

18.404/6.840 Lecture 18

Last time:
- Space complexity
- SPACE ! " , NSPACE ! " , PSPACE, NPSPACE
- Relationship with TIME classes

Today: (Sipser §8.3)
- Review $%&&'(DFA ∈ PSPACE
- Savitch’s Theorem: NSPACE ! " ⊆ SPACE !. "

- PSPACE-completeness
- /012 is PSPACE-complete

1

Review: SPACE Complexity

Defn: Let !: ℕ → ℕ where ! % ≥ %. Say TM ' runs in space !(%) if '
always halts and uses at most !(%) tape cells on all inputs of length %.

An NTM ' runs in space !(%) if all branches halt and each branch uses at
most !(%) tape cells on all inputs of length %.

SPACE ! % = {,| some 1-tape TM decides , in space . ! % }
NSPACE ! % = {,| some 1-tape NTM decides , in space . ! % }
PSPACE = ⋃1 SPACE(%1) “polynomial space”
NPSPACE = ⋃1 NSPACE(%1) “nondeterministic polynomial space”

Today: PSPACE = NPSPACE
Or possibly: P = NP = coNP = PSPACE

2

PSPACE
= NPSPACE

coNP NP

P

AAABAAADAABAAAACAABBAAAZAAAA

Review: !"##$%DFA ∈ PSPACE
Theorem: !"##$%DFA ∈ SPACE(+,)
Proof: Write .

/ 0 if there’s a ladder from . to 0 of length ≤ 2.
Here’s a recursive procedure to solve the bounded DFA ladder problem:

3456#$#-!"##$%DFA = 3, ., 0, 2 3 a DFA and .
/ 0 by a ladder in !(3)}

3-! = “On input 3, ., 0, 2 Let : = . = |0|.
1. For 2 = 1, accept if ., 0 ∈ !(3) and differ in ≤ 1 place, else reject.
2. For 2 > 1, repeat for each > ∈ !(3) of length |.|
3. Recursively test .

//, > and >
//, 0 [division rounds up]

4. Accept both accept.
5. Reject [if all fail].”

Σ BTest 3, ., 0 ∈ !"##$%DFA with 3-! procedure on input 3, ., 0, @ for @ =

2

⁄/ ,

⁄/ ,

⁄/ G

⁄/ G

Space analysis:
Each recursive level uses space 4 + (to record >).
Recursion depth is log @ = 4 : = 4(+). 3−!

Total space used is 4(+,).
3

WORK

recurse AAAAAAABAAACAAADAAAZAABAAABBBOOK

AAAAAAABAAACAAADAAAZAABAAABBABLE

AAAAAAABAAACAAADAAAZAABAAABBCALLrecurse

PLAY

>. 0 >
AAAB AABBAAACAAAD AAAZAABA AAAAAABBABLEAAAA AABAAAADBOOKAAAZ AAABAAAC CALL

recurse

recurse

PSPACE = NPSPACE

Savitch’s Theorem: For ! ≥ ", NSPACE ! ⊆ SPACE !%" " "
Proof: Convert NTM & to equivalent TM ', only squaring the space used.

+
For configurations () and (* of &, write () (* if can get from () to (* in ≤ - steps.

+
Give recursive algorithm to test () (*:

+
= “On input (), (*, - [goal is to check () (*]

!(")

˽ … ˽GH8I ⋯ 8F '
1. If - = 1, check directly by using &’s program and answer accordingly.
2. If - > 1, repeat for all configurations (234 that use !(") space.

3. Recursively test ()
+/%

(234 and (234
+/%

(*
4. If both are true, accept. If not, continue.

aabaGPda⋯cab
5. Reject if haven’t yet accepted.”

=
Test if & accepts 8 by testing (9:;<: (;>>?@: where A = number of configurations

= B ×! " ×DE F

Number of levels = log A = R ! " . Total R !% space.
Each recursion level stores 1 config = R ! " space.

"
⋯ Gaccept ⋯

4

-

⁄+ %

⁄+ %

≤ ≤

Why % and not %'%()* when defining PSPACE-complete?
- Reductions should be “weaker” than the class. Otherwise all
problems in the class would be reducible to each other, and then
all problems in the class would be complete.

