18.404/6.840 Lecture 16

Last time:

- NP-completeness
- $-3SAT \leq_{\mathsf{P}} CLIQUE$
- $-3SAT \leq_{\mathsf{P}} HAMPATH$

Today: (Sipser §7.4)

- Cook-Levin Theorem: SAT is NP-complete
- 3SAT is NP-complete

Quick Review

Defn: *B* is <u>NP-complete</u> if

1) $B \in NP$

2) For all $A \in NP$, $A \leq_P B$

If B is NP-complete and $B \in P$ then P = NP.

Importance of NP-completeness

- 1) Evidence of computational intractability.
- 2) Gives a good candidate for proving $P \neq NP$.

To show some language C is NP-complete, show $3SAT \leq_P C$.

> ∽ or some other previously shown NP-complete language

Check-in 16.1

The big sigma notation means summing over some set.

$$\sum_{1 \le i \le n} i = 1 + 2 + \dots + n$$

The big AND (or OR) notation has a similar meaning.

For example, if $x = x_1 \cdots x_n$ and $y = y_1 \cdots y_n$ are two strings of length n, when does the following hold?

$$\bigwedge_{1 \le i \le n} x_i = y_i \bigg) = \text{TRUE}$$

(a) Whenever *x* and *y* agree on some symbol.

(b) Whenever x = y.

Check-in 16.1

Cook-Levin Theorem (idea)

Theorem: *SAT* is NP-complete

Proof: 1) $SAT \in \overline{NP}$ (done)

2) Show that for each $A \in NP$ we have $A \leq_P SAT$: Let $A \in NP$ be decided by NTM M in time n^k . Give a polynomial-time reduction f mapping A to SAT.

 $f: \Sigma^* \to \text{ formulas}$ $f(w) = \langle \phi_{M,w} \rangle$ $w \in A \text{ iff } \phi_{M,w} \text{ is satisfiable}$

Idea: $\phi_{M,w}$ simulates M on w. Design $\phi_{M,w}$ to "say" M accepts w. Satisfying assignment to $\phi_{M,w}$ is a computation history for M on w.

Tableau for *M* on *w*

Defn: An <u>(accepting) tableau</u> for NTM M on w is an $n^k \times n^k$ table representing an computation history for M on w on an accepting branch of the nondeterministic computation.

The variables of $\phi_{M,w}$ are $x_{i,j,\sigma}$ for $1 \leq i, j \leq n^k$ and $\sigma \in \Gamma \cup Q$.

 $x_{i,j,\sigma} = \text{TRUE}$ means cell i, j contains σ .

Check-in 16.2

How many variables does $\phi_{M,w}$ have? Recall that n = |w|.

- (a) O(n)
- (b) $O(n^2)$
- (c) $O(n^k)$
- (d) $O(n^{2k})$

Constructing $\phi_{M,w}$: ϕ_{start} and ϕ_{accept}

 $\phi_{M,w} \text{ "says" a tableau for } M \text{ on } w \text{ exists.}$ $\phi_{M,w} = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$ $\phi_{\text{cell}} \text{ done } \checkmark$ $\phi_{\text{start}} =$ $\phi_{\text{accept}} = \bigvee_{1 \le j \le n^k} x_{n^k, j, q_{\text{accept}}}$

Constructing $\phi_{M,w}$: ϕ_{move}

 \checkmark

 $\phi_{M,w} = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$

 \checkmark

 2×3 neighborhood

 \checkmark

Legal neighborhoods: consistent with *M*'s transition function

b

a c

potential	а	q_7	
examples:	q_3	а	

а	b	С
а	b	с

а	b	с
d	b	С

a b c a b q_5

Illegal neighborhoods: not consistent with *M*'s transition function $\phi_{M,w}$ "says" a tableau for M on w exists.

ovamplas	а	b	С	а	b	С	а	q_7	С	а	q_7	С	
examples:	а	d	С	а	q_2	С	а	b	с	q_3	d	q_4	

Claim: If every 2×3 neighborhood is legal then tableau corresponds to a computation history.

$$\phi_{\text{move}} = \bigwedge_{1 < i, j < n^{k}} \left(\begin{array}{c} \bigvee_{\text{Legal}} \left(x_{i, j-1, r} \land x_{i, j, S} \land x_{i, j+1, t} \land x_{i+1, j-1, V} \land x_{i+1, j, Y} \land x_{i+1, j+1, Z} \right) \right)$$
Says that the neighborhood at *i*, *j* is legal
$$\frac{r \mid s \mid t}{\mid v \mid y \mid z}$$
7

Conclusion: *SAT* is NP-complete

Summary:

For $A \in NP$, decided by NTM M, we gave a reduction f from A to SAT: $f: \Sigma^* \rightarrow$ formulas

$$f(w) = \langle \phi_{M,w} \rangle$$

 $w \in A$ iff $\phi_{M,w}$ is satisfiable.

 $\phi_{M,W} = \phi_{\text{cell}} \wedge \overline{\phi_{\text{start}}} \wedge \overline{\phi_{\text{move}}} \wedge \overline{\phi_{\text{accept}}}$

The size of $\phi_{M,w}$ is roughly the size of the tableau for M on w, so size is $O(n^k \times n^k) = O(n^{2k})$.

Therefore f is computable in polynomial time.

3SAT is NP-com	plete $\frac{a \ b \ a \lor b = c}{1 \ 1 \ 1} (a \land b) \rightarrow c$					
Theorem: $3SAT$ is NP-complete Proof: Show $SAT \leq_P 3SAT$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
Give reduction f converting formula ϕ to 3CNF formula ϕ' , preserving satisfiability. (Note: ϕ and ϕ' are not logically equivalent)						
	cal equivalence: $(A \to B)$ and $(\overline{A} \lor B)$ $(\overline{A \land B})$ and $(\overline{A} \lor \overline{B})$ $\land b) \to z_1 \land ((\overline{a} \land b) \to \overline{z_1}) \land ((a \land \overline{b}) \to \overline{z_1}) \land ((\overline{a} \land \overline{b}) \to \overline{z_1})$					
	$ \wedge c) \rightarrow z_2 \wedge ((\overline{z_1} \wedge c) \rightarrow z_2) \wedge ((z_1 \wedge \overline{c}) \rightarrow z_2) \wedge ((\overline{z_1} \wedge \overline{c}) \rightarrow \overline{z_2}) $ repeat for each z_i					
	Check-in 16.3 If ϕ has k operations (Λ and \vee), how many clauses has ϕ '?					
a b	(a) $k + 1$ (c) k^2 (b) $4k + 1$ (d) $2k^2$					
9	Check-in 16.3					

Quick review of today

- 1. *SAT* is NP-complete
- 2. *3SAT* is NP-complete

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.