
 

  

    
   

 

  
  

 
 

18.404/6.840 Lecture 16 

Last time: 
- NP-completeness 
- 3"#$ ≤P &'()*+ 
- 3"#$ ≤P ,#-.#$, 

Today: (Sipser §7.4) 
- Cook-Levin Theorem: "#$ is NP-complete 
- 3"#$ is NP-complete 
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today

Or: P = NP

previously

≤% *#+ ≤% 3*#+ ≤% (,-./0
NP

≤% */!*0+-*/1
≤% 2#13#+2

≤% /2#13#+2

NP

NP-completeP

recitation

Quick Review 

Defn: ! is NP-complete if 

1) ! ∈ NP 

2) For all # ∈ NP, # ≤% ! 

If ! is NP-complete and ! ∈ P then P = NP. 

Importance of NP-completeness 
1) Evidence of computational intractability. 

2) Gives a good candidate for proving P ≠ NP. 

To show some language ( is NP-complete, 

show 3*#+ ≤% (. 

or some other previously shown 

NP-complete language 
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Check-in 16.1 

The big sigma notation means summing over some set. 

4 9 = 1 + 2 + ⋯+ > 
56768 

The big AND (or OR) notation has a similar meaning. 

For example, if ? = ?5⋯?8 and @ = @5⋯@8 are two 

strings of length >, when does the following hold? 

A ?7 = @7 = TRUE  

56768 

(a) Whenever ? and @ agree on some symbol. 

(b) Whenever ? = @. 

Check-in 16.1 



 

    
    

       
      

      

    

     
        

 
   

     
     

  
  

   
   

    

  

Cook-Levin Theorem (idea) 

Theorem: !"# is NP-complete 
Proof: 1) !"# ∈ %& (done) 

2) Show that for each " ∈ %& we have " ≤( !"#: 
Let " ∈ %& be decided by NTM ) in time *+ . 
Give a polynomial-time reduction , mapping " to !"#. 

,: Σ∗ → formulas 
, 1 = 〈45,7〉
1 ∈ " iff 45,7 is satisfiable 

Idea:  45,7 simulates ) on 1. Design 45,7 to “say” ) accepts 1. 
Satisfying assignment to 45,7 is a computation history for ) on 1. 
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a - ) ⋯

Tableau for ! on " 

Defn: An (accepting) tableau for NTM ! on " is an #$×#$ table 
representing an computation history for ! on " on an accepting branch 
of the nondeterministic computation. 

#$

#$

"* ⋯ ", ˽ … ˽&'
&
"( ") ← Start configuration for ! on " 

Construct 45,7 to “say” ! accepts ".
⋮ 45,7 “says” a tableau for ! on " exists. 

45,7 = 4cell ∧ 4start ∧ 4move ∧ 4accept

⋯ &accept ⋯ ← Accepting configuration 
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Constructing !",$:  !start and !accept

!",$ “says” a tableau for , on - exists.

!",$ = !cell ∧ !start ∧ !move ∧ !accept
!cell done •

!start = 45,5,67 ∧ 45,8,$9 ∧ 45,:,$; ∧ ⋯ ∧ 45,=>,˽
!accept =

?@ -5 -8 -: ⋯ -=
a ?A -8 ⋯

⋯ ?accept ⋯

B
5CDC=>

4=>,D,6accept

˽   … ˽ ← Start configuration

← Accepting configuration

1
1

2

FG

3         ⋯ FG1               ⋯ FG
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Constructing !",$:  !move

!",$ “says” a tableau for ) on * exists.

!",$ = !cell ∧ !start ∧ !move ∧ !accept

45 *6 *7 *8 ⋯ *:
a 4; *7 ⋯

⋯ 4accept ⋯

2×3 neighborhood

Legal neighborhoods:  consistent with )’s transition function

Illegal neighborhoods: not consistent with )’s transition function

a 4; b
48 a c

a b c
a b c

a b c
a b 4?

a b c
d b c

a b c
a d c

a b c
a 47 c

a 4; c
a b c

a 4; c
48 d 4@

potential
examples:

examples:

r s t
v y z

Legal
C DE,FG6,r ∧ DE,F,s ∧ DE,FH6,t ∧ DEH6,FG6,v ∧ DEH6,F,y ∧ DEH6,FH6,z!move = I

6JE,FJ:K

• • •

˽   … ˽

Claim:  If every 2×3 neighborhood is legal then tableau 
corresponds to a computation history.

Says that the neighborhood at L, M is legal

M

L
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Conclusion:  !"# is NP-complete

$% &' &( &) ⋯ &+

a $, &( ⋯

⋯ $accept ⋯

˽    … ˽

23

23

Summary: 
For " ∈ NP, decided by NTM 5, 
we gave a reduction 6 from " to !"#:
6: Σ∗ → formulas
6 & = 〈=>,@〉
& ∈ " iff  =>,@ is satisfiable.

=>,@ = =cell ∧ =start ∧ =move ∧ =accept

The size of =>,@ is roughly the size of the tableau 
for 5 on &, so size is I 23×23 = I 2(3 .

Therefore 6 is computable in polynomial time.
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3"#$ is NP-complete

Theorem:  3"#$ is NP-complete
Proof:  Show "#$ ≤& 3"#$
Give reduction ' converting formula ( to 3CNF formula (′, preserving satisfiability. 
(Note: ( and (′ are not logically equivalent) 

Example:  Say ( = a ∧ b ∨ c ∧ a ∨ b
Tree structure for (:   

a b

bc a

∧

∧

∨ ∨
-.

-/ -0

-1
(2 = a ∧ b → -. ∧ a ∧ b → z. ∧ a ∧ b → z. ∧ a ∧ b → z.

∧ -. ∧ c → -/ ∧ z. ∧ c → -/ ∧ -. ∧ c → -/ ∧ z. ∧ c → z/
⋮ repeat for each -5

∧ (-1)

Observe that a ∧ b → c is logically equivalent to a ∨ b ∨ c

a ∧ b → c ↔ a ∧ b ∨ c ↔ a ∨ b ∨ c ↔ a ∨ b ∨ c

Logical equivalence:  # → 9 and  # ∨ 9 # ∧ 9 and  # ∨ 9

a   b    a ∧ b = c

1   1       1

0   1       0

1   0       0
0   0       0

a ∧ b → c
a ∧ b → c

a ∧ b → c

a ∧ b → c

Check-in 16.3

Check-in 16.3
If ( has : operations (∧ and ∨), how many clauses has (’?
(a) : + 1 (c)    :/
(b) 4: + 1 (d)   2:/

a   b    a ∨ b = c

1   1       1

0   1       1
1   0       1
0   0       0

a ∧ b → c
a ∧ b → c

a ∧ b → c

a ∧ b → c
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Quick review of today

1. !"# is NP-complete

2. 3!"# is NP-complete
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