18.404/6.840 Lecture 22

Last time:

- Finished NL = coNL
- Time and Space Hierarchy Theorems

Today: (Sipser §9.2)

- A "natural" intractable problem
- Oracles and P versus NP

1

Review: Hierarchy Theorems

Theorems:

 $\begin{aligned} & \mathsf{SPACE}\big(o(f(n))\big) \subsetneq \mathsf{SPACE}\big(f(n)\big) \text{ for space constructible } f. \\ & \mathsf{TIME}\Big(o\big(f(n)/\log\big(f(n)\big)\big)\Big) \subsetneq \mathsf{TIME}\big(f(n)\big) \text{ for time constructible } f. \end{aligned}$

Corollary: NL \subsetneq PSPACE

Implies $TQBF \notin$ NL because the polynomial-time reductions in the proof that TQBF is PSPACE-complete can be done in log space.

Check-in 22.1

Which of these are known to be true? Check all that apply.

(a)
$$TIME(2^n) \subsetneq TIME(2^{n+1})$$

(b)
$$TIME(2^n) \subsetneq TIME(2^{2n})$$

- (c) NTIME $(n^2) \subsetneq$ PSPACE
- (d) NP ⊊ PSPACE

Exponential Complexity Classes

A "Natural" Intractable Problem

Defn: $EQ_{\text{REX}} = \{\langle R_1, R_2 \rangle | R_1 \text{ and } R_2 \text{ are equivalent regular expressions} \}$

Theorem: $EQ_{REX} \in PSPACE$ Proof: Later (if time) or exercise (uses Savitch's theorem).

Notation: If *R* is a regular expression write R^k to mean $\overrightarrow{RR \cdots R}$ (exponent is written in binary). **Defn:** $EQ_{\text{REX}\uparrow} = \{\langle R_1, R_2 \rangle | R_1 \text{ and } R_2 \text{ are equivalent regular expressions with exponentiation}\}$

Theorem: $EQ_{\text{REX}\uparrow}$ is EXPSPACE-complete

Proof: 1) $EQ_{\text{REX}\uparrow} \in \text{EXPSPACE}$

2) If $A \in EXPSPACE$ then $A \leq_P EQ_{REX\uparrow}$

1) Given regular expressions with exponentiation R_1 and R_2 , expand the exponentiation by using repeated concatenation and then use $EQ_{\text{REX}} \in \text{PSPACE}$. The expansion is exponentially larger, so gives an EXPSPACE algorithm for $EQ_{\text{REX}\uparrow}$.

2) Let $A \in \text{EXPSPACE}$ be decided by TM M in space $2^{(n^k)}$.

Give a polynomial-time reduction f mapping A to $EQ_{\text{REX}\uparrow}$.

Showing $A \leq_{\mathbf{P}} EQ_{\mathbf{REX}\uparrow}$

Theorem: $EQ_{\text{REX}\uparrow}$ is EXPSPACE-complete

Proof continued: Let $A \in EXPSPACE$ decided by TM M in space $2^{(n^k)}$. Give a polynomial-time reduction f mapping A to $EQ_{REX\uparrow}$.

 $f(w) = \langle R_1, R_2 \rangle$ w \epsilon A iff $L(R_1) = L(R_2)$

Construct R_1 so that $L(R_1) =$ all strings except a rejecting computation history for M on w. Construct $R_2 = \Delta^*$ (Δ is the alphabet for computation histories, i.e., $\Delta = \Gamma \cup Q \cup \{\#\}$)

 R_1 construction: $R_1 = R_{\text{bad-start}} \cup R_{\text{bad-move}} \cup R_{\text{bad-reject}}$

Rejecting computation history for M on w:

Check-in 22.2

Roughly estimate the size of the rejecting computation history for M on w.

(a)
$$2^n$$
 (c) $2^{2^{(n^k)}}$
(b) $2^{(n^k)}$

Check-in 22.2

$A \leq_{\mathrm{P}} EQ_{\mathrm{REX\uparrow}}$ ($R_{\mathrm{bad-start}}$)

Construct R_1 to generate all strings except a rejecting computation history for M on w. $R_1 = R_{\text{bad-start}} \cup R_{\text{bad-move}} \cup R_{\text{bad-reject}}$ Rejecting computation history for *M* on *w*:

 $2^{(n^k)}$ $2^{(n^{k})}$ $\cdots q_{
m reject} \cdots$ $C_1 = C_{\text{start}}$ C_2 C_{reject} $S_0 = \Delta_{-q_0} \Delta^*$ $S_1 = \Delta \Delta_{-w_1} \Delta^*$ $R_{\text{bad-start}}$ generates all strings that do not start with $C_{\text{start}} = q_0 w_1 w_2 \cdots w_n$ \square \cdots \square $S_2 = \Delta^2 \Delta_{-w_2} \Delta^*$ $R_{\text{bad-start}} = S_0 \cup S_1 \cup S_2 \cup \cdots \cup S_n \cup S_{\text{blanks}} \cup S_{\#}$ Remember: Δ is the alphabet for computation histories, i.e., $\Delta = \Gamma \cup Q \cup \{\#\}$) $S_n = \Delta^n \Delta_{-w_n} \Delta^*$ $\int S_{n+1} = \Delta^{n+1} \Delta_{-} \Delta^*$ Notation: $\Delta_{\varepsilon} = \Delta \cup \{\varepsilon\}$ $S_{\text{blanks}} = \Delta^{n+1} \Delta_{\varepsilon}^{2^{(n^k)} - (n+2)} \Delta_{-} \Delta^*$ $\Delta_{-b} = \Delta$ without b Δ^7 = all strings of length 7 all strings of length n + 1 thru $2^{(n^k)} - 1 \quad \bigcup S_{2(n^k)-1} = \Delta^{2^{(n^k)}-1} \Delta$ Δ_{ε}^{7} = all strings of length 0 thru 7 $S_{\#} = \Delta^{2^{(n^k)}} \Delta_{\#} \Lambda^*$ 6