Theorem: +,!- is PSPACE-complete

PSPACE-completeness

Defn: ! is PSPACE-complete if
1) ! ∈ PSPACE
2) For all # ∈ PSPACE, # ≤% !

If ! is PSPACE-complete and ! ∈ P then P = PSPACE.

Check-in 18.1
Knowing that +,!- is PSPACE-complete,
what can we conclude if +,!- ∈ NP?
Check all that apply.
(a) P = PSPACE
(b) NP = PSPACE
(c) P = NP
(d) NP = coNP

5

PSPACE-complete

NP-complete

PSPACE =
NPSPACE

NPP

Think of complete problems as the “hardest”
in their associated class.

Check-in 18.1

!"#$ is PSPACE-complete

Recall: !"#$ = & & is a QBF that is TRUE}
Examples: &(= ∀* ∃, * ∨ , ∧ * ∨ , ∈ !"#$ [TRUE]

&0 = ∃, ∀* * ∨ , ∧ * ∨ , ∉ !"#$ [FALSE]

Theorem: !"#$ is PSPACE-complete

Proof: 1) !"#$ ∈ PSPACE •
2) For all 2 ∈ PSPACE, 2 ≤4 !"#$

Let 2 ∈ PSPACE be decided by TM 5 in space 67 .

Give a polynomial-time reduction 8 mapping 2 to !"#$.

8: Σ∗ → QBFs

8 = = 〈&?,A〉
= ∈ 2 iff &?,A is TRUE

Plan: Design &?,A to “say” 5 accepts =. &?,A simulates 5 on =.

6

Constructing !",$: 1st try
% on &

Recall: A tableau for % on & represents
a computation history for % on &
when % accepts &.
Rows of that tableau are configurations.

% runs in space 45, its tableau has:
- 45 columns (max size of a configuration)

-8- 6 rows (max number of steps)

Constructing !",$. Try Cook-Levin method.
Then !",$ will be as big as tableau.

-8But that is exponential: 45×6 .
Too big! •

7

Tableau for % on &
'(&) &* &+ ⋯ &-
a '. &* ⋯

⋯ 'accept ⋯

˽ … ˽

45

6(-8)

-

%& '(') '* ⋯ ',

a % ') ⋯

⋯ %accept ⋯

˽ … ˽

34

5(,7)

Tableau for ^ on '

Check-in 18.2
Why shouldn’t we be surprised
that this construction fails?

(a) We can’t define a QBF by
using recursion.

(b) It doesn’t use ∀ anywhere.

(c) We know that `abc ∉ P.

hide → Constructing !",$: 2nd try

For configs 9: and 9; construct !<=, <>, ? which “says” 9:
?
9; recursively.

!<=, <>, ? = ∃9BCD !<=, <EFG, ?/) ∧ !<EFG, <>, ?/)

∃L(, L), ⋯ , 9M
as in Cook-Levin

∃9BCD ! , , ?/J ∧ ! , , ?/J ∃9BCD ! , , ?/J ∧ ! , , ?/J

⋮
! , , (defined as in Cook-Levin ⋮ ∃9BCD[! , , ?/O ⋯]

Size analysis: !",$ = !<UVWXV, <WYYZ[V, \ Each recursive level doubles number of QBFs.
7] = 5 , Number of levels is log 5 ,

7 = T 34 .

→ Size is exponential. •

8
Check-in 18.2

Constructing !",$: 3rd try

!34, 35, 6 = ∃89:; !34, 3<=>, 6/2 ∧ !3<=>, 35, 6/2

, , J

Check-in 18.3
Would this construction still work if N were
nondeterministic?

(a) Yes.

(b) No.

∀(K ∈ L) M∀ 8B, 8C ∈ 8E, 89:; , 89:;, 8F !3G, 3H, 6/2
is equivalent to

⋮ ∀K K ∈ L M
!",$ = !3OPQRP, 3QSSTUP, V ! defined as in Cook-Levin

/
W = - .

Size analysis:
Each recursive level adds %('() to the QBF.

Number of levels is log - ./
= % '(.

→ Size is % '2(•'(×'(= %

9 Check-in 18.3

Quick review of today

1. !"##$%DFA ∈ PSPACE

2. Savitch’s Theorem: NSPACE * + ⊆ SPACE *- +

3. ./01 is PSPACE-complete

10

MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

