18.404/6.840 Lecture 17

1

Last time:

- Cook-Levin Theorem: *SAT* is NP-complete
- 3SAT is NP-complete

Today: (Sipser §8.1 – §8.2)

- Space complexity
- SPACE (f(n)), NSPACE (f(n))
- PSPACE, NPSPACE
- Relationship with TIME classes
- Examples

SPACE Complexity

Defn: Let $f: \mathbb{N} \to \mathbb{N}$ where $f(n) \ge n$. Say TM M runs in space f(n) if M always halts and uses at most f(n) tape cells on all inputs of length n.

Check-in 17.1

We define space complexity for multi-tape TMs by taking the sum of the cells used on all tapes.

Do we get the same class PSPACE for multi-tape TMs?

- (a) No.
- (b) Yes, converting a multi-tape TM to single-tape only squares the amount of space used.
- (c) Yes, converting a multi-tape TM to single-tape only increases the amount of space used by a constant factor.

Check-in 17.1

Relationships between Time and SPACE Complexity

```
Theorem: For t(n) \ge n

1) TIME(t(n)) \subseteq SPACE(t(n))

2) SPACE(t(n)) \subseteq TIME(2^{o(t(n))})

= \bigcup_c \text{TIME}(c^{t(n)})
```

Proof:

- 1) A TM that runs in t(n) steps cannot use more than t(n) tape cells.
- 2) A TM that uses t(n) tape cells cannot use more than $c^{t(n)}$ time without repeating a configuration and looping (for some c).

Corollary: $P \subseteq PSPACE$

```
Theorem: NP \subseteq PSPACE [next slide]
```

$NP \subseteq PSPACE$

Example: TQBF

Defn: A <u>quantified Boolean formula</u> (QBF) is a Boolean formula with leading exists $(\exists x)$ and for all $(\forall x)$ quantifiers. All variables must lie within the scope of a quantifier.

A QBF is True or False.

Examples: $\phi_1 = \forall x \exists y [(x \lor y) \land (\overline{x} \lor \overline{y})]$ $\phi_2 = \exists y \forall x [(x \lor y) \land (\overline{x} \lor \overline{y})]$ Defn: $TQBF = \{\langle \phi \rangle | \phi \text{ is a QBF that is TRUE}\}$ Thus $\phi_1 \in TQBF$ and $\phi_2 \notin TQBF$. **Theorem:** $TQBF \in PSPACE$

Check-in 17.2

How is *SAT* a special case of *TQBF*?

- (a) Remove all quantifiers.
- (b) Add \exists and \forall quantifiers.
- (c) Add only \exists quantifiers.
- (d) Add only ∀ quantifiers.

$TQBF \in \mathsf{PSPACE}$

Theorem: $TQBF \in PSPACE$

Proof: "On input $\langle \phi
angle$

- 1. If ϕ has no quantifiers, then ϕ has no variables so either ϕ = True or ϕ = False. Output accordingly.
- 2. If $\phi = \exists x \psi$ then evaluate ψ with x = TRUE and x = FALSE recursively. Accept if either accepts. Reject if not.
- 3. If $\phi = \forall x \psi$ then evaluate ψ with x = TRUE and x = FALSE recursively. Accept if both accept. Reject if not."

Space analysis:

Each recursive level uses constant space (to record the *x* value).

The recursion depth is the number of quantifiers, at most $n = |\langle \phi \rangle|$.

So $TQBF \in SPACE(n)$

6

Example: Ladder Problem

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A <u>word ladder for English</u> is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

Defn: $LADDER_{DFA} = \{\langle B, u, v \rangle | B \text{ is a DFA and } L(B) \text{ contains}$ a ladder $y_1, y_2, ..., y_k$ where $y_1 = u$ and $y_k = v\}$.

Theorem: $LADDER_{DFA} \in NPSPACE$

WORK PORT SORT SOOT SLOT PLOT PLOY PLAY

7

$LADDER_{DFA} \in NPSPACE$

Theorem: $LADDER_{DFA} \in NPSPACE$

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = |\Sigma|^m$.
- 3. Nondeterministically change one symbol in *y*.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.
- 6. *Reject* [exceeded *t* steps].

Space used is for storing y and t. $LADDER_{DFA} \in NSPACE(n).$

```
Theorem: LADDER_{DFA} \in PSPACE (!)
```


WORK

PORK

$LADDER_{DFA} \in \mathsf{PSPACE}$

Theorem: $LADDER_{DFA} \in SPACE(n^2)$

Proof: Write $u \xrightarrow{v} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

 $BOUNDED-LADDER_{DFA} = \{\langle B, u, v, b \rangle | B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \}$

B-L ="On input $\langle B, u, v, b \rangle$ Let m = |u| = |v|.

- 1. For b = 1, accept if $u, v \in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \xrightarrow{b/2} w$ and $w \xrightarrow{b/2} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

Test $\langle B, u, v \rangle \in LADDER_{DFA}$ with B-L procedure on input $\langle B, u, v, t \rangle$ for $t = |\Sigma|^m$

Space analysis:

Each recursive level uses space O(n) (to record w). Recursion depth is $\log t = O(m) = O(n)$.

Total space used is $O(n^2)$.

Check-in 17.3

Find an English word ladder connecting MUST and VOTE.

(a) Already did it.

(b) I will.

9

Quick review of today

- 1. Space complexity
- 2. SPACE(f(n)), NSPACE(f(n))
- 3. PSPACE, NPSPACE
- 4. Relationship with TIME classes
- 5. $TQBF \in PSPACE$
- 6. $LADDER_{DFA} \in NSPACE(n)$
- 7. $LADDER_{DFA} \in SPACE(n^2)$

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.