18.404/6.840 Lecture 18

1

Last time:

- Space complexity
- SPACE(f(n)), NSPACE(f(n)), PSPACE, NPSPACE
- Relationship with TIME classes

Today: (Sipser §8.3)

- Review $LADDER_{DFA} \in PSPACE$
- Savitch's Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- PSPACE-completeness
- TQBF is PSPACE-complete

Review: SPACE Complexity

Defn: Let $f: \mathbb{N} \to \mathbb{N}$ where $f(n) \ge n$. Say TM M runs in space f(n) if M always halts and uses at most f(n) tape cells on all inputs of length n.

An NTM M runs in space f(n) if all branches halt and each branch uses at most f(n) tape cells on all inputs of length n.

 $SPACE(f(n)) = \{B | \text{ some 1-tape TM decides } B \text{ in space } O(f(n)) \}$ $NSPACE(f(n)) = \{B | \text{ some 1-tape NTM decides } B \text{ in space } O(f(n)) \}$ $PSPACE = \bigcup_k SPACE(n^k) \text{ "polynomial space"}$ $NPSPACE = \bigcup_k NSPACE(n^k) \text{ "nondeterministic polynomial space"}$ Today: PSPACE = NPSPACE P = NP = coNP = PSPACE

Review: $LADDER_{DFA} \in PSPACE$

Theorem: $LADDER_{DFA} \in SPACE(n^2)$ Proof: Write $u \xrightarrow{\sim} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem: BOUNDED-LADDER_{DFA} = { $\langle B, u, v, b \rangle$ | B a DFA and $u \xrightarrow{b} v$ by a ladder in L(B)} B-L = "On input $\langle B, u, v, b \rangle$ Let m = |u| = |v|. WORK 1. For b = 1, accept if $u, v \in L(B)$ and differ in ≤ 1 place, else reject. recurse aaaa 2. For b > 1, repeat for each $w \in L(B)$ of length |u|Recursively test $u \xrightarrow{b/2} w$ and $w \xrightarrow{b/2} v$ [division rounds up] 3. ABBB Accept both accept. 4. 5. *Reject* [if all fail]." AABA recurse b/2Test $\langle B, u, v \rangle \in LADDER_{DFA}$ with *B*-*L* procedure on input $\langle B, u, v, t \rangle$ for $t = |\Sigma|^m$ PLAY Space analysis: Each recursive level uses space O(n) (to record w). B-LABBB BABB Recursion depth is $\log t = O(m) = O(n)$. v Total space used is $O(n^2)$. 3

PSPACE = NPSPACE

Savitch's Theorem: For $f(n) \ge n$, $NSPACE(f(n)) \subseteq SPACE(f^2(n))$ Proof: Convert NTM N to equivalent TM M, only squaring the space used. For configurations c_i and c_j of N, write $c_i \xrightarrow{b} c_j$ if can get from c_i to c_j in $\leq b$ steps. Give recursive algorithm to test $c_i \xrightarrow{\sigma} c_j$: M = "On input c_i, c_j, b [goal is to check $c_i \xrightarrow{b} c_j$] $q_0 w_1 \cdots w_n$ 1. If b = 1, check directly by using N's program and answer accordingly. 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space. recurse Recursively test $c_i \xrightarrow{b/2} c_{\text{mid}}$ and $c_{\text{mid}} \xrightarrow{b/2} c_i$ 3. If both are true, *accept*. If not, continue. 4. $aabaq_7 da...cab$ 5. *Reject* if haven't yet accepted." Test if N accepts w by testing $c_{\text{start}} \rightarrow c_{\text{accept}}$ where t = number of configurations $= |Q| \times f(n) \times d^{f(n)}$ recurse Each recursion level stores 1 config = O(f(n)) space. Number of levels = $\log t = O(f(n))$. Total $O(f^2(n))$ space. $q_{\rm accept}$

PSPACE-completeness

Defn: *B* is <u>PSPACE-complete</u> if

- 1) $B \in \mathsf{PSPACE}$
- 2) For all $A \in \mathsf{PSPACE}$, $A \leq_{\mathsf{P}} B$

If B is PSPACE-complete and $B \in P$ then P = PSPACE.

Check-in 18.1

Knowing that TQBF is PSPACE-complete, what can we conclude if $TQBF \in NP$? Check all that apply.

- (a) P = PSPACE
- (b) NP = PSPACE
- (c) P = NP
- (d) NP = coNP

TQBF is PSPACE-complete

Recall: $TQBF = \{\langle \phi \rangle | \phi \text{ is a QBF that is TRUE}\}$ Examples: $\phi_1 = \forall x \exists y [(x \lor y) \land (\overline{x} \lor \overline{y})] \in TQBF$ [TRUE] $\phi_2 = \exists y \forall x [(x \lor y) \land (\overline{x} \lor \overline{y})] \notin TQBF$ [FALSE] Theorem: TQBF is PSPACE-complete Proof: 1) $TQBF \in PSPACE \checkmark$ 2) For all $A \in PSPACE \checkmark$ 2) For all $A \in PSPACE, A \leq_P TQBF$ Let $A \in PSPACE$ be decided by TM M in space n^k . Give a polynomial-time reduction f mapping A to TQBF. $f: \Sigma^* \to QBFs$ $f(w) = \langle \phi_{M,w} \rangle$ $w \in A$ iff $\phi_{M,w}$ is TRUE

Plan: Design $\phi_{M,w}$ to "say" *M* accepts *w*. $\phi_{M,w}$ simulates *M* on *w*.

Constructing $\phi_{M,w}$: 1st try

Recall: A tableau for M on w represents a computation history for M on wwhen M accepts w. Rows of that tableau are configurations.

M runs in space n^k, its tableau has:
 n^k columns (max size of a configuration)

- $d^{(n^k)}$ rows (max number of steps)

Constructing $\phi_{M,w}$. Try Cook-Levin method. Then $\phi_{M,w}$ will be as big as tableau. But that is exponential: $n^k \times d^{(n^k)}$. Too big! \mathfrak{S}

7

Constructing $\phi_{M,w}$: 3rd try

$$\phi_{c_{i}, c_{j}, b} = \exists c_{\text{mid}} \left[\phi_{c_{i}, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_{j}, b/2} \right]$$

$$\forall (c_{g}, c_{h}) \in \left\{ \left(c_{i}, c_{\text{mid}} \right), \left(c_{\text{mid}}, c_{j} \right) \right\} \left[\phi_{c_{g}, c_{h}, b/2} \right] \quad \forall (x \in S) \left[\psi \right]$$
is equivalent to
$$\forall x \left[(x \in S) \rightarrow \psi \right]$$

$$\phi_{M,w} = \phi_{c_{\text{start}}, c_{\text{accept}}, t}$$

 $t = d^{(n^k)}$

Size analysis: Each recursive level <u>adds</u> $O(n^k)$ to the QBF. Number of levels is $\log d^{(n^k)} = O(n^k)$. \rightarrow Size is $O(n^k \times n^k) = O(n^{2k})$ O $\phi_{\,,\,1}\,$ defined as in Cook-Levin

Check-in 18.3

Would this construction still work if *M* were nondeterministic?

(a) Yes.

(b) No.

9

Check-in 18.3

Quick review of today

- 1. $LADDER_{DFA} \in PSPACE$
- 2. Savitch's Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- 3. *TQBF* is PSPACE-complete

10

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.