18.404/6.840 Lecture 22

Last time:

- Finished NL = coNL
- Time and Space Hierarchy Theorems

Today: (Sipser §9.2)

- A "natural" intractable problem
- Oracles and P versus NP

Review: Hierarchy Theorems

Theorems:

$\operatorname{SPACE}(o(f(n))) \subsetneq \operatorname{SPACE}(f(n))$ for space constructible f. $\operatorname{TIME}(o(f(n) / \log (f(n))) \subsetneq \operatorname{TIME}(f(n))$ for time constructible f.

Corollary: NL $\subsetneq ~ P S P A C E ~$

Implies TQBF \notin NL because the polynomial-time reductions in the proof that TQBF is PSPACE-complete can be done in log space.

Check-in 22.1

Which of these are known to be true? Check all that apply.
(a) $\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(2^{n+1}\right)$
(b) $\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(2^{2 n}\right)$
(c) $\operatorname{NTIME}\left(n^{2}\right) \subsetneq$ PSPACE
(d) NP ¢ PSPACE

Exponential Complexity Classes

Defn: EXPTIME $=\mathrm{U}_{k} \operatorname{TIME}\left(2^{\left(n^{k}\right)}\right)$

$$
\operatorname{EXPSPACE}=\mathrm{U}_{k} \operatorname{SPACE}\left(2^{\left(n^{k}\right)}\right)
$$

Time Hierarchy Theorem

Defn: B is EXPTIME-complete if

1) $B \in \operatorname{EXPTIME}$
2) For all $A \in \operatorname{EXPTIME}, A \leq_{\mathrm{P}} B$

Same for EXPSPACE-complete
Theorem: If B is EXPTIME-complete then $B \notin \mathrm{P}$
Theorem: If B is EXPSPACE-complete then $B \notin \mathrm{PSPACE}$ (and $B \notin \mathrm{P}$) $\}$
Next will exhibit an EXPSPACE-complete problem

A "Natural" Intractable Problem

Defn: $E Q_{\text {REX }}=\left\{\left\langle R_{1}, R_{2}\right\rangle \mid R_{1}\right.$ and R_{2} are equivalent regular expressions $\}$
Theorem: $E Q_{\text {REX }} \in$ PSPACE
Proof: Later (if time) or exercise (uses Savitch's theorem).
Notation: If R is a regular expression write R^{k} to mean $\overbrace{R R \cdots R}^{k}$ (exponent is written in binary).
Defn: $E Q_{\text {REX } \uparrow}=\left\{\left\langle R_{1}, R_{2}\right\rangle \mid R_{1}\right.$ and R_{2} are equivalent regular expressions with exponentiation $\}$
Theorem: $E Q_{\mathrm{REX}}$ is EXPSPACE-complete
Proof: 1) $E Q_{\text {REX }} \in \operatorname{EXPSPACE}$
2) If $A \in \operatorname{EXPSPACE}$ then $A \leq_{p} E Q_{\text {REX } \uparrow}$

1) Given regular expressions with exponentiation R_{1} and R_{2},
expand the exponentiation by using repeated concatenation and then use $E Q_{\text {REx }} \in$ PSPACE.
The expansion is exponentially larger, so gives an EXPSPACE algorithm for $E Q_{R E X \uparrow}$.
2) Let $A \in \operatorname{EXPSPACE}$ be decided by TM M in space $2\left(n^{k}\right)$.

Give a polynomial-time reduction f mapping A to $E Q_{\text {REX }}$.

