18.404/6.840 Lecture 16

Last time:

- NP-completeness
-3 SAT \leq_{p} CLIQUE
$-3 S A T \leq p$ HAMPATH
Today: (Sipser §7.4)
- Cook-Levin Theorem: SAT is NP-complete
- 3 SAT is NP-complete

Quick Review

Defn: B is NP-complete if

1) $B \in N P$
2) For all $A \in N P, A \leq_{p} B$

If B is NP -complete and $B \in \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}$.

Importance of NP-completeness

1) Evidence of computational intractability.
2) Gives a good candidate for proving $P \neq N P$.

To show some language C is NP-complete, show $3 S A T \leq_{\mathrm{p}} C$.

- or some other previously shown NP-complete language

Check-in 16.1

The big sigma notation means summing over some set.

$$
\sum_{1 \leq i \leq n} i=1+2+\cdots+n
$$

The big AND (or OR) notation has a similar meaning. For example, if $x=x_{1} \cdots x_{n}$ and $y=y_{1} \cdots y_{n}$ are two strings of length n, when does the following hold?

$$
\left(\bigwedge_{1 \leq i \leq n} x_{i}=y_{i}\right)=\mathrm{TRUE}
$$

(a) Whenever x and y agree on some symbol.
(b) Whenever $x=y$.

Cook-Levin Theorem (idea)

Theorem: SAT is NP-complete
Proof: 1) SAT $\in N P$ (done)
2) Show that for each $A \in N P$ we have $A \leq_{P} S A T$:

Let $A \in N P$ be decided by NTM M in time n^{k}.
Give a polynomial-time reduction f mapping A to $S A T$.
$f: \Sigma^{*} \rightarrow$ formulas
$f(w)=\left\langle\phi_{M, w}\right\rangle$
$w \in A$ iff $\phi_{M, w}$ is satisfiable
Idea: $\phi_{M, w}$ simulates M on w. Design $\phi_{M, w}$ to "say" M accepts w. Satisfying assignment to $\phi_{M, w}$ is a computation history for M on w.

Tableau for M on w

Defn: An (accepting) tableau for NTM M on w is an $n^{k} \times n^{k}$ table representing an computation history for M on w on an accepting branch of the nondeterministic computation.

Construct $\phi_{M, w}$ to "say" M accepts w. $\phi_{M, w}$ "says" a tableau for M on w exists. $\phi_{M, w}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {move }} \wedge \phi_{\text {accept }}$

Constructing $\phi_{M, w}: \quad \phi_{\text {cell }}$

The variables of $\phi_{M, w}$ are $x_{i, j, \sigma}$
for $1 \leq i, j \leq n^{k}$ and $\sigma \in \Gamma \cup Q$.
$x_{i, j, \sigma}=$ TrUE means cell i, j contains σ.

Check-in 16.2

How many variables does $\phi_{M, w}$ have?
Recall that $n=|w|$.
(a) $O(n)$
(b) $O\left(n^{2}\right)$
(c) $O\left(n^{k}\right)$
(d) $O\left(n^{2 k}\right)$

Constructing $\phi_{M, w}: \phi_{\text {start }}$ and $\phi_{\text {accept }}$

$\phi_{M, w}$ "says" a tableau for M on w exists.
$\phi_{M, w}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {move }} \wedge \phi_{\text {accept }}$
$\phi_{\text {cell }}$ done \checkmark
$\phi_{\text {start }}=$
$\phi_{\text {accept }}=\bigvee_{1 \leq j \leq n^{k}} x_{n^{k}, j, q_{\text {accept }}}$

Constructing $\phi_{M, w}$: $\phi_{\text {move }}$

2×3 neighborhood

$\phi_{M, w}$ "says" a tableau for M on w exists.
$\phi_{M, w}=\underset{\checkmark}{\text { cell }_{\text {cl }}} \wedge \underset{\checkmark}{\phi_{\text {start }}} \wedge \phi_{\text {move }} \wedge \phi_{\text {accept }}$

$$
\phi_{\mathrm{move}}=\bigwedge_{1<i, j<n^{k}}\left(\bigvee_{\text {Legal }}\left(x_{i, j-1, r} \wedge x_{i, j, S} \wedge x_{i, j+1, t} \wedge x_{i+1, j-1, V} \wedge x_{i+1, j, y} \wedge x_{i+1, j+1, Z}\right)\right)
$$

Legal neighborhoods: consistent with M 's transition function

potential	a	q_{7}	b	a	b		c	a	b	c	a	b	b	c
examples:	q_{3}	a	c	a	b		c	a	b	q_{5}	d		b	c

Illegal neighborhoods: not consistent with M 's transition function

$$
\text { examples: } \quad \begin{array}{|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\hline \mathrm{a} & \mathrm{~d} & \mathrm{c} \\
\cline { 2 - 6 }
\end{array} \quad \begin{array}{|c|c|c|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\hline \mathrm{a} & q_{2} & \mathrm{c} \\
\hline
\end{array} \quad \begin{array}{|c|c|c|}
\hline \mathrm{a} & q_{7} & \mathrm{c} \\
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\hline
\end{array} \quad \begin{array}{|c|c|c|}
\hline \mathrm{a} & q_{7} & \mathrm{c} \\
\hline q_{3} & \mathrm{~d} & q_{4} \\
\hline
\end{array}
$$

Claim: If every 2×3 neighborhood is legal then tableau corresponds to a computation history.

Conclusion: SAT is NP-complete

Summary:

For $A \in$ NP, decided by NTM M,
we gave a reduction f from A to SAT:
$f: \Sigma^{*} \rightarrow$ formulas
$f(w)=\left\langle\phi_{M, w}\right\rangle$
$w \in A$ iff $\phi_{M, w}$ is satisfiable.
$\phi_{M, w}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {move }} \wedge \phi_{\text {accept }}$
The size of $\phi_{M, w}$ is roughly the size of the tableau for M on w, so size is $O\left(n^{k} \times n^{k}\right)=O\left(n^{2 k}\right)$.

Therefore f is computable in polynomial time.

3SAT is NP-complete

Theorem: 3 SAT is NP-complete
Proof: Show $S A T \leq_{P} 3 S A T$

Give reduction f converting formula ϕ to 3CNF formula ϕ^{\prime}, preserving satisfiability.
(Note: ϕ and ϕ^{\prime} are not logically equivalent)
Example: Say $\phi=((\mathrm{a} \wedge \mathrm{b}) \vee \mathrm{c}) \wedge(\overline{\mathrm{a}} \vee \mathrm{b}) \quad$ Logical equivalence: $(A \rightarrow B)$ and $(\bar{A} \vee B) \overline{(A \wedge B)}$ and $(\bar{A} \vee \bar{B})$

Tree structure for ϕ :

$$
\phi^{\prime}=\left((\mathrm{a} \wedge \mathrm{~b}) \rightarrow z_{1}\right) \wedge\left((\overline{\mathrm{a}} \wedge \mathrm{~b}) \rightarrow \overline{\mathrm{z}_{1}}\right) \wedge\left((\mathrm{a} \wedge \overline{\mathrm{~b}}) \rightarrow \overline{\mathrm{z}_{1}}\right) \wedge\left((\overline{\mathrm{a}} \wedge \overline{\mathrm{~b}}) \rightarrow \overline{\mathrm{z}_{1}}\right)
$$

$$
\wedge\left(\left(z_{1} \wedge c\right) \rightarrow z_{2}\right) \wedge\left(\left(\overline{z_{1}} \wedge c\right) \rightarrow z_{2}\right) \wedge\left(\left(z_{1} \wedge \bar{c}\right) \rightarrow z_{2}\right) \wedge\left(\left(\overline{z_{1}} \wedge \bar{c}\right) \rightarrow \overrightarrow{z_{2}}\right)
$$

$$
\vdots \text { repeat for each } z_{i}
$$

$\wedge\left(z_{4}\right) \quad$ Check-in 16.3
If ϕ has k operations (\wedge and \vee), how many clauses has ϕ^{\prime} ?
(a) $k+1$
(c) k^{2}
(b) $4 k+1$
(d) $2 k^{2}$

Quick review of today

1. SAT is NP-complete
2. 3 SAT is NP-complete

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

