
 

   
 

  
 

 
  

   
   

    

 

 

18.404/6.840 Lecture 21 

Last time: 
- Log-space reducibility 
- L = NL? question 
- !"#$ is NL-complete 
- 2&"# is NL-complete 
- NL = coNL (unfinished) 

Today: (Sipser §9.1) 
- Finish NL = coNL 
- Time and Space Hierarchy Theorems 

1 



     
   

    
       

    

 

  

      
   

     
    

   
 

    
 
 

   

    

   

 

 
    

     

                 

  

     
   
  

        
  

      
   

 
 

  
 

   

Theorem:  If some NL-machine (log-space NTM)
computes -./ℎ, then some NL-machine computes 8.
Proof: “On input 〈1, 3〉
1.  Let < ← 0
2. For each node 7
3.     If -./ℎ 1, 3, 7 = YES, then < ← < + 1
4.     If -./ℎ 1, 3, 7 = NO, then continue
5. Output <”

Next: Converse of above

NL = coNL (part 1/4) 

Theorem (Immerman-Szelepcsényi): NL = coNL 
Proof: Show !"#$ ∈ NL 

Defn: NTM & computes function ': Σ∗ → Σ∗ if for all , 
1) All branches of & on , halt with ' , on the tape or reject. 
2) Some branch of & on , does not reject. 

Check-in 21.1 
Let -./ℎ 1, 3, / = 5 YES, if 1 has a path from 3 to / Let 1 be the graph below. 

NO, if not What is the value of 8 = 8 1, 3 ?
Let 6 = 6 1, 3 = 7 -./ℎ 1, 3, 7 = YES} 3(a) 2 (e)  6Let 8 = 8 1, 3 = |6| 1 = (b) 3 (f)  71 6 

(c) 4 (g)  86 = Reachable nodes 3 
(d) 5 (h) 98 = # reachable 

8 = |6| 
2 Check-in 21.1 



     

       
     

   
  
    
          

        
 
    

  
 

        

     
 

 
 

   

   
 

 

NL = coNL (part 2/4) – key idea 

Theorem:  If some NL-machine computes !, then some NL-machine computes "#$ℎ. 
Proof: “On input 〈', ), $〉 where ' has + nodes 
1. Compute ! 
2. , ← 0 
3. For each node / 
4. Nondeterministically go to (p) or (n) 

(p) Nondeterministically pick a path from ) to / of length ≤ +. 5' 
If fail, then reject. )
If / = $, then output YES, else set , ← , + 1. 

(n) Skip / and continue. ! = |5|
5.  If , ≠ ! then reject. 
6. Output NO.” [found all ! reachable nodes and none were $} 

3 



      

       
     

   
  
    
          

      
     

 
        

     
 

 
 

  
  

   
 

NL = coNL (part 2/4) – key idea 
SIMPLIFIED!! 

Theorem:  If some NL-machine computes !, then some NL-machine computes "#$ℎ. 
Proof: “On input 〈', ), $〉 where ' has + nodes 
1. Compute ! 
2. , ← 0 
3. For each node / 4' 4. Nondeterministically pick a path from ) of length ≤ +. 

If it ends at $ then output YES and stop. ) 
If it ends at /, set , ← , + 1. 

! = |4|5.  If , ≠ ! then reject. 
6. Output NO.” [found all ! reachable nodes and none were $} 

4 



   

       
   

   
  
    
          

        
 
    

  
 

        

 

  

      
   

    
    

       

   

 
   

 
 

 
 

    

 
   

 

NL = coNL (part 3/4) 
YES, if ( has a path * to % of length ≤ 1 Let #$%ℎ" (, *, % = 8 NO, if not 

Let 6" = 6" (, * = / #$%ℎ" (, *, / = YES} 
Let !" = !" (, * = |6"| 
Theorem:  If some NL-machine computes !", then some NL-machine computes #$%ℎ" . 
Proof: “On input 〈(, *, %〉 
1. Compute !" (
2. , ← 0 
3. For each node / 
4. Nondeterministically go to (p) or (n) !" = |6"|(p) Nondeterministically pick a path from * to / of length ≤ 1. 