Showing $A \leq_{\mathrm{p}} E Q_{\mathrm{REX} \uparrow}$

Theorem: $E Q_{\mathrm{REX} \uparrow}$ is EXPSPACE-complete

Proof continued: Let $A \in \operatorname{EXPSPACE}$ decided by TM M in space $2\left(n^{k}\right)$.
Give a polynomial-time reduction f mapping A to $E Q_{\text {REX } \uparrow}$.

$$
\begin{aligned}
& f(w)=\left\langle R_{1}, R_{2}\right\rangle \\
& w \in A \text { iff } L\left(R_{1}\right)=L\left(R_{2}\right)
\end{aligned}
$$

Construct R_{1} so that $L\left(R_{1}\right)=$ all strings except a rejecting computation history for M on w. Construct $R_{2}=\Delta^{*}$ (Δ is the alphabet for computation histories, i.e., $\Delta=\Gamma \cup Q \cup\{\#\}$) \checkmark
R_{1} construction: $R_{1}=R_{\text {bad-start }} \cup R_{\text {bad-move }} \cup R_{\text {bad-reject }}$ Rejecting computation history for M on w :

Check-in 22.2

Roughly estimate the size of the rejecting computation history for M on w.
(a) 2^{n}
(c) $2^{2^{\left(n^{k}\right)}}$
(b) $2^{\left(n^{k}\right)}$

$A \leq_{\mathrm{P}} E Q_{\mathrm{REX} \uparrow} \quad\left(R_{\mathrm{bad}-\text { start }}\right)$

Construct R_{1} to generate all strings except a rejecting computation history for M on w.

$R_{1}=R_{\text {bad-start }} \cup R_{\text {bad-move }} \cup R_{\text {bad-reject }}$
Rejecting computation history for M on w :

$R_{\text {bad-start }}$ generates all strings that do not start with $C_{\text {start }}=q_{0} w_{1} w_{2} \cdots w_{n}-\cdots$ -
$R_{\text {bad-start }}=S_{0} \cup S_{1} \cup S_{2} \cup \cdots \cup S_{n} \cup S_{\text {blanks }} \cup S_{\#}$

$$
S_{0}=\Delta_{-q_{0}} \Delta^{*}
$$

$$
S_{1}=\Delta \Delta_{-w_{1}} \Delta^{*}
$$

$$
S_{2}=\Delta^{2} \Delta_{-w_{2}} \Delta^{*}
$$

Remember: Δ is the alphabet for computation histories, i.e., $\Delta=\Gamma \cup Q \cup\{\#\}$)
Notation: $\Delta_{\varepsilon}=\Delta \cup\{\varepsilon\}$
$\Delta_{-\mathrm{b}}=\Delta$ without b
$\Delta^{7}=$ all strings of length 7
$\Delta_{\varepsilon}^{7}=$ all strings of length 0 thru 7

$$
S_{\text {blanks }}=\underbrace{\Delta^{n+1} \Delta_{\varepsilon}{ }^{2\left(n^{k}\right)} \underbrace{}_{-(n+2)} \Delta_{-\Delta} \Delta^{*}}_{\text {all strings of length } n+1 \text { thru } 2^{\left(n^{k}\right)}-1}\left\{\begin{array}{c}
S_{n}=\Delta^{n} \Delta_{-w_{n}} \Delta^{*} \\
S_{n+1}=\Delta^{n+1} \Delta_{--} \Delta^{*} \\
\vdots \\
S_{2\left(n^{k}\right)-1}=\Delta^{2^{\left(n^{k}\right)}-1} \Delta_{--} \Delta^{*} \\
S_{\#}=\Delta^{2^{\left(n^{k}\right)} \Delta_{-\#} \Delta^{*}}
\end{array}\right.
$$

$A \leq_{\mathrm{P}} E Q_{\text {REX }} \quad\left(R_{\text {bad-move }} \& R_{\text {bad-reject }}\right)$

Construct R_{1} to generate all strings except a rejecting computation history for M on w.
$R_{1}=R_{\text {bad-start }} \cup R_{\text {bad-move }} \cup R_{\text {bad-reject }}$
Rejecting computation history for M on w :

$R_{\text {bad-reject }}$ generates all strings that do not contain $q_{\text {reject }}$
$R_{\text {bad-reject }}=\Delta_{-q_{\text {reject }}}$
$R_{\text {bad-move }}$ generates all strings that contain an illegal 2×3 neighborhood
$R_{\text {bad-move }}=\bigcup_{\substack{\text { illegal } \\ \text { a } \\ \text { a ble } \\ \text { de } \\ \text { de } \\ \text { e }}}\left[\Delta^{*}\right.$ abc $\Delta^{2\left(n^{k}\right)-2}$ def $\left.\Delta^{*}\right]$

