18.404/6.840 Lecture 21

1

Last time:

- Log-space reducibility
- L = NL? question
- PATH is NL-complete
- $\overline{2SAT}$ is NL-complete
- NL = coNL (unfinished)

Today: (Sipser §9.1)

- Finish NL = coNL
- Time and Space Hierarchy Theorems

NL = coNL (part 1/4)

Theorem (Immerman-Szelepcsényi): NL = coNLProof: Show $\overline{PATH} \in NL$

Defn: NTM *M* computes function $f: \Sigma^* \to \Sigma^*$ if for all *w*

1) All branches of *M* on *w* halt with f(w) on the tape or reject.

2

2) Some branch of *M* on *w* does not reject.

Let $path(G, s, t) = \begin{cases} YES, \text{ if } G \text{ has a path from } s \text{ to } t \\ NO, \text{ if not} \end{cases}$ Let $R = R(G, s) = \{u \mid path(G, s, u) = YES\}$ Let c = c(G, s) = |R|R = Reachable nodesc = # reachable

c = |R|

Check-in 21.1 Let G be the graph below. What is the value of c = c(G, s)? \boldsymbol{S} (a) 2 (e) 6 G =(b) 3 (f) 7 (C) 4 (g) 8 (d) 5 (h) 9

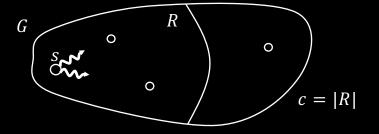
NL = coNL (part 2/4) - key idea

Theorem: If some NL-machine computes c, then some NL-machine computes path. Proof: "On input (G, s, t) where G has m nodes

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node u
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.

If u = t, then output YES, else set $k \leftarrow k + 1$.

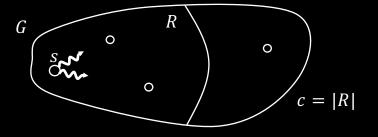
- (n) Skip *u* and continue.
- 5. If $k \neq c$ then *reject*.
- 6. Output NO." [found all *c* reachable nodes and none were *t*]



NL = coNL (part 2/4) – key idea SIMPLIFIED!!

Theorem: If some NL-machine computes c, then some NL-machine computes path. Proof: "On input (G, s, t) where G has m nodes

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node u
- 4. Nondeterministically pick a path from s of length $\leq m$. If it ends at t then output YES and stop. If it ends at u, set $k \leftarrow k + 1$.
- 5. If $k \neq c$ then *reject*.
- 6. Output NO." [found all *c* reachable nodes and none were *t*}



NL = coNL (part 3/4)

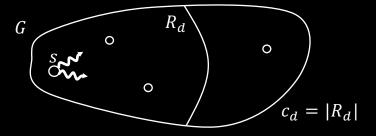
Let $path_d(G, s, t) = \begin{cases} YES, \text{ if } G \text{ has a path } s \text{ to } t \text{ of length} \leq d \\ NO, \text{ if not} \end{cases}$ Let $R_d = R_d(G, s) = \{u \mid path_d(G, s, u) = YES\}$ Let $c_d = c_d(G, s) = |R_d|$

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_d$. Proof: "On input (G, s, t)

- 1. Compute *c*_d
- 2. *k* ← 0
- 3. For each node u
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then *reject*.

If u = t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then *reject*.
- 6. Output NO" [found all c_d reachable nodes and none were t}



NL = coNL (part 4/4)

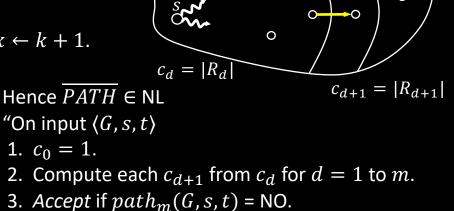
Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. Proof: "On input (G, s, t)

- 1. Compute *c*
- 2. *k* ← 0
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then *reject*.

If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then *reject*.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes c_{d+1} from c_d .



0

G

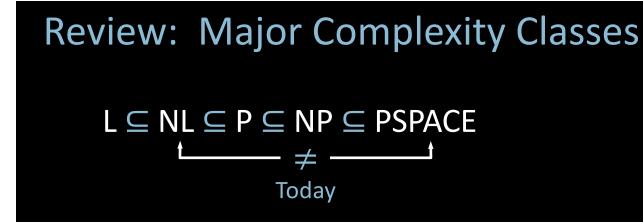
4. Reject if $path_m(G, s, t) = YES."$

 R_{d+1}

0

 R_d

6



The time and space hierarchy theorems show that if a TM is given more time (or space) then it can do more.* * certain restrictions apply.

