
 

  
    

     

  

 

    

   

   

 

  

18.404/6.840 Lecture 11 

Last time: 
- The Computation History Method for proving undecidability 

- The Post Correspondence Problem is undecidable 

- Linearly bounded automata, !LBA is decidable 

- Configurations, Computation histories 

- %LBA and !&&CFG are undecidable 

Today: (Sipser §6.1 – §6.2) 

- Self-reproducing machines and The Recursion theorem 

- Short introduction to mathematical logic 
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Midterm exam 
90 minutes length + 20 minutes for printing/scanning/uploading. 
Open book, postings, piazza, notes, and lecture videos, from this year. 
Covers through Recursion Theorem presented today. 
Will not include section on mathematical logic. 

Not permitted: Communication with anyone except course staff, other materials, internet searching. 

Not permitted: Providing information about the exam to anyone who hasn’t completed it. 

Please respect our honor system. 
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Self-reproduction Paradox 

Suppose a Factory makes Cars 
- Complexity of Factory > Complexity of Car 
(because Factory needs instructions for Car + robots, tools, … ) 

Can a Factory make Factories? 
- Complexity of Factory > Complexity of Factory? 
- Seems impossible to have a self-reproducing machine 

But, living things self-reproduce 

How to resolve this paradox? 

© Source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/fairuse. 

Self-reproducing machines are possible! 
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NO, would be circular reasoning.

〈1〉

A Self-Reproducing TM 

Theorem: There is a TM !"#$ which (on any input) halts 
with 〈!"#$〉 on the tape. 

Lemma: There is a computable function ': Σ∗ → Σ∗ 

such that ' , = 〈./〉 for every ,, where ./ is 
the TM ./ = “Print , on the tape and halt”. 
Proof: Straightforward. 

Proof of Theorem:  !"#$ has two parts, 0 and 1. 0 1 

1 = .〈3〉 ? 
1 = “1. Compute '(tape contents) to get 0. 

0 = .〈2〉 
Compute 0 = .〈2〉 .〈2〉 from 1 on tape. 

〈01〉 = 〈!"#$〉 

!"#$ 
2. Combine with 1 to get 01 = !"#$. 
3. Halt with 〈!"#$〉 on tape.” Can implement in any programming language. 
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Write “Hello World”
Hello World

Write this sentence
Write this sentence

Write the following twice, the second time in quotes “Hello World”
Hello World “Hello World”

Cheating: TMs don’t have this self-reference primitive.

English Implementation 

Check-in 11.1 
Implementations of the Recursion Theorem have two parts, 
a Template and an Action. In the TM and English implementations, 
which is the Action part? 
(a) A and the upper phrase 
(b) A and the lower phrase 
(c) B and the upper phrase 
(d) B and the lower phrase. 

Write the following twice, the second time in quotes 
“Write the following twice, the second time in quotes” 

Write the following twice, the second time in quotes 
“Write the following twice, the second time in quotes” 

& % 

' 〈)〉 Compute & = ' 〈)〉 
from % on tape. 

!"#$ 

Note on Pset Problem 6: Don’t need to worry about quoting. 
5 Check-in 11.1 
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〈&!〉

The Recursion Theorem 

A compiler which implements “compute your own description” for a TM. 

Theorem: For any TM ! there is a TM " where for all # 
R on input # operates in the same way as ! on input #, " . 

" 
Proof of Theorem:  " has three parts: %, &, and !. % & !! is given # 

% = (〈*+〉 (〈*+〉 
& = “1. Compute -(tape contents after #) to get %. 

%&! = " 

2. Combine with &! to get %&! = ". 
3.  Pass control to ! on input #, " .” 

Moral: You can use “compute your own description” 
in describing TMs. 

Check-in 11.2 
Can we use the Recursion Theorem to 
design a TM ! where . ! = { ! } ? 
(a) Yes. 
(b) No. 

6 Check-in 11.2 
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Ex 1: !TM is undecidable - new proof 

Theorem: !TM is not decidable 
Proof by contradiction: Assume some TM $ decides !TM. 

Consider the following TM %: 
% = “On input ' 

1. Get own description 〈%〉. 
2. Use $ on input 〈%, '〉 to determine whether % accepts '. 
3. Do the opposite of what $ says.” 
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Ex 2: Fixed-point Theorem 

Theorem: For any computable function !: Σ∗ → Σ∗ , 
there is a TM & such that ' & = '(*) where ! & = 〈*〉. 
In other words, consider ! to be a program transformation function. 
Then for some program &, its behavior is unchanged by !. 

Proof: Let & be the following TM. 
& = “On input . 

1. Get own description 〈&〉. 
2. Compute ! & and call the result 〈*〉. 
3. Simulate * on ..” 
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!"#TM .

Ex 3: !"#TM is T-unrecognizable 

!&Defn: ! is a minimal TM if < ! → ) !& ≠ )(!). 
Thus, a minimal TM has the shortest description among all equivalent TMs. 

Let !"#TM = ! ! is a minimal TM }. 
Theorem: !"#TM is T-unrecognizable. 
Proof by contradiction: Assume some TM / enumerates 

Consider the following TM 0:
0 = “On input 1 

1. Get own description 〈0〉. 

Check-in 11.3 
Let 6 be an infinite subset of !"#TM . 
Is it possible that 6 is T-recognizable? 
(a) Yes. 
(b) No. 

2. Run enumerator / until some TM 4 appears, where 0 < 4 . 
3. Simulate 4 on 1.” 

Thus ) 0 = )(4) and 0 < 4 so 4 isn’t minimal, but 4 ∈ )(/), contradiction. 

9 Check-in 11.3 



 

         
   

Other applications 

1. Computer viruses. 

2. A true but unprovable mathematical statement due to Kurt Gödel: 
“This statement is unprovable.” 
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Intro to Mathematical Logic 

Goal: A mathematical study of mathematical reasoning itself. 
Formally defines the language of mathematics, mathematical truth, and provability. 

Gödel’s First Incompleteness Theorem: 
In any reasonable formal system, some true statements are not provable. 

Proof: We use two properties of formal proofs: 
1) Soundness: If ! has a proof " then ! is true. 
2) Checkability: The language ", ! " is a proof of statement !} is decidable. 

Checkability implies the set of provable statements {〈!〉| ! has a proof} is T-recognizable. 

SImilarly, if we can always prove ',( ∈ *TM when it is true, then *TM is T-recognizable (false!). 

Therefore, some true statements of the form ',( ∈ *TM are unprovable. 

Next, we use the Recursion Theorem to give a specific example of a true but unprovable statement. 
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→ TM # accepts 0→ #, 0 ∈ 'TM is false →!" cannot have a oof.

→ #, 0 ∉ 'TM → R accepts 0 → # found a proof that !" is true " is true.

A True but Unprovable Statement 

Implement Gödel statement “This statement is unprovable.” 

Let !" be the statement #, 0 ∈ 'TM where # is the following TM: 

# = “On any input 

1. Obtain 〈#〉 and use it to obtain !" . 

2. For each possible proof - = -., -/, … 
Test if - is a proof that !" is true. 

If yes, then accept. Otherwise, continue.” 

Theorem: (1) !" has no proof 

(2) !" is true !" 
Proof: 

(1) If !" has a proof pr

→!(2) If !" is false 
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Quick review of today 

1. Self-reference and The Recursion Theorem 

2. Various applications. 

3. Sketch of Gödel’s First Incompleteness Theorem in mathematical logic. 
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