18.404/6.840 Lecture 4

Last time:

- Finite automata \rightarrow regular expressions
- Proving languages aren't regular
- Context free grammars

Today: (Sipser §2.2)

- Context free grammars (CFGs) - definition
- Context free languages (CFLs)
- Pushdown automata (PDA)
- Converting CFGs to PDAs

Context Free Grammars (CFGs)

$$
G_{1}
$$

$$
\begin{array}{ll}
S \rightarrow 0 S 1 & \text { Shorthand: } \\
S \rightarrow R & S \rightarrow 0 S 1 \mid R \\
R \rightarrow \varepsilon & R \rightarrow \varepsilon
\end{array}
$$

Recall that a CFG has terminals, variables, and rules.

Grammars generate strings

1. Write down start variable
2. Replace any variable according to a rule Repeat until only terminals remain
3. Result is the generated string
4. $L(G)$ is the language of all generated strings
5. We call $L(G)$ a Context Free Language.

Example of G_{1} generating a string
Tree of $S \quad$ S Resulting substitutions
"parse tree"
string

$$
\begin{aligned}
& \quad \in L\left(G_{1}\right) \\
& L\left(G_{1}\right)=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
\end{aligned}
$$

CFG - Formal Definition

Defn: A Context Free Grammar (CFG) G is a 4-tuple (V, Σ, R, S)
V finite set of variables
Σ finite set of terminal symbols
R finite set of rules (rule form: $\left.V \rightarrow(V \cup \Sigma)^{*}\right)$
S start variable
For $u, v \in(V \cup \Sigma)^{*}$ write

1) $u \Rightarrow v$ if can go from u to v with one substitution step in
2) $u \stackrel{*}{\Rightarrow} v$ if can go from u to v with some number of substit $u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \cdots \Rightarrow u_{k}=v$ is called a derivat If $u=S$ then it is a derivation of v.
$L(G)=\left\{w \mid w \in \Sigma^{*}\right.$ and $\left.S \stackrel{*}{\Rightarrow} w\right\}$
Defn: A is a Context Free Language (CFL) if $A=L(G)$ for s

Check-in 4.1
Which of these are valid CFGs?

$$
\begin{aligned}
C_{1}: & B \rightarrow 0 B 1 \mid \varepsilon \\
& B 1 \rightarrow 1 B \\
& 0 B \rightarrow 0 B
\end{aligned}
$$

a) C_{1} only
b) C_{2} only
c) Both C_{1} and C_{2}
d) Neither

CFG - Example

$V=\{\mathrm{E}, \mathrm{T}, \mathrm{F}\}$
$\Sigma=\{+, \times,(), a$,
$R=$ the 6 rules above
$S=\mathrm{E}$
Generates $a+a \times a$
Observe that the parse tree contains additional informatid such as the precedence of \times over + .
If a string has two different parse trees then it is derived a and we say that the grammar is ambiguous.
(a) 1
(b) 2
(c) 3 or more

Ambiguity

$$
\begin{aligned}
& G_{2} \\
& E \rightarrow E+T \mid T \\
& T \rightarrow T \times F \mid F \\
& F \rightarrow(E) \mid a
\end{aligned}
$$

Both G_{2} and G_{3} recognize the same language, i.e., $L\left(G_{2}\right)=L\left(G_{3}\right)$. However G_{2} is an unambiguous CFG and G_{3} is ambiguous.

Pushdown Automata (PDA)

Operates like an NFA except can write-add or read-remove symbols from the top of stack.
push
pop

Example: PDA for $D=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

1) Read Os from input, push onto stack until read 1.
2) Read 1 s from input, while popping 0 s from stack.
3) Enter accept state if stack is empty. (note: acceptance only at end of input)

PDA - Formal Definition

Defn: A Pushdown Automaton (PDA) is a 6-tuple ($\left.Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$
Σ input alphabet
Γ stack alphabet

$$
\begin{aligned}
\delta: & \mathrm{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right) \\
& \delta(q, \mathrm{a}, \mathrm{c})=\left\{\left(r_{1}, \mathrm{~d}\right),\left(r_{2}, \mathrm{e}\right)\right\}
\end{aligned}
$$

Accept if some thread is in the accept state at the end of the input string.

Example: PDA for $B=\left\{w w^{\mathcal{R}} \mid w \in\{0,1\}^{*}\right\} \quad$ Sample input: | 0 | 1 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

1) Read and push input symbols.

Nondeterministically either repeat or go to (2).
2) Read input symbols and pop stack symbols, compare.

If ever \neq then thread rejects.
3) Enter accept state if stack is empty. (do in "software")

The nondeterministic forks replicate the stack.
This language requires nondeterminism.
Our PDA model is nondeterministic.

Converting CFGs to PDAs

Theorem: If A is a CFL then some PDA recognizes A
Proof: Convert A 's CFG to a PDA

IDEA: PDA begins with starting variable and guesses substitutions.
It keeps intermediate generated strings on stack. When done, compare with input.

Input:

a	+	a	\times	a

$G_{2} \quad \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{~T} \times \mathrm{F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \mid \mathrm{a}
\end{aligned}
$$

Problem! Access below the top of stack is cheating!
Instead, only substitute variables when on the top of stack.
If a terminal is on the top of stack, pop it and compare with input. Reject if \neq.

Converting CFGs to PDAs (contd)

Theorem: If A is a CFL then some PDA recognizes A
Proof construction: Convert the CFG for A to the following PDA.

1) Push the start symbol on the stack.
2) If the top of stack is

Variable: replace with right hand side of rule (nondet choice).
Terminal: pop it and match with next input symbol.
3) If the stack is empty, accept.

Example:

a	+	a	\times	a

$$
\begin{aligned}
G_{2} \quad & E \rightarrow E+T \mid T \\
& T \rightarrow T \times F \mid F \\
& F \rightarrow(E) \mid a
\end{aligned}
$$

Equivalence of CFGs and PDAs

Theorem: A is a CFL iff* some PDA recognizes A
\longleftrightarrow Done. In book. You are responsible for knowing it is true, but not for knowing the proof.

* "iff" = "if an only if" means the implication goes both ways.

So we need to prove both directions: forward (\rightarrow) and reverse (\leftarrow).
Check-in 4.3
Is every Regular Language also a Context Free Language?
(a) Yes
(b) No
(c) Not sure

Recap

Recognizer Generator

Regular language	DFA or NFA	Regular expression Context Free language
Context Free		
Grammar		

Quick review of today

1. Defined Context Free Grammars (CFGs) and Context Free Languages (CFLs)
2. Defined Pushdown Automata(PDAs)
3. Gave conversion of CFGs to PDAs.

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

