreject M> = Δ.PQΔ
∗

*+,-./0,10 generates all strings that do not start with Hstart = =>424? ⋯ 4A ˽ … ˽ M2 = ΔΔ.STΔ
∗

=*+,-./0,10 = M> ∪ M2 ∪ M? ∪ ⋯ ∪ MA ∪ Mblanks ∪ M#
M?

⋮
Δ?Δ.SUΔ

∗

Remember: Δ is the alphabet for computation histories, i.e., Δ = Γ ∪ % ∪ #) MA = ΔAΔ.SWΔ
∗

Notation: Δd = Δ ∪ {f} = ΔAX2Δ.YΔ∗ ˽
Δ.+ = Δ without b ? W

L
.(AX?)Δ.YΔ∗

MAX2
Mblanks = ΔAX2Δd ˽ ⋮

Δh = all strings of length 7 all strings of length \ + 1 thru 2(AL) − 1 = Δ?(W
L).2Δ.Y˽ Δ∗

Δhd = all strings of length 0 thru 7
M
?(WL).2

M# = Δ?(W
L)Δ.#Δ∗

6

>?:8:@ ⋯ :B ⋯ >reject ⋯# # #⋯˽ … ˽ ababa ⋯ abababa
2 B

M
2 B

M
2 B

M

! ≤# $%&'(↑ (*+,-./012 & *+,-.425267)

Construct *8 to generate all strings except a rejecting computation history for 9 on :.
*8 = *+,-.<7,47 ∪ *+,-./012 ∪ *+,-.425267
Rejecting computation history for 9 on ::

I8 = Istart I@ Ireject

267 generates all strings that do not contain >re*+,-.425 ject
∗*+,-.425267 = Δ.Oreject

*+,-./012 generates all strings that contain an illegal 2×3 neighborhood
2 B

M —2

U Δ∗ abc Δ@
VM

.@ def Δ∗ ⋯ abc def ⋯*+,-./012 =
illegal
a b c IS IST8

d e f

7

Computation with Oracles

Let ! be any language.
Defn: A TM " with oracle for !, written "#, is a TM equipped
with a “black box” that can answer queries “is $ ∈ !?” for free.
Example: A TM with an oracle for &!' can decide all (∈ NP in polynomial time.

Defn: P# = ((is decidable in polynomial time with an oracle for !}
Thus NP ⊆ P+#,

NP = P+#,? Probably No because coNP ⊆ P+#,

Defn: NP# = ((is decidable in nondeterministic polynomial time with an oracle for !}
Recall MIN-FORMULA = 7 7 is a minimal Boolean formula }
Example: MIN−FORMULA ∈ NP+#,

“On input 7
1. Guess shorter formula 9
2. Use &!' oracle to solve the coNP problem: 7 and 9 are equivalent
3. Accept if 7 and 9 are equivalent. Reject if not.”

8

NO.

Oracles and P versus NP

Theorem: There is an oracle ! where P " = NP "

Proof: Let ! = $%&'

NP()*+ ⊆ NPSPACE = PSPACE ⊆ P()*+

Relevance to the P versus NP question
Recall: We showed -%./0↑ ∉ PSPACE.

Could we show 3!$ ∉ P using a similar method?

Reason: Suppose YES.

The Hierarchy Theorems are proved by a diagonalization.

In this diagonalization, the TM 4 simulates some TM 5.

If both TMs were oracle TMs 4" and 5" with the same oracle !,

the simulation and the diagonalization would still work.

Therefore, if we could prove P ≠ NP by a diagonalization,

we would also prove that P " ≠ NP " for every oracle !.

But that is false!

9

Check-in 22.3

Which of these are known to be true?

Check all that apply.

P7"(P7"((a) =

(b) NP7"(= coNP7"(

(c) MIN-FORMULA ∈ P()*+

NP()*+ = coNP()*+ (d)

Check-in 22.3

Quick review of today

1. Defined EXPTIME and EXPSPACE

2. Defined EXPTIME- and EXPSPACE-completeness

3. Showed !"#$%↑ is EXPSPACE-complete and thus !"#$%↑ ∉ PSPACE

4. Defined oracle TMs

5. Showed P(= NP(for some oracle *

6. Discussed relevance to the P vs NP question

10

!"REX ∈ PSPACE

Theorem: !"REX ∈ PSPACE
Proof: Show !"RE' ∈ NPSPACE
“On input (), (+ [assume alphabet Σ]

1. Convert () and (+ to equivalent NFAs -) and -+ having .) and .+ states.
2. Nondeterministically guess the symbols of a string / of length 2123 14 and

simulate -) and -+ on /, storing only the current sets of states of -) and -+.
3. If they ever disagree on acceptance then accept.
4. If always agree on acceptance then reject.”

11

MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

