18.404/6.840 Lecture 21

Last time:

- Log-space reducibility
- L = NL? question
- PATH is NL-complete
- $\overline{2 S A T}$ is NL-complete
- NL = coNL (unfinished)

Today: (Sipser §9.1)

- Finish NL = coNL
- Time and Space Hierarchy Theorems

NL = coNL (part 1/4)

Theorem (Immerman-Szelepcsényi): NL = coNL
Proof: Show $\overline{\text { PATH }} \in \mathrm{NL}$
Defn: NTM M computes function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ if for all w

1) All branches of M on w halt with $f(w)$ on the tape or reject.
2) Some branch of M on w does not reject.

Let $\operatorname{path}(G, s, t)=\left\{\begin{array}{l}\mathrm{YES}, \text { if } G \text { has a path from } s \text { to } t \\ \text { NO, if not }\end{array}\right.$
Let $R=R(G, s)=\{u \mid \operatorname{path}(G, s, u)=\mathrm{YES}\}$
Let $c=c(G, s)=|R|$
$R=$ Reachable nodes
$c=$ \# reachable

Check-in 21.1

Let G be the graph below.
What is the value of $c=c(G, s)$?
(a) 2
(e) 6
(b) 3
(f) 7
(c) 4
(g) 8
(d) 5
(h) 9

NL = coNL (part 2/4) - key idea

Theorem: If some NL-machine computes c, then some NL-machine computes path.
Proof: "On input $\langle G, s, t\rangle$ where G has m nodes

1. Compute c
2. $k \leftarrow 0$
3. For each node u
4. Nondeterministically go to (p) or (n)
(p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.
If $u=t$, then output YES, else set $k \leftarrow k+1$.
(n) Skip u and continue.
5. If $k \neq c$ then reject.

6. Output NO." [found all c reachable nodes and none were t \}

NL = coNL (part 2/4) - key idea SIMPLIFIED!!

Theorem: If some NL-machine computes c, then some NL-machine computes path.
Proof: "On input $\langle G, s, t\rangle$ where G has m nodes

1. Compute c
2. $k \leftarrow 0$
3. For each node u
4. Nondeterministically pick a path from s of length $\leq m$.

If it ends at t then output YES and stop.
If it ends at u, set $k \leftarrow k+1$.
5. If $k \neq c$ then reject.

6. Output NO." [found all c reachable nodes and none were t \}

NL = coNL (part 3/4)

Let path $d_{d}(G, s, t)=\left\{\begin{array}{l}\text { YES, if } G \text { has a path } s \text { to } t \text { of length } \leq d \\ \text { NO, if not }\end{array}\right.$
Let $R_{d}=R_{d}(G, s)=\left\{u \mid \operatorname{path}_{d}(G, s, u)=\mathrm{YES}\right\}$
Let $c_{d}=c_{d}(G, s)=\left|R_{d}\right|$
Theorem: If some NL-machine computes c_{d}, then some NL-machine computes path ${ }_{d}$.
Proof: "On input $\langle G, s, t\rangle$

1. Compute c_{d}
2. $k \leftarrow 0$
3. For each node u
4. Nondeterministically go to (p) or (n)
(p) Nondeterministically pick a path from s to u of length $\leq d$.
 If fail, then reject.
If $u=t$, then output YES, else set $k \leftarrow k+1$.
(n) Skip u and continue.
5. If $k \neq c_{d}$ then reject.
6. Output NO" [found all c_{d} reachable nodes and none were t \}

NL = coNL (part 4/4)

Theorem: If some NL-machine computes c_{d}, then some NL-machine computes path ${ }_{d+1}$.
Proof: "On input $\langle G, s, t\rangle$

1. Compute c
2. $k \leftarrow 0$
3. For each node u
4. Nondeterministically go to (p) or (n)
(p) Nondeterministically pick a path from s to u of length $\leq d$.

If fail, then reject.
If u has an edge to t, then output YES, else set $k \leftarrow k+1$.
(n) Skip u and continue.
5. If $k \neq c_{d}$ then reject.
6. Output NO." [found all c_{d} reachable nodes and none had an edge to t \}

Corollary: Some NL-machine computes c_{d+1} from c_{d}.

Hence $\overline{P A T H} \in N L$

"On input $\langle G, s, t\rangle$

1. $c_{0}=1$.
2. Compute each c_{d+1} from c_{d} for $d=1$ to m.
3. Accept if path $_{m}(G, s, t)=$ NO.
4. Reject if path $_{m}(G, s, t)=$ YES."

Review: Major Complexity Classes

$\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}$
 \longrightarrow
 Today

The time and space hierarchy theorems show that
if a TM is given more time (or space) then it can do more.*

* certain restrictions apply.