$A \leq_{\mathrm{P}} EQ_{\mathrm{REX\uparrow}}$ ($R_{\mathrm{bad-move}} \otimes R_{\mathrm{bad-reject}}$)

Construct R_1 to generate all strings except a rejecting computation history for M on w. $R_1 = R_{bad-start} \cup R_{bad-move} \cup R_{bad-reject}$ Rejecting computation history for M on w:

 $R_{bad-reject}$ generates all strings that do not contain q_{reject} $R_{bad-reject} = \Delta^*_{-q}_{reject}$

 $R_{\text{bad-move}}$ generates all strings that contain an illegal 2×3 neighborhood

$$R_{\text{bad-move}} = \bigcup_{\substack{i \text{llegal} \\ a \ b \ c \\ d \ e \ f}} \left[\Delta^* \text{ abc } \Delta^{2^{(n^k)}-2} \text{ def } \Delta^* \right] \qquad \cdots \qquad \underbrace{abc} 2^{(n^k)-2} \xrightarrow{def} \cdots \\ C_i \qquad C_{i+1} \qquad \cdots \qquad T$$

Computation with Oracles

Let A be any language.

Defn: A TM M with oracle for A, written M^A , is a TM equipped with a "black box" that can answer queries "is $x \in A$?" for free.

Example: A TM with an oracle for SAT can decide all $B \in NP$ in polynomial time.

Defn: $P^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ Thus $NP \subseteq P^{SAT}$ $NP = P^{SAT}$? Probably No because $coNP \subseteq P^{SAT}$

Defn: $NP^A = \{B \mid B \text{ is decidable in nondeterministic polynomial time with an oracle for }A \}$ Recall *MIN-FORMULA* = $\{\langle \phi \rangle \mid \phi \text{ is a minimal Boolean formula }\}$ **Example:** $\overline{MIN-FORMULA} \in NP^{SAT}$ "On input $\langle \phi \rangle$

- 1. Guess shorter formula ψ
- 2. Use SAT oracle to solve the coNP problem: ϕ and ψ are equivalent
- 3. Accept if ϕ and ψ are equivalent. Reject if not."

Oracles and P versus NP

Theorem: There is an oracle A where $P^A = NP^A$ Proof: Let A = TQBF $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$

Relevance to the P versus NP question

Recall: We showed $EQ_{\text{REX}\uparrow} \notin \text{PSPACE}$. Could we show $SAT \notin \text{P}$ using a similar method?

Reason: Suppose YES.

The Hierarchy Theorems are proved by a diagonalization. In this diagonalization, the TM D simulates some TM M. If both TMs were oracle TMs D^A and M^A with the same oracle A, the simulation and the diagonalization would still work. Therefore, if we could prove $P \neq NP$ by a diagonalization, we would also prove that $P^A \neq NP^A$ for every oracle A. But that is false!

Check-in 22.3

Which of these are known to be true? Check all that apply.

(a)
$$P^{SAT} = P^{\overline{SAT}}$$

(b)
$$NP^{SAT} = coNP^{SAT}$$

- (c) MIN- $FORMULA \in P^{TQBF}$
- (d) $NP^{TQBF} = coNP^{TQBF}$

Check-in 22.3

Quick review of today

- 1. Defined EXPTIME and EXPSPACE
- 2. Defined EXPTIME- and EXPSPACE-completeness
- 3. Showed $EQ_{\text{REX}\uparrow}$ is EXPSPACE-complete and thus $EQ_{\text{REX}\uparrow} \notin \text{PSPACE}$
- 4. Defined oracle TMs
- 5. Showed $P^A = NP^A$ for some oracle A
- 6. Discussed relevance to the P vs NP question

$EQ_{\text{REX}} \in \mathsf{PSPACE}$

Theorem: $EQ_{REX} \in PSPACE$

Proof: Show $\overline{EQ_{REX}} \in NPSPACE$

"On input $\langle R_1, R_2 \rangle$ [assume alphabet Σ]

- 1. Convert R_1 and R_2 to equivalent NFAs N_1 and N_2 having m_1 and m_2 states.
- 2. Nondeterministically guess the symbols of a string s of length $2^{m_1+m_2}$ and simulate N_1 and N_2 on s, storing only the current sets of states of N_1 and N_2 .

11

- 3. If they ever disagree on acceptance then *accept*.
- 4. If always agree on acceptance then *reject.*"

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.