# 18.404/6.840 Lecture 6

### Last time:

- Proving languages not Context Free
- Turing machines
- Recognizers and deciders
- T-recognizable and T-decidable languages

### **Today:** (Sipser §3.2 – §3.3)

- Equivalence of variants of the Turing machine model
  - a. Multi-tape TMs
  - b. Nondeterministic TMs
  - c. Enumerators
- Church-Turing Thesis
- Notation for encodings and TMs

### Turing machine model – review



On input *w* a TM  $\overline{M}$  may halt (enter  $q_{\text{acc}}$  or  $q_{\text{rej}}$ ) or loop (run forever).

- So *M* has 3 possible outcomes for each input *w*:
- 1. <u>Accept</u> w (enter  $q_{acc}$ )
- 2. <u>Reject</u> w by halting (enter  $q_{\rm rej}$ )
- 3. <u>Reject</u> w by looping (running forever)

A is <u>T-recognizable</u> if A = L(M) for some TM M. A is <u>T-decidable</u> if A = L(M) for some TM decider M. halts on all inputs

Turing machines model general-purpose computation.

- Q: Why pick this model?
- A: Choice of model doesn't matter. All reasonable models are equivalent in power.Virtues of TMs: simplicity, familiarity.

# Multi-tape Turing machines



**Theorem:** A is T-recognizable iff some multi-tape TM recognizes A **Proof:**  $(\rightarrow)$  immediate.  $(\leftarrow)$  convert multi-tape to single tape:



S simulates M by storing the contents of multiple tapes on a single tape in "blocks". Record head positions with dotted symbols.

Some details of *S*:

- 1) To simulate each of *M*'s steps
  - a. Scan entire tape to find dotted symbols.
  - b. Scan again to update according to *M*'s  $\delta$ .
  - c. Shift to add room as needed.
- 2) Accept/reject if *M* does.

### Nondeterministic Turing machines

A <u>Nondeterministic TM</u> (NTM) is similar to a Deterministic TM except for its transition function  $\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$ .

Nondeterministic computation tree

for *N* on input *w*.

accept

**Theorem:** A is T-recognizable iff some NTM recognizes A **Proof:**  $(\rightarrow)$  immediate.  $(\leftarrow)$  convert NTM to Deterministic TM.





If a thread forks, then M copies the block.

If a thread accepts then M accepts.



**Defn:** A <u>Turing Enumerator</u> is a deterministic TM with a printer.

It starts on a blank tape and it can print strings  $w_1, w_2, w_3, \dots$  possibly going forever. Its language is the set of all strings it prints. It is a generator, not a recognizer. For enumerator E we say  $L(E) = \{w | E \text{ prints } w\}$ .

**Theorem:** A is T-recognizable iff A = L(E) for some T-enumerator E.

| Check-in 6.1 <i>E</i><br>When converting TM <i>M</i> to enumerator <i>E</i> ,<br>does <i>E</i> always print the strings in <i>string order</i> ?<br>a) Yes.<br>b) No. | <b>Proof:</b> ( $\rightarrow$ ) Convert TM <i>M</i> to equivalent enumerator <i>E</i> .<br><i>E</i> = Simulate <i>M</i> on each $w_i$ in $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10,\}$<br>If <i>M</i> accepts $w_i$ then print $w_i$ .<br>Continue with next $w_i$ .<br><i>Problem:</i> What if <i>M</i> on $w_i$ loops?<br><i>Fix:</i> Simulate <i>M</i> on $w_1$ , $w_2$ ,, $w_i$ for <i>i</i> steps, for $i = 1, 2,, N_i$ print those $w_i$ which are accounted |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                       | Print those $w_i$ which are accepted.                                                                                                                                                                                                                                                                                                                                                                                                                                |

5

Image of the printer © Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Check-in 6.1



Photos of Alonzo Church and Alan Turing © Source unknown. Image of Alan Turing on the UK's £50 note © The Governor and Company of the Bank of England. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="https://ocw.mit.edu/fairuse">https://ocw.mit.edu/fairuse</a>.

#### 6

# Hilbert's 10<sup>th</sup> Problem

#### In 1900 David Hilbert posed 23 problems

#1) Problem of the continuum (Does set A exist where  $|\mathbb{N}| < |A| < |\mathbb{R}|$ ?).

- #2) Prove that the axioms of mathematics are consistent.
- #10) Give an algorithm for solving *Diophantine equations*.

#### **Diophantine equations:**

Equations of polynomials where solutions must be integers. Example:  $3x^2 - 2xy - y^2z = 7$  solution: x = 1, y = 2, z = -2

Let  $D = \{p \mid \text{polynomial } p(x_1, x_2, \dots, x_k) = 0 \text{ has a solution in integers}\}$ Hilbert's 10<sup>th</sup> problem: Give an algorithm to decide D. Matiyasevich proved in 1970: D is not decidable.

David Hilbert 1862—1943

Note: *D* is T-recognizable.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

# Notation for encodings and TMs

### Notation for encoding objects into strings

- If O is some object (e.g., polynomial, automaton, graph, etc.), we write  $\langle 0 \rangle$  to be an encoding of that object into a string.

- If  $O_1, O_2, \dots, O_k$  is a list of objects then we write  $\langle O_1, O_2, \dots, O_k \rangle$ to be an encoding of them together into a single string.

### Notation for writin Check-in 6.3

We will use high-level If x and y are strings, would xy be a good choice knowing that we could for their encoding  $\langle x, y \rangle$  into a single string? transition function, et a)

M = "On input w

Yes. b) No.

[English description of the algorithm]"

Check-in 6.3

### TM – example revisited

TM *M* recognizing  $B = \{a^k b^k c^k | k \ge 0\}$ 

M = "On input w

- 1. Check if  $w \in a^*b^*c^*$ , reject if not.
- 2. Count the number of a's, b's, and c's in w.
- 3. Accept if all counts are equal; reject if not."

9

High-level description is ok. You do not need to manage tapes, states, etc...

### Problem Set 2

#5) Show *C* is T-recognizable iff there is a decidable *D* where  $C = \{ x | \exists y \langle x, y \rangle \in D \}$   $x, y \in \Sigma^*$ 

 $\langle x, y \rangle$  is an encoding of the pair of strings x and y into a single string. Think of D as a collection of pairs of strings.



### Quick review of today

- We showed that various TM variants (multi-tape, nondeterministic, enumerator) are all equivalent to the single-tape model.
- 2. Concluded that all "reasonable" models with unrestricted memory access are equivalent.
- Discussed the Church-Turing Thesis: Turing machines are equivalent to "algorithms".
- Notation for encoding objects and describing TMs.
- 5. Discussed Pset 2 Problem 5.

MIT OpenCourseWare <a href="https://ocw.mit.edu">https://ocw.mit.edu</a>

# 18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.