If fail, then reject. 
If / = %, then output YES, else set , ← , + 1. 

(n) Skip / and continue. 
5.  If , ≠ !" then reject. 
6. Output NO” [found all !" reachable nodes and none were %} 

5 

6" 

* 



   

       
   

   
  
    
          

        
 
       

  
 

     
   

     

 
 

  
     
   
     

   
 

 
 

   
  

 
   

        

    
 

   
      

    

NL = coNL (part 4/4) 

Theorem:  If some NL-machine computes !", then some NL-machine computes #$%ℎ"'(. 
Proof: “On input 〈*, ,, %〉 
1. Compute ! 
2. . ← 0 
3. For each node 1 
4. Nondeterministically go to (p) or (n) * 7" 7"'( 

(p) Nondeterministically pick a path from , to 1 of length ≤ 3. ,If fail, then reject. 
If 1 has an edge to %, then output YES, else set . ← . + 1. 

(n) Skip 1 and continue. !" = |7"|
5.  If . ≠ !" then reject. Hence :;<= ∈ NL !"'( = |7"'(| 
6. Output NO.” [found all !" reachable nodes “On input 〈*, ,, %〉 

and none had an edge to %} 1. !? = 1. 
2. Compute each !"'( from !" for 3 = 1 to @.Corollary: Some NL-machine computes !"'( from !" . 3. Accept if #$%ℎA(*, ,, %) = NO. 
4. Reject if #$%ℎA(*, ,, %) = YES.” 

6 



    

    

     
            

  

 
   

    
 

    
   

Review: Major Complexity Classes 

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE 
≠ 

Today 

The time and space hierarchy theorems show that 
if a TM is given more time (or space) then it can do more.* 
* certain restrictions apply. 

For example: 
TIME #$ ⊆, TIME #% [ ⊆, means proper subset ] 
SPACE #$ ⊆, SPACE #% 

7 



    

         
      

      
      

 
      

  
   

   
     

   

 

    

   
  

  

   
        

 
   

    

 

   

  

Space Hierarchy Theorem (1/2) 

Theorem: For any !: ℕ → ℕ (where ! satisfies a technical condition) 
there is a language % where % requires & ! ' space, i.e, 
1) % is decidable in & ! ' space, and 
2) % is not decidable in ( ! ' space 

On other words, SPACE ( ! ' ⊆, SPACE ! ' 
Notation: SPACE ( ! ' = {,| some TM . decides , in space ( ! ' } 

Proof outline:  (Diagonalization) 
Give TM 0 where % 1) 0 runs in & ! ' space 
2) 0 ensures that 1(0) ≠ 1(.) for 

SPACE ! ' every TM . that runs in ( ! ' space. 
SPACE ( ! ' Let % = 1(0). 

8 



pa 

    
  

   
    

     

  
       

 
      
     

 
    

     
           

    

      
       
   

    

        
      

     
     
  
    

   

 

  

 

 
    
 
 
 

   
  

  

       

 
    

    
  
      

   

    
 

   

   
   

  

   

 

  

  

10
r 2 ste s

or hasn’t halted.”

2. What if . loops? [' must always halt]
FIX: Stop . if it runs for 25 6 steps.

3. How to compute #?
FIX: Assume # is space constructible, 
i.e., can compute # within ,(# $ ) space.
Nice functions like log $, log: $, $, $:, 26, …
are all s ce constructible.

