

18.404/6.840 Lecture 16

Last time:
- NP-completeness
- 3"#$ ≤P &'()*+
- 3"#$ ≤P ,#-.#$,

Today: (Sipser §7.4)
- Cook-Levin Theorem: "#$ is NP-complete
- 3"#$ is NP-complete

1

today

Or: P = NP

previously

≤% *#+ ≤% 3*#+ ≤% (,-./0
NP

≤% */!*0+-*/1
≤% 2#13#+2

≤% /2#13#+2

NP

NP-completeP

recitation

Quick Review

Defn: ! is NP-complete if

1) ! ∈ NP

2) For all # ∈ NP, # ≤% !

If ! is NP-complete and ! ∈ P then P = NP.

Importance of NP-completeness
1) Evidence of computational intractability.

2) Gives a good candidate for proving P ≠ NP.

To show some language (is NP-complete,

show 3*#+ ≤% (.

or some other previously shown

NP-complete language

2

Check-in 16.1

The big sigma notation means summing over some set.

4 9 = 1 + 2 + ⋯+ >
56768

The big AND (or OR) notation has a similar meaning.

For example, if ? = ?5⋯?8 and @ = @5⋯@8 are two

strings of length >, when does the following hold?

A ?7 = @7 = TRUE

56768

(a) Whenever ? and @ agree on some symbol.

(b) Whenever ? = @.

Check-in 16.1

Cook-Levin Theorem (idea)

Theorem: !"# is NP-complete
Proof: 1) !"# ∈ %& (done)

2) Show that for each " ∈ %& we have " ≤(!"#:
Let " ∈ %& be decided by NTM) in time *+ .
Give a polynomial-time reduction , mapping " to !"#.

,: Σ∗ → formulas
, 1 = 〈45,7〉
1 ∈ " iff 45,7 is satisfiable

Idea: 45,7 simulates) on 1. Design 45,7 to “say”) accepts 1.
Satisfying assignment to 45,7 is a computation history for) on 1.

3

a -) ⋯

Tableau for ! on "

Defn: An (accepting) tableau for NTM ! on " is an #$×#$ table
representing an computation history for ! on " on an accepting branch
of the nondeterministic computation.

#$

#$

"* ⋯ ", ˽ … ˽&'
&
"(") ← Start configuration for ! on "

Construct 45,7 to “say” ! accepts ".
⋮ 45,7 “says” a tableau for ! on " exists.

45,7 = 4cell ∧ 4start ∧ 4move ∧ 4accept

⋯ &accept ⋯ ← Accepting configuration

4

Constructing !",$: !start and !accept

!",$ “says” a tableau for , on - exists.

!",$ = !cell ∧ !start ∧ !move ∧ !accept
!cell done •

!start = 45,5,67 ∧ 45,8,$9 ∧ 45,:,$; ∧ ⋯ ∧ 45,=>,˽
!accept =

?@ -5 -8 -: ⋯ -=
a ?A -8 ⋯

⋯ ?accept ⋯

B
5CDC=>

4=>,D,6accept

˽ … ˽ ← Start configuration

← Accepting configuration

1
1

2

FG

3 ⋯ FG1 ⋯ FG

6

Constructing !",$: !move

!",$ “says” a tableau for) on * exists.

!",$ = !cell ∧ !start ∧ !move ∧ !accept

45 *6 *7 *8 ⋯ *:
a 4; *7 ⋯

⋯ 4accept ⋯

2×3 neighborhood

Legal neighborhoods: consistent with)’s transition function

Illegal neighborhoods: not consistent with)’s transition function

a 4; b
48 a c

a b c
a b c

a b c
a b 4?

a b c
d b c

a b c
a d c

a b c
a 47 c

a 4; c
a b c

a 4; c
48 d 4@

potential
examples:

examples:

r s t
v y z

Legal
C DE,FG6,r ∧ DE,F,s ∧ DE,FH6,t ∧ DEH6,FG6,v ∧ DEH6,F,y ∧ DEH6,FH6,z!move = I

6JE,FJ:K

• • •

˽ … ˽

Claim: If every 2×3 neighborhood is legal then tableau
corresponds to a computation history.

Says that the neighborhood at L, M is legal

M

L

7

Conclusion: !"# is NP-complete

$% &' &(&) ⋯ &+

a $, &(⋯

⋯ $accept ⋯

˽ … ˽

23

23

Summary:
For " ∈ NP, decided by NTM 5,
we gave a reduction 6 from " to !"#:
6: Σ∗ → formulas
6 & = 〈=>,@〉
& ∈ " iff =>,@ is satisfiable.

=>,@ = =cell ∧ =start ∧ =move ∧ =accept

The size of =>,@ is roughly the size of the tableau
for 5 on &, so size is I 23×23 = I 2(3 .

Therefore 6 is computable in polynomial time.

8

3"#$ is NP-complete

Theorem: 3"#$ is NP-complete
Proof: Show "#$ ≤& 3"#$
Give reduction ' converting formula (to 3CNF formula (′, preserving satisfiability.
(Note: (and (′ are not logically equivalent)

Example: Say (= a ∧ b ∨ c ∧ a ∨ b
Tree structure for (:

a b

bc a

∧

∧

∨ ∨
-.

-/ -0

-1
(2 = a ∧ b → -. ∧ a ∧ b → z. ∧ a ∧ b → z. ∧ a ∧ b → z.

∧ -. ∧ c → -/ ∧ z. ∧ c → -/ ∧ -. ∧ c → -/ ∧ z. ∧ c → z/
⋮ repeat for each -5

∧ (-1)

Observe that a ∧ b → c is logically equivalent to a ∨ b ∨ c

a ∧ b → c ↔ a ∧ b ∨ c ↔ a ∨ b ∨ c ↔ a ∨ b ∨ c

Logical equivalence: # → 9 and # ∨ 9 # ∧ 9 and # ∨ 9

a b a ∧ b = c

1 1 1

0 1 0

1 0 0
0 0 0

a ∧ b → c
a ∧ b → c

a ∧ b → c

a ∧ b → c

Check-in 16.3

Check-in 16.3
If (has : operations (∧ and ∨), how many clauses has (’?
(a) : + 1 (c) :/
(b) 4: + 1 (d) 2:/

a b a ∨ b = c

1 1 1

0 1 1
1 0 1
0 0 0

a ∧ b → c
a ∧ b → c

a ∧ b → c

a ∧ b → c

9

Quick review of today

1. !"# is NP-complete

2. 3!"# is NP-complete

10

MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

	Blank Page

