18.404/6.840 Lecture 4

1

Last time:

- Finite automata \rightarrow regular expressions
- Proving languages aren't regular
- Context free grammars

Today: (Sipser §2.2)

- Context free grammars (CFGs) definition
- Context free languages (CFLs)
- Pushdown automata (PDA)
- Converting CFGs to PDAs

Context Free Grammars (CFGs)

$S \rightarrow 0S1$	Shorthand:	
$S \rightarrow R$	$S \rightarrow 0S1 \mid F$	
$R \rightarrow \epsilon$	$R \rightarrow \epsilon$	

Recall that a CFG has terminals, variables, and rules.

Grammars generate strings

1. Write down start variable

 G_1

- 2. Replace any variable according to a rule Repeat until only terminals remain
- 3. Result is the generated string
- 4. L(G) is the language of all generated strings
- 5. We call L(G) a Context Free Language.

Example of G_1 generating a string

Tree of	S	S	Resulting
substitutions			string
"parse tree"			C

 $\in L(G_1)$ $L(G_1) = \{0^k \underline{1}^k \mid k \ge 0\}$

CFG – Formal Definition

Defn: A Context Free Grammar (CFG) G is a 4-tuple (V, Σ, R, S)

- *V* finite set of variables
- Σ finite set of terminal symbols
- *R* finite set of rules (rule form: $V \to (V \cup \Sigma)^*$)
- *S* start variable

For $u, v \in (V \cup \Sigma)^*$ write	Charle in 11
1) $u \Rightarrow v$ if can go from u to v with one substitution step in	Check-in 4.1 Which of these are valid CFGs?
2) $u \stackrel{*}{\Rightarrow} v$ if can go from u to v with some number of substit	
$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k = v$ is called a derivat	
If $u = S$ then it is a <u>derivation</u> of v .	$OB \rightarrow OB$
$L(G) = \{w \mid w \in \Sigma^* \text{ and } S \stackrel{*}{\Rightarrow} w\}$	a) C_1 only
	b) C ₂ only
Defn: A is a <u>Context Free Language</u> (CFL) if $A = L(G)$ for so	c) Both C_1 and C_2
	d) Neither
3	Check-in 4.1

CFG – Example	
$\begin{array}{ccc} G_2 & & & Parse & E \\ & E \to E + T \mid T & & & tree \\ & & T \to T \times F \mid F & & & \\ & & F \to (E) \mid a \end{array}$	E Resulting string
$V = \{E, T, F\}$ $\Sigma = \{+, \times, (,), a\}$ R = the 6 rules above S = E Generates a+ax	×a Check-in 4.2 How many reasonable distinct meanings
Observe that the parse tree contains additional info such as the precedence of \times over $+$.	ormatic does the following English sentence have? The boy saw the girl with the mirror.
If a string has two different parse trees then it is de and we say that the grammar is <u>ambiguous</u> .	rived a (b) 2 (c) 3 or more
4	Check-in 4.2

Ambiguity

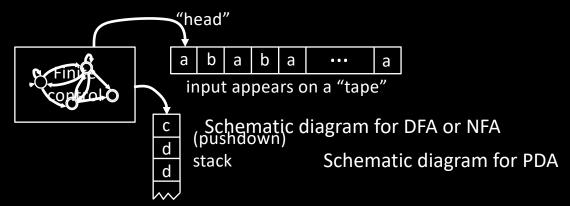
 G_2 $E \rightarrow E+T \mid T$ $T \rightarrow T \times F \mid F$ $F \rightarrow (E) \mid a$

$$E \rightarrow E + E \mid E \times E \mid (E) \mid a$$

Both G_2 and G_3 recognize the same language, i.e., $L(G_2) = L(G_3)$. However G_2 is an unambiguous CFG and G_3 is ambiguous.

5

Pushdown Automata (PDA)



Operates like an NFA except can <u>write-add</u> or <u>read-remove</u> symbols from the top of stack.

Example: PDA for $D = \{0^k 1^k | k \ge 0\}$

- 1) Read 0s from input, push onto stack until read 1.
- 2) Read 1s from input, while popping 0s from stack.
- 3) Enter accept state if stack is empty. (note: acceptance only at end of input)

PDA – Formal Definition

Defn: A <u>Pushdown Automaton</u> (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$

- Σ input alphabet
- Γ stack alphabet
- $\delta: \ Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ $\delta(q, a, c) = \{(r_1, d), (r_2, e)\}$

Accept if some thread is in the accept state at the end of the input string.

Example: PDA for $B = \{ww^{\mathcal{R}} | w \in \{0,1\}^*\}$ Sample input: 0 | 1 | 1 | 1 | 1 | 0

- Read and push input symbols.
 Nondeterministically either repeat or go to (2).
- Read input symbols and pop stack symbols, compare.
 If ever ≠ then thread rejects.
- 3) Enter accept state if stack is empty. (do in "software")

The nondeterministic forks replicate the stack.

This language requires nondeterminism. Our PDA model is nondeterministic.

Converting CFGs to PDAs

Theorem: If *A* is a CFL then some PDA recognizes *A*

Proof: Convert *A*'s CFG to a PDA

 $E \rightarrow E+T \mid T$ G_2 **IDEA:** PDA begins with starting variable and guesses substitutions. $T \rightarrow T \times F \mid F$ It keeps intermediate generated strings on stack. When done, compare with input. $F \rightarrow (E) \mid a$ Ε E Input: a + a × a Ε × E+T F $T+T\times F$ Problem! Access below the top of stack is cheating! F+F×a Instead, only substitute variables when on the top of stack. a+a×a а а а If a terminal is on the top of stack, pop it and compare with input. Reject if \neq .

Converting CFGs to PDAs (contd)

Theorem: If A is a CFL then some PDA recognizes A

Proof construction: Convert the CFG for *A* to the following PDA.

- 1) Push the start symbol on the stack.
- If the top of stack is
 Variable: replace with right hand side of rule (nondet choice).

а

+

Terminal: pop it and match with next input symbol.

a 🗙 a

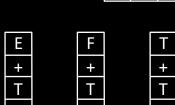
а

+ T

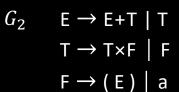
3) If the stack is empty, *accept*.

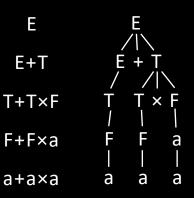
Example:

Ε



h~/





9

Т

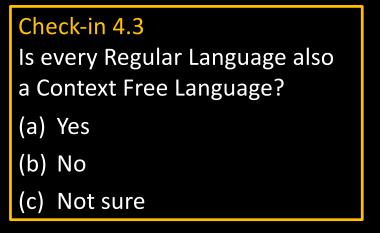
× F

Equivalence of CFGs and PDAs

Theorem: A is a CFL iff* some PDA recognizes A

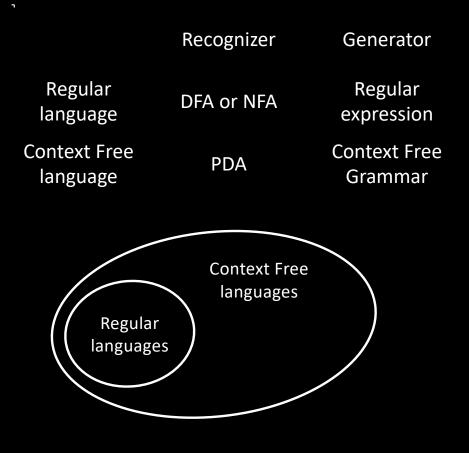
Done. In book. You are responsible for knowing it is true, but not for knowing the proof.

* "iff" = "if an only if" means the implication goes both ways. So we need to prove both directions: forward (\rightarrow) and reverse (\leftarrow).



Check-in 4.3

Recap



Quick review of today

- 1. Defined Context Free Grammars (CFGs) and Context Free Languages (CFLs)
- 2. Defined Pushdown Automata(PDAs)
- 3. Gave conversion of CFGs to PDAs.

12

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.