

18.404/6.840 Lecture 17

Last time:
- Cook-Levin Theorem: !"# is NP-complete
- 3!"# is NP-complete

Today: (Sipser §8.1 – §8.2)
- Space complexity
- SPACE % & , NSPACE % &
- PSPACE, NPSPACE
- Relationship with TIME classes
- Examples

1

An NTM ' runs in space !(%) if all branches halt and each branch uses at
most !(%) tape cells on all inputs of length %.

Defn: SPACE ! % = {,| some deterministic 1-tape TM ' decides ,
and ' runs in space . ! % }

NSPACE ! % = {,| some nondeterministic 1-tape TM ' decides ,
and ' runs in space . ! % }

PSPACE = ⋃1 SPACE(%1) “polynomial space”

NPSPACE = ⋃1 NSPACE(%1) “nondeterministic polynomial space”

SPACE Complexity

Defn: Let !: ℕ → ℕ where ! % ≥ %. Say TM ' runs in space !(%) if '
always halts and uses at most !(%) tape cells on all inputs of length %.

Check-in 17.1
We define space complexity for multi-tape TMs by
taking the sum of the cells used on all tapes.

Do we get the same class PSPACE for multi-tape TMs?

(a) No.

(b) Yes, converting a multi-tape TM to single-tape
only squares the amount of space used.

(c) Yes, converting a multi-tape TM to single-tape
only increases the amount of space used by a
constant factor.

Check-in 17.1
2

Relationships between
Time and SPACE Complexity

Theorem: For ! " ≥ "
1) TIME ! " ⊆ SPACE ! "

2) SPACE ! " ⊆ TIME 2& ' (

= ⋃+ TIME ,' (

Proof:
1) A TM that runs in !(") steps cannot use more than !(") tape cells.
2) A TM that uses !(") tape cells cannot use more than ,' (time

without repeating a configuration and looping (for some ,).

Corollary: P ⊆ PSPACE

Theorem: NP ⊆ PSPACE [next slide]

3

NP ⊆ PSPACE

Theorem: NP ⊆ PSPACE
Proof:
1. "#$ ∈ PSPACE
2. If # ≤' (and (∈ PSPACE then # ∈ PSPACE

PSPACE
Defn: coNP = # # ∈ NP}
#+,#$ ∈ coNP

coNP NP$#-$./.01 = 2 all assignments satisfy 2} ∈ coNP

coNP ⊆ PSPACE (because PSPACE = coPSPACE)
Or possibly: P

P = PSPACE ? Not known.
P = NP = coNP = PSPACE

4

TRUE
FALSE

Example: !"#$

Defn: A quantified Boolean formula (QBF) is a Boolean formula
with leading exists (∃&) and for all (∀&) quantifiers. All variables
must lie within the scope of a quantifier.

A QBF is TRUE or FALSE.
Check-in 17.2 Examples: () = ∀& ∃+ & ∨ + ∧ & ∨ +

(. = ∃+ ∀& & ∨ + ∧ & ∨ + How is 23! a special case of !"#$?
(a) Remove all quantifiers. Defn: !"#$ = ((is a QBF that is TRUE}
(b) Add ∃ and ∀ quantifiers.

Thus () ∈ !"#$ and (. ∉ !"#$. (c) Add only ∃ quantifiers.

Theorem: !"#$ ∈ PSPACE (d) Add only ∀ quantifiers.

5
Check-in 17.2

!"#$ ∈ PSPACE

Theorem: !"#$ ∈ PSPACE
Proof: “On input 〈'〉

1. If ' has no quantifiers, then ' has no variables
so either ' = True or ' = False. Output accordingly.

2. If ' = ∃+ , then evaluate , with + = TRUE and + = FALSE recursively.
Accept if either accepts. Reject if not.

3. If ' = ∀+ , then evaluate , with + = TRUE and + = FALSE recursively.
Accept if both accept. Reject if not.”

Space analysis:
Each recursive level uses constant space (to record the + value).
The recursion depth is the number of quantifiers, at most . = | ' |.

So !"#$ ∈ SPACE(.)
6

Example: Ladder Problem

A ladder is a sequence of strings of a common length where WORK
consecutive strings differ in a single symbol. PORK
A word ladder for English is a ladder of English words. PORT

SORTLet ! be a language. A ladder in ! is a ladder of strings in !.
SOOT

Defn: "!##$%DFA = *, ,, - * is a DFA and "(*) contains SLOT
a ladder 01, 02, … , 04 where 01 = , and 04 = -}. PLOT

Theorem: "!##$%DFA ∈ NPSPACE PLOY
PLAYPLAY

7

!"##$%DFA ∈ NPSPACE

Theorem: !"##$%DFA ∈ NPSPACE
Proof idea: Nondeterministically guess the sequence from * to +.

Careful- (a) cannot store sequence, (b) must terminate.
Proof: “On input ,, *, +

1. Let . = * and let 0 = |*|.
4 WORK

2. Repeat at most 2 times where 2 = Σ .

≤ 2

PORK
3. Nondeterministically change one symbol in .. PORT
4. Reject if . ∉ !(,). SORT

SOOT5. Accept if . = +.
SLOT6. Reject [exceeded 2 steps].

*
8

:(8)

˽ ˽ PLOT
PLOY
PLAY

Space used is for storing . and 2.
!"##$%DFA ∈ NSPACE(8). + . 2

Theorem: !"##$%DFA ∈ PSPACE (!)

8

WORK

PLAY

@AAAAAAABAAACAAADAAAZAABAAABBABLE

recurse

recurse

⁄G ,

⁄G ,

!"##$%DFA ∈ PSPACE

Theorem: !"##$%DFA ∈ SPACE(+,)
Proof: Write .

/ 0 if there’s a ladder from . to 0 of length ≤ 2.

Here’s a recursive procedure to solve the bounded DFA ladder problem:

3456#$#-!"##$%DFA = 3, ., 0, 2 3 a DFA and .
/ 0 by a ladder in !(3)}

3-! = “On input 3, ., 0, 2 Let : = . = |0|.
1. For 2 = 1, accept if ., 0 ∈ !(3) and differ in ≤ 1 place, else reject.
2. For 2 > 1, repeat for each > of length |.|

Check-in 17.3

3. Recursively test .
//, > and >

//, 0 [division rounds up]
Find an English word ladder

4. Accept both accept.
connecting MUST and VOTE.

5. Reject [if all fail].”
(a) Already did it. B

Test 3, ., 0 ∈ !"##$%DFA with 3-! procedure on input 3, ., 0, @ for @ = Σ
(b) I will.

Space analysis:

Each recursive level uses space 4 + (to record >).

Recursion depth is log @ = 4 : = 4(+).
Total space used is 4(+,).

9
Check-in 17.3

Quick review of today

1. Space complexity

2. SPACE ! " , NSPACE ! "

3. PSPACE, NPSPACE

4. Relationship with TIME classes

5. $%&' ∈ PSPACE

6.)*++,-DFA ∈ NSPACE(")
7.)*++,-DFA ∈ SPACE("3)

10

MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

