18.404/6.840 Lecture 17

Last time:

- Cook-Levin Theorem: SAT is NP-complete
- 3 SAT is NP-complete

Today: (Sipser §8.1-§8.2)

- Space complexity
$-\operatorname{SPACE}(f(n)), \operatorname{NSPACE}(f(n))$
- PSPACE, NPSPACE
- Relationship with TIME classes
- Examples

SPACE Complexity

Defn: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(n) \geq n$. Say TM M runs in space $f(n)$ if M always halts and uses at most $f(n)$ tape cells on all inputs of length n.

Check-in 17.1

We define space complexity for multi-tape TMs by taking the sum of the cells used on all tapes.

Do we get the same class PSPACE for multi-tape TMs?
(a) No.
(b) Yes, converting a multi-tape TM to single-tape only squares the amount of space used.
(c) Yes, converting a multi-tape TM to single-tape only increases the amount of space used by a constant factor.

Relationships between Time and SPACE Complexity

Theorem: For $t(n) \geq n$

1) $\operatorname{TIME}(t(n)) \subseteq \operatorname{SPACE}(t(n))$
2) $\operatorname{SPACE}(t(n)) \subseteq \operatorname{TIME}\left(2^{o(t(n))}\right)$

$$
=\mathrm{U}_{c} \operatorname{TIME}\left(c^{t(n)}\right)
$$

Proof:

1) A TM that runs in $t(n)$ steps cannot use more than $t(n)$ tape cells.
2) A TM that uses $t(n)$ tape cells cannot use more than $c^{t(n)}$ time without repeating a configuration and looping (for some c).
Corollary: P \subseteq PSPACE
Theorem: NP \subseteq PSPACE [next slide]

$N P \subseteq P S P A C E$

Theorem: NP \subseteq PSPACE
Proof:

1. SAT \in PSPACE
2. If $A \leq_{\mathrm{P}} B$ and $B \in$ PSPACE then $A \in$ PSPACE

Defn: $\operatorname{coNP}=\{\bar{A} \mid A \in \mathrm{NP}\}$
$\overline{\text { HAMPATH }} \in \operatorname{coNP}$
TAUTOLOGY $=\{\langle\phi\rangle \mid$ all assignments satisfy $\phi\} \in$ coNP coNP \subseteq PSPACE (because PSPACE = coPSPACE)
P = PSPACE ? Not known.

$$
P=N P=\operatorname{coNP}=P S P A C E
$$

Example: TQBF

Defn: A quantified Boolean formula (QBF) is a Boolean formula with leading exists ($\exists x$) and for all $(\forall x)$ quantifiers. All variables must lie within the scope of a quantifier.

A QBF is True or False.
Examples: $\phi_{1}=\forall x \exists y[(x \vee y) \wedge(\bar{x} \vee \bar{y})]$
$\phi_{2}=\exists y \forall x[(x \vee y) \wedge(\bar{x} \vee \bar{y})]$
Defn: $T Q B F=\{\langle\phi\rangle \mid \phi$ is a QBF that is True $\}$
Thus $\phi_{1} \in T Q B F$ and $\phi_{2} \notin T Q B F$.
Theorem: TQBF \in PSPACE

Check-in 17.2

How is $S A T$ a special case of $T Q B F$?
(a) Remove all quantifiers.
(b) Add \exists and \forall quantifiers.
(c) Add only \exists quantifiers.
(d) Add only \forall quantifiers.

$T Q B F \in \operatorname{PSPACE}$

Theorem: TQBF \in PSPACE
Proof: "On input $\langle\phi\rangle$

1. If ϕ has no quantifiers, then ϕ has no variables
so either $\phi=$ True or $\phi=$ False. Output accordingly.
2. If $\phi=\exists x \psi$ then evaluate ψ with $x=$ True and $x=$ FALSE recursively. Accept if either accepts. Reject if not.
3. If $\phi=\forall x \psi$ then evaluate ψ with $x=$ True and $x=$ FALSE recursively. Accept if both accept. Reject if not."

Space analysis:
Each recursive level uses constant space (to record the x value).
The recursion depth is the number of quantifiers, at most $n=|\langle\phi\rangle|$.
So TQBF $\in \operatorname{SPACE}(n)$

Example: Ladder Problem

A ladder is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A word ladder for English is a ladder of English words.
Let A be a language. A ladder in A is a ladder of strings in A.
Defn: $L A D D E R_{\text {DFA }}=\{\langle B, u, v\rangle \mid B$ is a DFA and $L(B)$ contains a ladder $y_{1}, y_{2}, \ldots, y_{k}$ where $y_{1}=u$ and $\left.y_{k}=v\right\}$.

Theorem: $L A D D E R_{\text {DFA }} \in$ NPSPACE
WORK
PORK
PORT
SORT
SOOT
SLOT
PLOT
PLOY
PLAY

$L A D D E R_{\text {DFA }} \in$ NPSPACE

Theorem: $L A D D E R_{\text {DFA }} \in$ NPSPACE
Proof idea: Nondeterministically guess the sequence from u to v.
Careful- (a) cannot store sequence, (b) must terminate.
Proof: "On input $\langle B, u, v\rangle$

1. Let $y=u$ and let $m=|u|$.
2. Repeat at most t times where $t=|\Sigma|^{m}$.
3. Nondeterministically change one symbol in y.
4. Reject if $y \notin L(B)$.
5. Accept if $y=v$.
6. Reject [exceeded t steps].

Space used is for storing y and t.

Theorem: $L A D D E R_{\text {DFA }} \in$ PSPACE (!)

$L_{A D D E R}^{\text {DFA }}$ \in PSPACE

Theorem: $\underset{b}{\operatorname{LADDER}} R_{\text {DFA }} \in \operatorname{SPACE}\left(n^{2}\right)$
Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.
Here's a recursive procedure to solve the bounded DFA ladder problem:
BOUNDED-LADDER $R_{\mathrm{DFA}}=\{\langle B, u, v, b\rangle \mid B$ a DFA and $u \xrightarrow{b} v$ by a ladder in $L(B)\}$
$B-L=$ "On input $\langle B, u, v, b\rangle$ Let $m=|u|=|v|$.

1. For $b=1$, accept if $u, v \in L(B)$ and differ in ≤ 1 place, else reject.
2. For $b>1$, repeat for each w of length $|u|$
3. Recursively test $u \xrightarrow{b / 2} w$ and $w \xrightarrow{b / 2} v \quad$ [division rounds up]
4. Accept both accept.
5. Reject [if all fail]."

Test $\langle B, u, v\rangle \in L A D D E R_{\text {DFA }}$ with $B-L$ procedure on input $\langle B, u, v, t\rangle$ for $t=|\Sigma|^{m}$

Check-in 17.3

Find an English word ladder connecting MUST and VOTE.
(a) Already did it.
(b) I will.

Space analysis:
Each recursive level uses space $O(n)$ (to record w).
Recursion depth is $\log t=O(m)=O(n)$.
Total space used is $O\left(n^{2}\right)$.

Quick review of today

1. Space complexity
2. $\operatorname{SPACE}(f(n)), \operatorname{NSPACE}(f(n))$
3. PSPACE, NPSPACE
4. Relationship with TIME classes
5. TQBF \in PSPACE
6. $L A D D E R_{\text {DFA }} \in \operatorname{NSPACE}(n)$
7. $L A D D E R_{\mathrm{DFA}} \in \operatorname{SPACE}\left(n^{2}\right)$

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