Mark off 
# $ tape Space Hierarchy Theorem (2/2) 

/
$ 

# $

⋯ / ⋯= 010110 ⋯ 10100000 #Hide me → ' 

〈.〉 Goal: Exhibit ! ∈ SPACE # $ but ! ∉ SPACE & # $ 
Give ' where ! = )(') and 
1) ' runs in , # $ space Issues: 
2) ' ensures that )(') ≠ )(.) 1. What if . runs in & # $ space but has 

for every TM . that runs in & # $ space. a big constant? Then ' won’t have space 

' = “On input / to simulate . when / is small. 
FIX: simulate . on infinitely many /. 

3. Simulate* . on / fo b) It accepts 
Accept if . rejects, c) It rejects 
Reject if . accepts 

2. If / ≠ . ∗ for some TM 
5 6 p 

., reject. What happens when we run ' on input 〈'〉1000000 ? 

1. Mark off #($) tape cells where $ = |/|. 
If ever try to use more tape, reject. Check-in 21.2 

a) It loops 

d) We get a contradiction 
*Note: ' can simulate . with a constant factor e) Smoke comes out 
space overhead. 

9 Check-in 21.2 



    

        
       

      
      

 

   
   
          

 

     

        

    

  

  
  

 
  
          

  

Time Hierarchy Theorem (1/2) 

Theorem: For any !: ℕ → ℕ where ! is time constructible 
there is a language % where % requires & ! ' time, i.e, 
1) % is decidable in & ! ' time, and 
2) % is not decidable in ( ! ' / log ! ' time 

- .On other words, TIME ( ⊆, TIME ! ' /01 - . 

Proof outline:  Give TM 3 where 
1) 3 runs in & ! ' time 
2) 3 ensures that 4(3) ≠ 4(8) for every TM 8 that runs in ( ! ' / log ! ' time . 

Let % = 4(3). 

10 



    
 

   
       

  

  
   
      
     

 
      

      
                       

    

       
  

         
         

      
       

      
      

   

  
   

         

  
     

      
  

   
 

  

          

  
    

  
  

  
    

Time Hierarchy Theorem (2/2) 

Goal: Exhibit ! ∈ TIME # $ but ! ∉ TIME & # $ / log # $ 
! = ,(.) where 
1) . runs in 0 # $ time 
2) . ensures that ,(.) ≠ ,(2) for every TM 2 

that runs in & # $ / log # $ time. 
Why do we lose a factor of 789 : ; ? . = “On input 3 . must halt within 0 # $ time. 

1. Compute #($). To do so, . counts the number of steps it uses 
2. If 3 ≠ 2 10∗ for some TM 2, reject. and stops if the limit is exceeded. The counter 

3. Simulate* 2 on 3 for # $ / log # $ steps. has size log # $ and is stored on the tape. 
It must be kept near the current head location. Accept if 2 rejects, 
Cost of moving it adds a 0 log # $ overhead Reject if 2 accepts or hasn’t halted.” 
factor. So to halt within 0 # $ time, . stops 

*Note: . can simulate 2 with a log factor 
when the counter reaches # $ / log # $ .

time overhead due to the step counter. 
11 



    

    

  

 

 
    
    
    

        
 

       
       

    

    

Recap: Separating Complexity Classes 

L ⊆ NL 
≠

⊆ P ⊆ NP ⊆ PSPACE 

Space Hierarchy Theorem 

NL ⊆ SPACE log& ' ⊆, SPACE ' ⊆ PSPACE 

12 

Check-in 21.3 
Consider these two famous unsolved questions: 
1. Does L = P? 
2. Does P = PSPACE? 

What do the hierarchy theorems tell us about 
these questions? 
a) Nothing 
b) At least one of these has answer “NO” 
c) At least one of these has answer “YES” 

Check-in 21.3 



   

   

  

 

Quick review of today 

1. Finish NL = coNL 

2. Space hierarchy theorem 

3. Time hierarchy theorem 

13 



   

            

MIT OpenCourseWare 
https://ocw.mit.edu 

18.404J / 18.4041J / 6.840J Theory of Computation 
Fall 2020 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms



