Sample MidTerm Examination Questions

1. (a) Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and let $A=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid i, j, k \geq 0\right.$, and $i=j$ or $\left.i=k\right\}$.

Describe (in English) a pushdown automaton that recognizes A.
(b) Let R be the regular expression $\Sigma^{*} 1100 \Sigma^{*}$ where $\Sigma=\{0,1\}$.

Let $D=L(R)$ and let $E=\bar{D}$, the complement of D.
Give the state diagram of a DFA with at most 5 states that recognizes E.
2. Let $\Sigma=\{()$,$\} and let P$ be the language consisting of all strings of properly nested parentheses. For example, P contains "()()", "((()))", "(()(()(())))" and " ε ", but not ") (" and "(((".
(a) Give a CFG that generates P. (b) Show that P is not a regular language.
3. (a) Let $A=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{i} \mid i \leq j \leq 2 i\right\}$.

Prove that A is not a context-free language.
(b) Let $B=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mid i \leq j \leq 2 i\right\}$.

Give an unambiguous context-free grammar generating B.
4. Let $D=\{\langle M\rangle \mid M$ is a TM that accepts the input string 101 $\}$.
(a) Show that D is undecidable.
(Do not use Rice's theorem. If you don't know Rice's theorem, ignore this comment.)
(b) Show that the complement of D is not Turing-recognizable.
5. A 2-way pushdown automaton (2WAY-PDA) is a nondeterministic pushdown automaton that has a single stack and that can move its input head in both directions on the input tape. In addition we assume that a 2WAY-PDA is capable of detecting when its input head is at either end of its input tape. A 2WAY-PDA accepts its input by entering an accept state.
(a) Show that a 2WAY-PDA can recognize the language $\left\{\mathrm{a}^{m} \mathrm{~b}^{m} \mathrm{c}^{m} \mid m \geq 0\right\}$.
(b) Let $E_{2 \mathrm{WAY}-\mathrm{PDA}}=\{\langle P\rangle \mid P$ is a $2 \mathrm{WAY}-\mathrm{PDA}$ which recognizes the empty language $\}$. Show that $E_{2 \text { WAY-PDA }}$ is not decidable.
6. Consider the infinite two-dimensional grid, $G=\{(m, n) \mid m$ and n are integers $\}$. Every point in G has 4 neighbors, North, South, East, and West, obtained by varying m or n by ± 1. Starting at the origin $(0,0)$, a string of commands N, S, E, W, generates a path in G. For example, the string NESW, generates a path clockwise around a unit square touching the origin. Say that a path is closed if it starts at the origin and ends at the origin.
Let C be the collection of all strings over $\Sigma=\{\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}\}$ that generate a closed path.
(a) Give a clear mathematical description of C as a language.
(b) Describe in English two CFLs, A and B, such that $C=A \cap B$.

Give a CFG that generates A.
(c) Prove that C is not context-free.
7. Let $\Sigma=\{0,1\}$. Consider the problem of testing whether a PDA accepts some string of the form $\left\{w \mid w \in 0^{*} 1^{*}\right\}$. Is this problem decidable? Prove your answer.

MIT OpenCourseWare
https://ocw.mit.edu/

18.404J / 18.4041J / 6.840J Theory of Computation

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

