18.404/6.840 Lecture 18

Last time:

- Space complexity
- $\operatorname{SPACE}(f(n)), \operatorname{NSPACE}(f(n))$, PSPACE, NPSPACE
- Relationship with TIME classes

Today: (Sipser §8.3)

- Review LADDER ${ }_{\text {DFA }} \in$ PSPACE
- Savitch's Theorem: NSPACE $(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$
- PSPACE-completeness
- TQBF is PSPACE-complete

Review: SPACE Complexity

Defn: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(n) \geq n$. Say TM M runs in space $f(n)$ if M always halts and uses at most $f(n)$ tape cells on all inputs of length n.

An NTM M runs in space $f(n)$ if all branches halt and each branch uses at most $f(n)$ tape cells on all inputs of length n.
$\operatorname{SPACE}(f(n))=\{B \mid$ some 1-tape TM decides B in space $O(f(n))\}$ $\operatorname{NSPACE}(f(n))=\{B \mid$ some 1-tape NTM decides B in space $O(f(n))\}$ $\operatorname{PSPACE}=\mathrm{U}_{k} \operatorname{SPACE}\left(n^{k}\right) \quad$ "polynomial space" NPSPACE $=\mathrm{U}_{k} \operatorname{NSPACE}\left(n^{k}\right) \quad$ "nondeterministic polynomial space"

Today: PSPACE = NPSPACE

$$
\text { Or possibly: } \quad(P=N P=\text { coNP }=\text { PSPACE }
$$

Review: $L A D D E R_{\text {DFA }} \in$ PSPACE

Theorem: $\underset{b}{\operatorname{LADDE}} R_{\text {DFA }} \in \operatorname{SPACE}\left(n^{2}\right)$
Proof: Write $u \rightarrow v$ if there's a ladder from u to v of length $\leq b$.
Here's a recursive procedure to solve the bounded DFA ladder problem:
BOUNDED-LADDER $R_{\mathrm{DFA}}=\{\langle B, u, v, b\rangle \mid B$ a DFA and $u \xrightarrow{b} v$ by a ladder in $L(B)\}$
$B-L=$ "On input $\langle B, u, v, b\rangle$ Let $m=|u|=|v|$.

1. For $b=1$, accept if $u, v \in L(B)$ and differ in ≤ 1 place, else reject.
2. For $b>1$, repeat for each $w \in L(B)$ of length $|u|$
3. Recursively test $u \xrightarrow{b / 2} w$ and $w \xrightarrow{b / 2} v \quad$ [division rounds up]
4. Accept both accept.
5. Reject [if all fail]."

Test $\langle B, u, v\rangle \in L A D D E R_{\text {DFA }}$ with $B-L$ procedure on input $\langle B, u, v, t\rangle$ for $t=|\Sigma|^{m}$

Space analysis:
Each recursive level uses space $O(n)$ (to record w).
Recursion depth is $\log t=O(m)=O(n)$.

Total space used is $O\left(n^{2}\right)$.

PSPACE = NPSPACE

Savitch's Theorem: For $f(n) \geq n, \operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$
Proof: Convert NTM N to equivalent TM M, only squaring the space used.
For configurations c_{i} and c_{j} of N, write $c_{i} \xrightarrow{b} c_{j}$ if can get from c_{i} to c_{j} in $\leq b$ steps.
Give recursive algorithm to test $c_{i} \xrightarrow{b} c_{j}$:
$M=$ "On input c_{i}, c_{j}, b [goal is to check $c_{i} \xrightarrow{b} c_{j}$]

1. If $b=1$, check directly by using N 's program and answer accordingly.
2. If $b>1$, repeat for all configurations $c_{\text {mid }}$ that use $f(n)$ space.
3. Recursively test $c_{i} \xrightarrow{b / 2} c_{\text {mid }}$ and $c_{\text {mid }} \xrightarrow{b / 2} c_{j}$
4. If both are true, accept. If not, continue.
5. Reject if haven't yet accepted."

Test if N accepts w by testing $c_{\text {start }} \xrightarrow{t} c_{\text {accept }}$ where $t=$ number of configurations
Each recursion level stores 1 config $=O(f(n))$ space. $=|Q| \times f(n) \times d^{f(n)}$
Number of levels $=\log t=O(f(n))$. Total $O\left(f^{2}(n)\right)$ space.

PSPACE-completeness

Defn: B is PSPACE-complete if

1) $B \in$ PSPACE
2) For all $A \in$ PSPACE, $A \leq{ }_{\mathrm{p}} B$

If B is PSPACE-complete and $B \in \mathrm{P}$ then $\mathrm{P}=\mathrm{PSPACE}$.

Check-in 18.1

Knowing that TQBF is PSPACE-complete, what can we conclude if $T Q B F \in N P$?
Check all that apply.
(a) $\mathrm{P}=\mathrm{PSPACE}$
(b) NP = PSPACE
(c) $P=N P$
(d) $N P=\mathrm{coNP}$

Think of complete problems as the "hardest" in their associated class.

