18.404/6.840 Lecture 10

Last time:

- The Reducibility Method for proving undecidability and T-unrecognizability
- General reducibility
- Mapping reducibility

Today: (Sipser §5.2)

- The Computation History Method for proving undecidability

- The Post Correspondence Problem is undecidable
- Linearly bounded automata
- Undecidable problems about LBAs and CFGs

Remember

To prove some language B is undecidable, show that A_{TM} (or any known undecidable language) is reducible to B.

Revisit Hilbert's 10th Problem

Recall $D = \{\langle p \rangle | \text{ polynomial } p(x_1, x_2, \dots, x_k) = 0 \text{ has integer solution} \}$ Hilbert's 10th problem (1900): Is D decidable?

Theorem (1971): No Proof: Show $A_{\rm TM}$ is reducible to D. [would take entire semester] Do toy problem instead which has a similar proof method. Toy problem: The Post Correspondence Problem. Method: The Computation History Method.

Post Correspondence Problem

Given a collection of pairs of strings as dominoes:

 $P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$

a <u>match</u> is a finite sequence of dominos in P (repeats allowed) where the concatenation of the t's = the concatenation of the b's.

TM Configurations

Defn: A configuration of a TM is a triple (q, p, t) where

q = the state,

- p = the head position,
- t = tape contents

representing a snapshot of the TM at a point in time.

Encode configuration (q, p, t) as the string t_1qt_2 where $t = t_1t_2$ and the head position is on the first symbol of t_2 .

TM Computation Histories

Defn: An <u>(accepting) computation history</u> for TM M on input w is a sequence of configurations $C_1, C_2, \ldots, C_{\text{accept}}$ that M enters until it accepts.

Encode a computation history $C_1, C_2, \dots, C_{\text{accept}}$ as the string $C_1 \# C_2 \# \cdots \# C_{\text{accept}}$ where each configuration C_i is encoded as a string.

A computation history for C_1 C_2 C_3 C_{accept} $M \text{ on } w = w_1 w_2 \cdots w_n$. Here say $\delta(q_0, w_1) = (q_7, a, R)$ and $\delta(q_7, w_2) = (q_8, c, R)$.

Linearly Bounded Automata

Defn: A linearly bounded automaton (LBA) is a 1-tape TM that cannot move its head off the input portion of the tape.

Tape size adjusts to length of input.

Let $A_{\text{LBA}} = \{ \langle B, w \rangle | \text{ LBA } B \text{ accepts } w \}$

Theorem: A_{LBA} is decidable Proof: (idea) If *B* on *w* runs for long, it must be cycling.

Claim: For inputs of length *n*, an LBA can have only $|Q| \times n \times |\Gamma|^n$ different configurations.

Therefore, if an LBA runs for longer, it must repeat some configuration and thus will never halt.

Decider for A_{LBA} :

$$D_{\rm A-LBA} =$$
 "On input $\langle B, w \rangle$

- 1. Let n = |w|.
- 2. Run *B* on *w* for $|Q| \times n \times |\Gamma|^n$ steps.
- 3. If has accepted, accept.
- 4. If it has rejected or is still running, reject."

must be looping

$E_{\rm LBA}$ is undecidable

Let $E_{\text{LBA}} = \{ \langle B \rangle | B \text{ is an LBA and } L(B) = \emptyset \}$

Theorem: E_{LBA} is undecidable Proof: Show A_{TM} is reducible to E_{LBA} . Uses the computation history method.

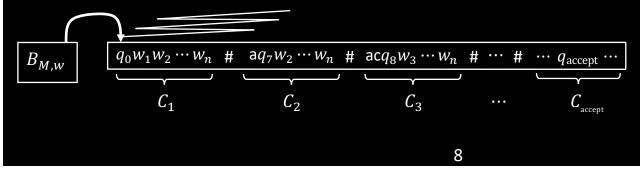
Assume that TM R decides $E_{\rm LBA}$ Construct TM S deciding $A_{\rm TM}$

S = "on input $\langle M, w \rangle$

1. Construct LBA $B_{M,w}$ which tests whether its input x is an accepting computation history for M on w, and only accepts x if it is.

2. Use *R* to determine whether
$$L(B_{M,w}) = \emptyset$$
.

3. Accept if no. Reject if yes."



Check-in 10.2

What do you think of the Computation History Method? Check all that apply.

Check-in 10.2

- (a) Cool !
- (b) Just another theorem.
- (c) I'm baffled.
- (d) I wish I was in 6.046.

PCP is undecidable

Recall $PCP = \{\langle P \rangle | P \text{ has a match } \}$

Theorem: *PCP* is undecidable

Proof: Show A_{TM} is reducible to *PCP*. Uses the computation history method.