For example:
$\operatorname{TIME}\left(n^{2}\right) \subsetneq \operatorname{TIME}\left(n^{3}\right) \quad$ [\subsetneq means proper subset] $\operatorname{SPACE}\left(n^{2}\right) \subsetneq \operatorname{SPACE}\left(n^{3}\right)$

Space Hierarchy Theorem (1/2)

Theorem: For any $f: \mathbb{N} \rightarrow \mathbb{N}$ (where f satisfies a technical condition) there is a language A where A requires $O(f(n))$ space, i.e,

1) A is decidable in $O(f(n))$ space, and
2) A is not decidable in $o(f(n))$ space

On other words, $\operatorname{SPACE}(o(f(n))) \subsetneq \operatorname{SPACE}(f(n))$
Notation: $\operatorname{SPACE}(o(f(n)))=\{B \mid$ some TM M decides B in space $o(f(n))\}$

Proof outline: (Diagonalization)

Give TM D where

1) D runs in $O(f(n))$ space
2) D ensures that $L(D) \neq L(M)$ for every TM M that runs in $o(f(n))$ space.
Let $A=L(D)$.

Space Hierarchy Theorem

Goal: Exhibit $\underbrace{A \in \operatorname{SPACE}(f(n))}$, but $\underbrace{A \notin \operatorname{SPACE}(o(f(n)))}$,

Give D where $A=L(D)$ and

1) D runs in $O(f(n))$ space
2) D ensures that $L(D) \neq L(M)$ for every TM M that runs in $o(f(n))$ space.
$D=$ "On input w
1. Mark off $f(n)$ tape cells where $n=|w|$. If ever try to use more tape, reject.
2. If $w \neq\langle M\rangle \quad$ for some TM M, reject.
3. Simulate* M on w

Accept if M rejects, Reject if M accepts
*Note: D can simulate M with a constant factor space overhead.

Issues:

1. What if M runs in $o(f(n))$ space but has a big constant? Then D won't have space to simulate M when w is small.
FIX: simulate M on infinitely many w.

Check-in 21.2

What happens when we run D on input $\langle D\rangle 1000000$?
a) It loops
b) It accepts
c) It rejects
d) We get a contradiction
e) Smoke comes out

Time Hierarchy Theorem (1/2)

Theorem: For any $f: \mathbb{N} \rightarrow \mathbb{N}$ where f is time constructible there is a language A where A requires $O(f(n))$ time, i.e,

1) A is decidable in $O(f(n))$ time, and
2) A is not decidable in $o(f(n) / \log (f(n)))$ time

On other words, $\operatorname{TIME}\left(o\left(\frac{f(n)}{\log (f(n))}\right)\right) \subsetneq \operatorname{TIME}(f(n))$
Proof outline: Give TM D where

1) D runs in $O(f(n))$ time
2) D ensures that $L(D) \neq L(M)$ for every TM M that runs in $o(f(n) / \log (f(n)))$ time.

Let $A=L(D)$.

Time Hierarchy Theorem (2/2)

Goal: Exhibit $A \in \operatorname{TIME}(f(n))$ but $A \notin \operatorname{TIME}(o(f(n) / \log (f(n))))$
$A=L(D)$ where

1) D runs in $O(f(n))$ time
2) D ensures that $L(D) \neq L(M)$ for every TM M that runs in $o(f(n) / \log (f(n)))$ time.
$D=$ "On input w
1. Compute $f(n)$.
2. If $w \neq\langle M\rangle 10^{*}$ for some TM M, reject.
3. Simulate* M on w for $f(n) / \log (f(n))$ steps.

Accept if M rejects,
Reject if M accepts or hasn't halted."
*Note: D can simulate M with a log factor time overhead due to the step counter.

Why do we lose a factor of $\log (f(n))$?
D must halt within $O(f(n))$ time.
To do so, D counts the number of steps it uses and stops if the limit is exceeded. The counter has size $\log (f(n))$ and is stored on the tape. It must be kept near the current head location. Cost of moving it adds a $O(\log (f(n)))$ overhead factor. So to halt within $O(f(n))$ time, D stops when the counter reaches $f(n) / \log (f(n))$.

Recap: Separating Complexity Classes

$\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}$
 \longrightarrow
 Space Hierarchy Theorem

$\mathrm{NL} \subseteq \operatorname{SPACE}\left(\log ^{2} n\right) \subsetneq \operatorname{SPACE}(n) \subseteq \operatorname{PSPACE}$

Check-in 21.3

Consider these two famous unsolved questions:

1. Does $\mathrm{L}=\mathrm{P}$?
2. Does $\mathrm{P}=\mathrm{PSPACE}$?

What do the hierarchy theorems tell us about these questions?
a) Nothing
b) At least one of these has answer "NO"
c) At least one of these has answer "YES"

Quick review of today

1. Finish $\mathrm{NL}=\mathrm{coNL}$
2. Space hierarchy theorem
3. Time hierarchy theorem

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

