
 

  
    

 
 

  

    
       

   
   
  

 
  

18.404/6.840 Lecture 6 

Last time: 
- Proving languages not Context Free
- Turing machines
- Recognizers and deciders
- T-recognizable and T-decidable languages

Today: (Sipser §3.2 – §3.3) 
- Equivalence of variants of the Turing machine model

a. Multi-tape TMs
b. Nondeterministic TMs
c. Enumerators

- Church-Turing Thesis
- Notation for encodings and TMs
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Turing machine model – review 

head 

˽ ˽ . . .a b a b b
Finite 

read/write input tape control 

On input ! a TM " may halt (enter #acc or #rej) ) is T-recognizable if ) = +(") for some TM ". 
or loop (run forever). ) is T-decidable if ) = +(") for some TM decider ". 

So " has 3 possible outcomes for each input !: halts on all inputs 

1. Accept ! (enter #acc ) Turing machines model general-purpose computation. 
2. Reject ! by halting (enter #rej ) Q: Why pick this model? 
3. Reject ! by looping (running forever) A: Choice of model doesn't matter. 

All reasonable models are equivalent in power. 

Virtues of TMs: simplicity, familiarity. 
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Multi-tape Turing machines 
input tape 

Finite 
control 

. . . }work tapes, initially blank 

all tapes read/write 

Theorem: ! is T-recognizable iff some multi-tape TM recognizes ! 
Proof: (→) immediate. (←) convert multi-tape to single tape: 

& simulates ' by storing the contents of 
multiple tapes on a single tape in “blocks”. 

a a b b a . . .˽ ˽ Record head positions with dotted symbols. 
multi-tape ' ˽1 0 1 . . . 

˽c c c a . . . 

. . . 

Some details of &: 
1) To simulate each of '’s steps 

a. Scan entire tape to find dotted symbols. 
b. Scan again to update according to '’s (.single tape & … ˽ ˽a a b b a # 1 0 1 # # c c c a c. Shift to add room as needed. 

2) Accept/reject if ' does. 
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Nondeterministic Turing machines 

A Nondeterministic TM (NTM) is similar to a Deterministic TM 
except for its transition function !: Q×Γ → '( )×Γ× {L, R} ). 
Theorem: + is T-recognizable iff some NTM recognizes + 
Proof: (→) immediate. (←) convert NTM to Deterministic TM. 

Deterministic TM NTM 

. a a b a ˽ ˽ - 02 a a b a # 01 c b # 03 b c b ˽ ˽ 

Nondeterministic computation tree - simulates . by storing each thread’s tape in a 
for . on input /. separate “block” on its tape. 

Also need to store the head location, 
and the state for each thread, in the block. 

If a thread forks, then - copies the block. 

If a thread accepts then - accepts. accept 
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Proof:  ( ) Convert to equivalent TM .
/ = for input !:

Simulate ' (on blank input).
Whenever ' prints 0, test 0 = !. 
Accept if = and continue otherwise.

Turing Enumerators 
˽ ˽ ˽ ˽ ˽ ˽ ˽ . . . 

Finite 
control read/write tape – initially blank 

printer 

Defn: A Turing Enumerator is a deterministic TM with a printer. 
It starts on a blank tape and it can print strings !" , !$ , !% , … possibly going forever. 
Its language is the set of all strings it prints. It is a generator, not a recognizer. 
For enumerator ' we say ( ' = ! ' prints !}. 
Theorem:  A is T-recognizable iff + = ((') for some T-enumerator '. 

' Proof: (→) Convert TM / to equivalent enumerator '.Check-in 6.1 ' = Simulate / on each !2 in Σ∗ = {6, 0,1,00,01,10, … } 
When converting TM / to enumerator ', If / accepts !2 then print !2 .does ' always print the strings in string order? Continue with next !2 .a) Yes. Problem: What if / on !2 loops? 
b) No. Fix: Simulate / on !" , !$ , … , !2 for 9 steps, for 9 = 1,2, … 

Print those !2 which are accepted. 
Image of the printer © Source unknown. All rights reserved. This content is excluded from 
our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse. Check-in 6.1 
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Church-Turing Thesis  ~1936

Alan Turing
1912–1954

Alonzo Church
1903–1995 

=Algorithm
Turing

machine

Intuitive Formal

Instead of Turing machines, 
can use any other “reasonable” model

of unrestricted computation:
!-calculus, random access machine, 

your favorite programming language, …

Big impact on mathematics.

Check-in 6.2

Check-in 6.2
Which is the following is true about Alan Turing? 
Check all that apply.
a) Broke codes for England during WW2.
b) Worked in AI.
c) Worked in Biology.
d) Was imprisoned for being gay.
e) Appears on a British banknote.

Will appear in 2021

Photos of Alonzo Church and Alan Turing © Source unknown. Image of Alan Turing on the UK's £50 note © The Governor and Company of the Bank of 
England. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse. 6
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Hilbert’s 10th Problem

In 1900 David Hilbert posed 23 problems
#1)    Problem of the continuum  ( Does set ! exist where ℕ < ! < |ℝ| ? ).
#2)    Prove that the axioms of mathematics are consistent.
#10)  Give an algorithm for solving Diophantine equations. 

Diophantine equations:
Equations of polynomials where solutions must be integers.
Example:   3'( − 2'+ − +(, = 7 solution:  ' = 1, + = 2, , = −2

Let 1 = 2 polynomial  2 '3, '(, … , '5 = 0 has a solution in integers)

Hilbert’s 10th problem:   Give an algorithm to decide 1. 

Matiyasevich proved in 1970:   1 is not decidable.  

Note:  1 is T-recognizable. 

David Hilbert
1862—1943 

© Source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/fairuse.

7

https://ocw.mit.edu/fairuse


Notation for encodings and TMs

Notation for encoding objects into strings
- If ! is some object (e.g., polynomial, automaton, graph, etc.), 
we write 〈!〉 to be an encoding of that object into a string.  

- If !$, !&, … , !( is a list of objects then we write 〈!$, !&, … , !(〉
to be an encoding of them together into a single string. 

Notation for writing Turing machines
We will use high-level English descriptions of algorithms when we describe TMs, 
knowing that we could (in principle) convert those descriptions into states, 
transition function, etc.  Our notation for writing a TM ) is
) = “On input +

[English description of the algorithm]”

Check-in 6.3
If , and - are strings, would ,- be a good choice 
for their encoding 〈,, -〉 into a single string?
a) Yes.
b) No. 

Check-in 6.3
8



TM – example revisited 

TM ! recognizing  " = a$b$c$ % ≥ 0
! = “On input (

1.  Check if ( ∈ a∗b∗c∗,  reject if not.

2.  Count the number of a’s, b’s, and c’s in (.

3.  Accept if all counts are equal; reject if not.”

High-level description is ok.  

You do not need to manage tapes, states, etc… 
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Problem Set 2 

#5)  Show ! is T-recognizable  iff  there is a decidable " where 
! = $ ∃& $, & ∈ " } $, & ∈ Σ∗

〈$, &〉 is an encoding of the pair of strings $ and & into a single string.  
Think of " as a collection of pairs of strings.

$-axis

&-axis
($, &)

"

!

! is a “projection” of "

$
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Quick review of today

1. We showed that various TM variants 
(mult i-tape, nondeterminist ic ,  enumerator) 
are al l  equivalent to the single-tape model.

2. Concluded that al l  “reasonable” models with 
unrestricted memory access are equivalent.

3. Discussed the Church-Turing Thesis:
Turing machines are equivalent to “algorithms”.

4. Notation for encoding objects and describing 
TMs.

5. Discussed Pset 2 Problem 5.  
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