18.404/6.840 Lecture 7

Last time:

- Equivalence of variants of the Turing machine model
 - a. Multi-tape TMs
 - b. Nondeterministic TMs
 - c. Enumerators
- Church-Turing Thesis
- Notation for encodings and TMs

Today: (Sipser §4.1)

- Decision procedures for automata and grammars

TMs and Encodings – review

A TM has 3 possible outcomes for each input w:

- 1. <u>Accept</u> w (enter q_{acc})
- 2. <u>Reject</u> w by halting (enter q_{rej})
- 3. <u>Reject</u> w by looping (running forever)

A is <u>T-recognizable</u> if A = L(M) for some TM M. A is <u>T-decidable</u> if A = L(M) for some TM decider M. halts on all inputs

 $\langle O_1, O_2, \dots, O_k \rangle$ encodes objects O_1, O_2, \dots, O_k as a single string.

Notation for writing a TM M is M = "On input w

[English description of the algorithm]"

Acceptance Problem for DFAs

Let $A_{\text{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA and } B \text{ accepts } w \}$

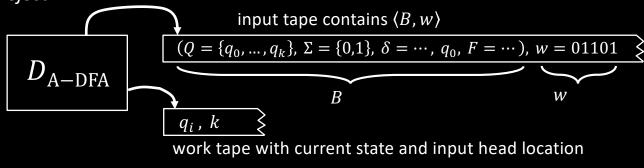
Theorem: A_{DFA} is decidable

Proof: Give TM D_{A-DFA} that decides A_{DFA} .

 $D_{A-DFA} =$ "On input s

- 1. Check that s has the form $\langle B, w \rangle$ where B is a DFA and w is a string; reject if not.
- 2. Simulate the computation of *B* on *w*.
- 3. If *B* ends in an accept state then *accept*. If not then *reject*."

Shorthand: On input $\langle B, w \rangle$



Acceptance Problem for NFAs

Let $A_{\text{NFA}} = \{\langle B, w \rangle | B \text{ is a NFA and } B \text{ accepts } w\}$

Theorem: A_{NFA} is decidable Proof: Give TM $D_{\text{A-NFA}}$ that decides A_{NFA} .

 $D_{A-NFA} =$ "On input $\langle B, w \rangle$

- 1. Convert NFA B to equivalent DFA B'.
- 2. Run TM D_{A-DFA} on input $\langle B', w \rangle$. [Recall that D_{A-DFA} decides A_{DFA}]
- 3. Accept if D_{A-DFA} accepts. Reject if not."

New element: Use conversion construction and previously constructed TM as a subroutine.

Emptiness Problem for DFAs

Let $E_{\text{DFA}} = \{\langle B \rangle | B \text{ is a DFA and } L(B) = \emptyset \}$

Theorem: E_{DFA} is decidable

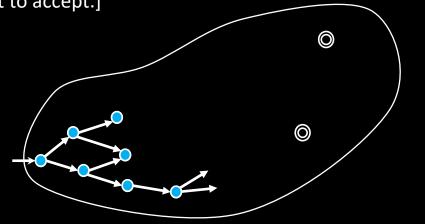
Proof: Give TM D_{E-DFA} that decides E_{DFA} .

 $D_{\text{E-DFA}} =$ "On input $\langle B \rangle$ [IDEA: Check for a path from start to accept.]

- 1. Mark start state.
- 2. Repeat until no new state is marked:

Mark every state that has an incoming arrow from a previously marked state.

Accept if no accept state is marked.
Reject if some accept state is marked."



Equivalence problem for DFAs

Let $EQ_{DFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Theorem: EQ_{DFA} is decidable Proof: Give TM $D_{\text{EQ-DFA}}$ that decides EQ_{DFA} .

Check-in 7.1

Let $EQ_{REX} = \{ \langle R_1, R_2 \rangle | R_1 \text{ and } R_2 \text{ are regular expressions and } L(R_1) = L(R_2) \}$ Can we now conclude that EQ_{REX} is decidable?

- a) Yes, it follows immediately from things we've already shown.
- b) Yes, but it would take significant additional work.
- c) No, intersection is not a regular operation.

Acceptance Problem for CFGs

Let $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG and } w \in L(G) \}$

Theorem: A_{CFG} is decidable **Proof:** Give TM D_{A-CFG} that decides A_{CFG} .

 $D_{A-CFG} =$ "On input $\langle G, w \rangle$

- 1. Convert *G* into CNF.
- 2. Try all derivations of length 2|w| 1.
- 3. Accept if any generate w. *Reject* if not.

Check-in 7.2

Can we conclude that A_{PDA} is decidable?

- a) Yes.
- b) No, PDAs may be nondeterministic.
- c) No, PDAs may not halt.

Recall Chomsky Normal Form (CNF) only allows rules:

 $\begin{array}{c} \mathsf{A} \to \mathsf{BC} \\ \mathsf{B} \to \mathsf{b} \end{array}$

Lemma 1: Can convert every CFG into CNF. Proof and construction in book.

Lemma 2: If *H* is in CNF and $w \in L(H)$ then every derivation of *w* has 2|w| - 1 steps. Proof: exercise.

Emptiness Problem for CFGs

Let $E_{\text{CFG}} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$

Theorem: E_{CFG} is decidable Proof:

 $D_{\rm E-CFG} =$ "On input $\langle G \rangle$ [IDEA: work backwards from terminals]

- 1. Mark all occurrences of terminals in *G*.
- 2. Repeat until no new variables are marked Mark all occurrences of variable A if $A \rightarrow B_1 B_2 \cdots B_k$ is a rule and all B_i were already marked.
- 3. *Reject* if the start variable is marked. *Accept* if not."

S	\rightarrow	RTa
R	\rightarrow	Тb
Т	\rightarrow	a

8

Equivalence Problem for CFGs

Let $EQ_{CFG} = \{\langle G, H \rangle | G, H \text{ are CFGs and } L(G) = L(H) \}$

Theorem: EQ_{CFG} is NOT decidable Proof: Next week.

Let $AMBIG_{CFG} = \{\langle G \rangle | G \text{ is an ambiguous CFG} \}$

Check-in 7.3

Why can't we use the same technique we used to show EQ_{DFA} is decidable to show that EQ_{CFG} is decidable?

- a) Because CFGs are generators and DFAs are recognizers.
- b) Because CFLs are closed under union.
- c) Because CFLs are not closed under complementation and intersection.

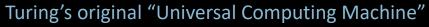
Acceptance Problem for TMs

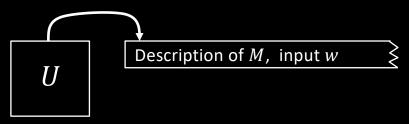
Let $A_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

```
Theorem: A_{\text{TM}} is not decidable Proof: Thursday.
```

Theorem: A_{TM} is T-recognizable Proof: The following TM U recognizes A_{TM} $U = \text{"On input } \langle M, w \rangle$

- 1. Simulate *M* on input *w*.
- 2. Accept if *M* halts and accepts.
- 3. *Reject* if *M* halts and rejects.
- 4. *Reject if M* never halts." Not a legal TM action.





Von Neumann said U inspired the concept of a stored program computer.

Quick review of today

- 1. We showed the decidability of various problems about automata and grammars: A_{DFA} , A_{NFA} , E_{DFA} , EQ_{DFA} , A_{CFG} , E_{DFA}
- 2. We showed that $A_{\rm TM}$ is T-recognizable.

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.