Computation with Oracles

Let A be any language.
Defn: A TM M with oracle for A, written M^{A}, is a TM equipped with a "black box" that can answer queries "is $x \in A$?" for free.
Example: A TM with an oracle for $S A T$ can decide all $B \in \mathrm{NP}$ in polynomial time.
Defn: $\mathrm{P}^{A}=\{B \mid B$ is decidable in polynomial time with an oracle for $A\}$
Thus NP $\subseteq \mathrm{P}^{S A T}$
$\mathrm{NP}=\mathrm{p}^{S A T}$? Probably No because coNP $\subseteq \mathrm{p}^{S A T}$
Defn: $\mathrm{NP}^{A}=\{B \mid B$ is decidable in nondeterministic polynomial time with an oracle for $A\}$
Recall MIN-FORMULA $=\{\langle\phi\rangle \mid \phi$ is a minimal Boolean formula $\}$
Example: $\overline{M I N-F O R M U L A} \in N P^{S A T}$
"On input $\langle\phi\rangle$

1. Guess shorter formula ψ
2. Use SAT oracle to solve the coNP problem: ϕ and ψ are equivalent
3. Accept if ϕ and ψ are equivalent. Reject if not."

Oracles and P versus NP

Theorem: There is an oracle A where $\mathrm{P}^{A}=\mathrm{NP}^{A}$
Proof: Let $A=T Q B F$
$\mathrm{NP}^{T Q B F} \subseteq \mathrm{NPSPACE}=\mathrm{PSPACE} \subseteq \mathrm{P}^{T Q B F}$

Relevance to the P versus NP question

Recall: We showed $E Q_{\text {REX } \uparrow} \notin$ PSPACE.
Could we show $S A T \notin \mathrm{P}$ using a similar method?

Reason: Suppose YES.

The Hierarchy Theorems are proved by a diagonalization. In this diagonalization, the TM D simulates some TM M. If both TMs were oracle TMs D^{A} and M^{A} with the same oracle A, the simulation and the diagonalization would still work. Therefore, if we could prove $P \neq N P$ by a diagonalization, we would also prove that $\mathrm{P}^{A} \neq N \mathrm{P}^{A}$ for every oracle A.
But that is false!

Check-in 22.3

Which of these are known to be true? Check all that apply.
(a) $\mathrm{p}^{S A T}=\mathrm{p}^{\overline{S A T}}$
(b) $\mathrm{NP}^{S A T}=\mathrm{coNP}{ }^{S A T}$
(c) MIN-FORMULA $\in \mathrm{P}^{T Q B F}$
(d) $\mathrm{NP}^{T Q B F}=\mathrm{coNP}{ }^{T Q B F}$

Quick review of today

1. Defined EXPTIME and EXPSPACE
2. Defined EXPTIME- and EXPSPACE-completeness
3. Showed $E Q_{\mathrm{REX}}$ is EXPSPACE-complete and thus $E Q_{\mathrm{REX}} \notin$ PSPACE
4. Defined oracle TMs
5. Showed $\mathrm{P}^{A}=\mathrm{NP}^{A}$ for some oracle A
6. Discussed relevance to the P vs NP question

$E Q_{\text {REX }} \in$ PSPACE

Theorem: $E Q_{\text {REX }} \in$ PSPACE
Proof: Show $E Q_{\text {REX }} \in$ NPSPACE
"On input $\left\langle R_{1}, R_{2}\right\rangle$ [assume alphabet Σ]

1. Convert R_{1} and R_{2} to equivalent NFAs N_{1} and N_{2} having m_{1} and m_{2} states.
2. Nondeterministically guess the symbols of a string s of length $2^{m_{1}+m_{2}}$ and simulate N_{1} and N_{2} on s, storing only the current sets of states of N_{1} and N_{2}.
3. If they ever disagree on acceptance then accept.
4. If always agree on acceptance then reject."

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