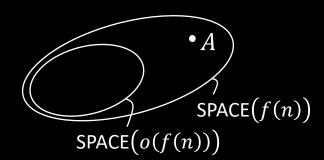
7

For example: $TIME(n^2) \subsetneq TIME(n^3)$ [\subsetneq means proper subset] $SPACE(n^2) \subsetneq SPACE(n^3)$

Space Hierarchy Theorem (1/2)

Theorem: For any $f: \mathbb{N} \to \mathbb{N}$ (where f satisfies a technical condition) there is a language A where A requires O(f(n)) space, i.e, 1) A is decidable in O(f(n)) space, and 2) A is not decidable in o(f(n)) space

On other words, SPACE $(o(f(n))) \subsetneq$ SPACE(f(n))Notation: SPACE $(o(f(n))) = \{B | \text{ some TM } M \text{ decides } B \text{ in space } o(f(n)) \}$



Proof outline: (Diagonalization)

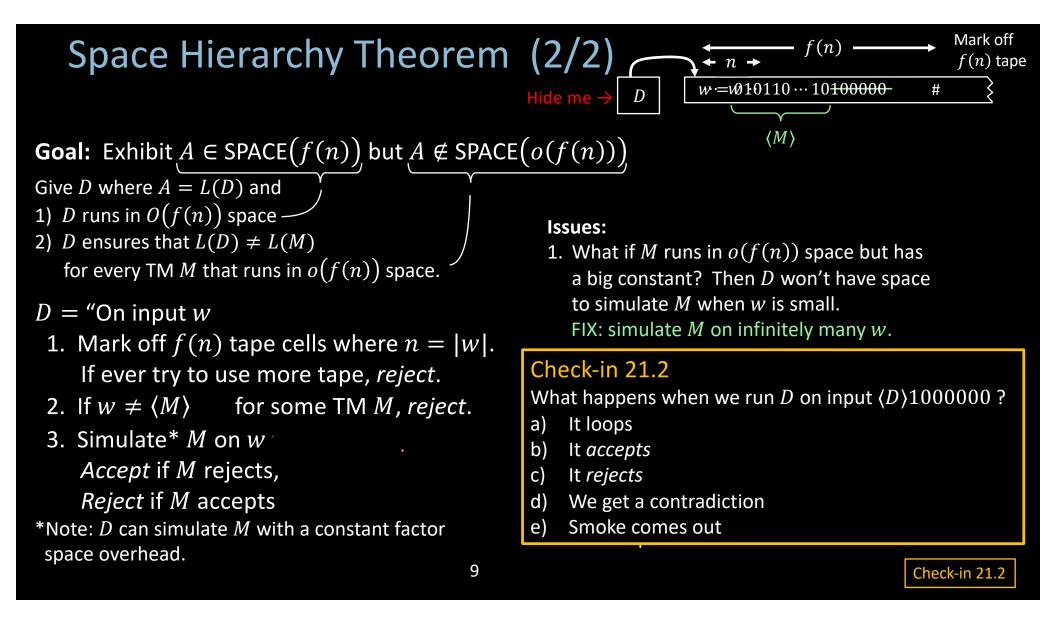
Give TM *D* where

1) *D* runs in O(f(n)) space

2) *D* ensures that $L(D) \neq L(M)$ for every TM *M* that runs in o(f(n)) space.

Let A = L(D).

8



Time Hierarchy Theorem (1/2)

Theorem: For any $f: \mathbb{N} \to \mathbb{N}$ where f is time constructible there is a language A where A requires O(f(n)) time, i.e, 1) A is decidable in O(f(n)) time, and 2) A is not decidable in $o(f(n)/\log(f(n)))$ time

On other words, TIME $\left(o\left(\frac{f(n)}{\log(f(n))}\right)\right) \subsetneq$ TIME $\left(f(n)\right)$

Proof outline: Give TM *D* where

1) *D* runs in O(f(n)) time 2) *D* ensures that $L(D) \neq L(M)$ for every TM *M* that runs in $o(f(n)/\log(f(n)))$ time.

Let A = L(D).

Time Hierarchy Theorem (2/2)

Goal: Exhibit $A \in \text{TIME}(f(n))$ but $A \notin \text{TIME}(o(f(n)/\log(f(n))))$

- A = L(D) where
- 1) *D* runs in O(f(n)) time
- 2) *D* ensures that $L(D) \neq L(M)$ for every TM *M* that runs in $o(f(n)/\log(f(n)))$ time.
- D = "On input w
- 1. Compute f(n).
- 2. If $w \neq \langle M \rangle 10^*$ for some TM *M*, *reject*.
- 3. Simulate* M on w for $f(n) / \log(f(n))$ steps. Accept if M rejects,

Reject if *M* accepts or hasn't halted."
*Note: *D* can simulate *M* with a log factor time overhead due to the step counter.

Why do we lose a factor of log(f(n))?

D must halt within O(f(n)) time. To do so, *D* counts the number of steps it uses and stops if the limit is exceeded. The counter has size $\log(f(n))$ and is stored on the tape. It must be kept near the current head location. Cost of moving it adds a $O(\log(f(n)))$ overhead factor. So to halt within O(f(n)) time, *D* stops when the counter reaches $f(n)/\log(f(n))$.

Recap: Separating Complexity Classes

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ Space Hierarchy Theorem

 $NL \subseteq SPACE(\log^2 n) \subsetneq SPACE(n) \subseteq PSPACE$

Check-in 21.3

Consider these two famous unsolved questions:

- 1. Does L = P?
- 2. Does P = PSPACE?

What do the hierarchy theorems tell us about these questions?

- a) Nothing
- b) At least one of these has answer "NO"
- c) At least one of these has answer "YES"

Quick review of today

- 1. Finish NL = coNL
- 2. Space hierarchy theorem
- 3. Time hierarchy theorem

13

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.