$T Q B F$ is PSPACE-complete

Recall: $T Q B F=\{\langle\phi\rangle \mid \phi$ is a QBF that is TruE $\}$
Examples: $\phi_{1}=\forall x \exists y[(x \vee y) \wedge(\bar{x} \vee \bar{y})] \in T Q B F$ [TRUE] $\phi_{2}=\exists y \forall x[(x \vee y) \wedge(\bar{x} \vee \bar{y})] \notin T Q B F \quad$ [FALSE]

Theorem: TQBF is PSPACE-complete
Proof: 1) TQBF \in PSPACE
\checkmark
2) For all $A \in$ PSPACE, $A \leq_{\mathrm{P}} T Q B F$

Let $A \in$ PSPACE be decided by TM M in space n^{k}.
Give a polynomial-time reduction f mapping A to $T Q B F$.
$f: \Sigma^{*} \rightarrow$ QBFs
$f(w)=\left\langle\phi_{M, w}\right\rangle$
$w \in A$ iff $\phi_{M, w}$ is TruE
Plan: Design $\phi_{M, w}$ to "say" M accepts $w . \quad \phi_{M, w}$ simulates M on w.

Constructing $\phi_{M, w}: 1^{\text {st }}$ try

Tableau for M on w

Recall: A tableau for M on w represents a computation history for M on w when M accepts w.
Rows of that tableau are configurations.
M runs in space n^{k}, its tableau has:

- n^{k} columns (max size of a configuration)
- $d^{\left(n^{k}\right)}$ rows (max number of steps)

Constructing $\phi_{M, w}$. Try Cook-Levin method.
Then $\phi_{M, w}$ will be as big as tableau.
But that is exponential: $n^{k} \times d^{\left(n^{k}\right)}$.
Too big! :

Constructing $\phi_{M, w}: 2^{\text {nd }}$ try

For configs c_{i} and c_{j} construct $\phi_{c_{i}, c_{j}, b}$ which "says" $c_{i} \xrightarrow{b} c_{j}$ recursively.
$\phi_{c_{i}, c_{j}, b}=\underbrace{\exists}_{c_{\text {mid }}}\left[\phi_{c_{i}, c_{\text {mid }}, b / 2} \wedge \phi_{c_{\text {mid }}, c_{j}, b / 2}\right]$

Check-in 18.2

Why shouldn't we be surprised that this construction fails?
(a) We can't define a QBF by using recursion.
(b) It doesn't use \forall anywhere.
(c) We know that $T Q B F \notin \mathrm{P}$.

$$
\begin{gathered}
\phi_{M, w}=\phi_{c_{\text {start }}, c_{\text {accept }}, t} \\
t=d^{\left(n^{k}\right)}
\end{gathered}
$$

Size analysis:

Each recursive level doubles number of QBFs.
Number of levels is $\log d^{\left(n^{k}\right)}=O\left(n^{k}\right)$.
\rightarrow Size is exponential. ©

Constructing $\phi_{M, w}: 3^{\text {rd }}$ try

$$
\begin{aligned}
& \phi_{c_{i}, c_{j}, b}=\exists c_{\text {mid }}[\underbrace{\phi_{c_{i}, c_{\text {mid }}, b / 2} \wedge \phi_{c_{\text {mid }}, c_{j}, b / 2}}] \\
& \forall\left(c_{g}, c_{h}\right) \in\left\{\left(c_{i}, c_{\text {mid }}\right),\left(c_{\text {mid }}, c_{j}\right)\right\}\left[\phi_{c_{g}, c_{h}, b / 2}\right]
\end{aligned} \begin{gathered}
\begin{array}{|c}
\forall(x \in S)[\psi] \\
\text { is equivalent to } \\
\forall x[(x \in S) \rightarrow \psi]
\end{array}
\end{gathered}
$$

$$
\begin{array}{r}
\phi_{M, w}=\phi_{c_{\text {start }}, c_{\text {accept }}, t} \\
t=d^{\left(n^{k}\right)}
\end{array}
$$

Size analysis:

Each recursive level adds $O\left(n^{k}\right)$ to the QBF.
Number of levels is $\log d^{\left(n^{k}\right)}=O\left(n^{k}\right)$.
\rightarrow Size is $O\left(n^{k} \times n^{k}\right)=O\left(n^{2 k}\right)$ (-)
$\phi_{,, 1}$ defined as in Cook-Levin

Check-in 18.3

Would this construction still work if M were nondeterministic?
(a) Yes.
(b) No.

Quick review of today

1. $L A D D E R_{\mathrm{DFA}} \in \operatorname{PSPACE}$
2. Savitch's Theorem: $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$
3. TQBF is PSPACE-complete

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