Technical assumption: Match must start with $\begin{bmatrix} t_1 \\ b_1 \end{bmatrix}$. Can fix this assumption.

Assume that TM R decides PCPConstruct TM S deciding A_{TM}

S = "on input $\langle M, w \rangle$

- 1. Construct PCP instance $P_{M,W}$ where a match corresponds to a computation history for M on w.
- 2. Use *R* to determine whether $P_{M,w}$ has a match.
- 3. Accept if yes. Reject if no."

Constructing $P_{M,w}$

Make $P_{M,w}$ where a match is a computation history for M on w.

 $\begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} \# \\ \# q_0 w_1 \cdots w_n \# \end{bmatrix} \quad \text{(starting domino)}$

For each $a, b \in \Gamma$ and $q, r \in Q$ where $\delta(q, a) = (r, b, R)$

put $\begin{bmatrix} q & a \\ b & r \end{bmatrix}$ in $P_{M,W}$

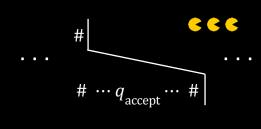
(Handles right moves. Similar for left moves.)

Ending dominos to allow a match if *M* accepts:

$$\left[egin{array}{c} a & q_{
m accept} \ q_{
m accept} \end{array}
ight] \left[egin{array}{c} q_{
m accept} & a \ q_{
m accept} \end{array}
ight]$$

Illustration:

w = 223 $\delta(q_0, 2) = (q_7, 4, R)$



Check-in 10.3

10

What else can we now conclude? Choose all that apply.

- (a) *PCP* is T-unrecognizable.
- (b) \overline{PCP} is T-unrecognizable.
- (c) Neither of the above.

Match completed! ... one detail needed.

Check-in 10.3

ALL_{CFG} is undecidable

Let $ALL_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \}$

Theorem: ALL_{CFG} is undecidable

Proof: Show A_{TM} is reducible to ALL_{PDA} via the computation history method.

Assume TM R decides ALL_{PDA} and construct TM S deciding A_{TM} .

S = "On input $\langle M, w \rangle$

- 1. Construct PDA $B_{M,w}$ which tests whether its input x is an accepting computation history for M on w, and only accepts x if it is NOT.
- 2. Use *R* to determine whether $L(B_{M,w}) = \Sigma^*$.
- 3. Accept if no. Reject if yes."



Computation History Method - recap

Computation History Method is useful for showing the undecidability of problems involving testing for the existence of some object.

- *D* Is there an integral solution (to the polynomial equation)?
- E_{LBA} Is there some accepted string (for the LBA)?
- *PCP* Is there a match (for the given dominos)?
- ALL_{CFG} Is there some rejected string (for the CFG)?

In each case, the object is the computation history in some form.

Quick review of today

- 1. Defined configurations and computation histories.
- 2. Gave The Computation History Method to prove undecidability.

- **3.** A_{LBA} is decidable.
- 4. E_{LBA} is undecidable.
- 5. *PCP* is undecidable.
- 6. ALL_{CFG} is undecidable.

Eliminating the technical assumption

Technical assumption: Match must start with $\begin{bmatrix} t_1\\b_1 \end{bmatrix}$. Fix this assumption as follows.

Let $P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$ where we require match to start with $\begin{bmatrix} t_1 \\ b_1 \end{bmatrix}$.

Create new $P' = \left\{ \begin{bmatrix} t_1 \\ \overline{b}_1 \end{bmatrix}, \begin{bmatrix} \hat{t}_1 \\ \hat{b}_1 \end{bmatrix}, \begin{bmatrix} \hat{t}_2 \\ \hat{b}_2 \end{bmatrix}, \dots, \begin{bmatrix} \hat{t}_k \\ \hat{b}_k \end{bmatrix} \right\}$ For any string $u = u_1, \dots, u_k$, let $\star u = \star u_1 \star u_2 \star \dots \star u_k$ $u \star = u_1 \star u_2 \star \dots \star u_k \star$ $\star u \star = \star u_1 \star u_2 \star \dots \star u_k \star$ Then let $P' = \left\{ \begin{bmatrix} \star t_1 \\ \star b_1 \star \end{bmatrix}, \begin{bmatrix} \star t_1 \\ b_1 \star \end{bmatrix}, \begin{bmatrix} \star t_2 \\ b_2 \star \end{bmatrix}, \dots, \begin{bmatrix} \star t_k \\ b_k \star \end{bmatrix}, \begin{bmatrix} \star \$ \\ \$ \end{bmatrix} \right\}$

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.