
 

  

  
  
    

   
    

   
  

    
    

  

    

18.404/6.840 Lecture 3 

Last time: 
- Nondeterminism 
- NFA → DFA 
- Closure under ∘ and ∗ 
- Regular expressions → finite automata 

Today: (Sipser §1.4 – §2.1) 
- Finite automata → regular expressions 
- Proving languages aren’t regular 
- Context free grammars 

We start counting Check-ins today. 
Review your email from Canvas. 

Homework due Thursday. 
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DFAs → Regular Expressions 
Recall Theorem: If " is a regular expressipn and # = % " then # is regular 

Proof: Conversion " → NFA &→ DFA &′ 

& 

Regular Finite 
expression " automaton 

Recall: we did a ∪ ab ∗ as an example 

Today’s Theorem: If # is regular then # = % " for some regular expr " 

Proof: Give conversion DFA &→ " 

WAIT! Need new concept first. 
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Generalized NFA 
Defn: A Generalized Nondeterministic Finite Automaton (GNFA) is 
similar to an NFA, but allows regular expressions as transition labels 

a a ∗ b ∗ 
ab!1 

#1 
#2 

For convenience we will assume: b 
ε - One accept state, separate from the start state ∅ - One arrow from each state to each state, except a ∪ b aab 

a) only exiting the start state #3 #4 b) only entering the accept state ε 

We can easily modify a GNFA to have this special form. 
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GNFA → Regular Expressions 
Lemma: Every GNFA ! has an equivalent regular expression " 

Proof: By induction on the number of states # of ! 

Basis (# = 2): 
(! = Remember: ! is in special form 

Let " = ( 

GNFA GNFA 

# states # − 1 states 

4 

-state GNFA 

Induction step (# > 2): Assume Lemma true for # − 1 states and prove for # states 

IDEA: Convert #-state GNFA to equivalent # − 1 



    

     
  

 

     
    

  

    
            

 

 

         
           

        

    

    

          

 

 

  

! − 1 states! states

$ $

%& %'%& %'

()

(*
(+

(, () (* ∗(+ ∪ (,

!-state GNFA → (!—1)-state GNFA 

Check-in 3.1 

We just showed how to convert GNFAs to regular expressions 
but our goal was to show that how to convert DFAs to 
regular expressions. How do we finish our goal? 

(a) Show how to convert DFAs to GNFAs 

(b) Show how to convert GNFAs to DFAs 

(c) We are already done. DFAs are a type of GNFAs. 

Thus DFAs and regular expressions are equivalent. 

1. Pick any state $ except 
the start and accept states. 

2. Remove $. 

3. Repair the damage by 
recovering all paths that 
went through $. 

4. Make the indicated change 
for each pair of states %&, %' . 

Check-in 3.1 
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0101 ∉ * 0110 

Sometimes intuition works, but it can also be wrong.

] ]

Non-Regular Languages 
How do we show a language is not regular? 
- Remember, to show a language is regular, we give a DFA. 
- To show a language is not regular, we must give a proof. 
- It is not enough to say that you couldn’t find a DFA for it, 
therefore the language isn’t regular. 

Two examples: Here Σ = {0,1}. 
1.   Let ( = ) ) has equal numbers of 0s and 1s} 
Intuition: ( is not regular because DFAs cannot count unboundedly. 

Intuition: * is not regular because DFAs cannot count unboundedly. 
However * is regular! 

2.
∈ * 

] ] ) ) ]  Let * = has equal numbers of 01 and 10 substrings} 

Moral: You need to give a proof. 
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tring in ! can be pumped and the result stays in !.

be the number of states in 0. Pick # ∈ ! where # ≥ ".

'

(

)

0

12# The path that 0 foll

when reading #.

accepted

Method for Proving Non-regularity 

Pumping Lemma:   For every regular language !, 

there is a number " (the “pumping length”) such that 

if # ∈ ! and # ≥ " then # = '() where 

1) '(*) ∈ ! for all + ≥ 0 (* = ((⋯( 
2) ( ≠ ε

'( ≤ "3) 
+

}

Informally: ! 

Proof:  Let DFA 0 recognize !. Let " 

' ( )# = 
12 12

0 will repeat a state 12 when reading 

because # is so long. 

' ( ( ) 

12 12 12

Check-in 3.2 

The Pumping Lemma depends on the fact that 

if 0 has " states and it runs for more than " steps 

then 0 will enter some state at least twice. 

We call that fact: 

(a) The Pigeonhole Principle

(b) Burnside's Counting Theorem

(c) The Coronavirus Calculation Check-in 3.2 
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Example 1 of Proving Non-regularity 

Pumping Lemma:   For every regular language 1, there is a ) 
such that if * ∈ 1 and * ≥ ) then * = -./ where 

1) -.2/ ∈ 1 for all 3 ≥ 0 .2 = .. ⋯ . 
2) . ≠ ε 
3) -. ≤ ) 

0$1$Let ! = & ≥ 0} 
Show: ! is not regular 

Proof by Contradiction: 
Assume (to get a contradiction) that ! is regular. 
The pumping lemma gives ) as above. Let * = 0+1+ ∈ !. 
Pumping lemma says that can divide * = -./ satisfying the 3 conditions. 

But -../ has excess 0s and thus -../ ∉ ! contradicting the pumping lemma. 
Therefore our assumption (! is regular) is false. We conclude that ! is not regular. 
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* = 000 ⋯ 000111 ⋯ 111 
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But that 2 can be pumped and stay inside &. Bad choice.

Example 2 of Proving Non-regularity 

Pumping Lemma:   For every regular language 6, there is a " 
such that if 2 ∈ 6 and 2 ≥ " then 2 = $%# where 
1) $%8# ∈ 6 for all 9 ≥ 0 %8 = %%⋯% 
2) % ≠ ε 
3) $% ≤ " 

Let & = (( ( ∈ Σ∗} . Say Σ∗ = {0,1}. 
Show: & is not regular 2 = 000 ⋯ 000000 ⋯ 000 

≤ "
$ % #Proof by Contradiction: % = 00

Assume (for contradiction) that & is regular. 
The pumping lemma gives " as above. Need to choose 2 ∈ &. Which 2? 

2 = 000 ⋯ 001000 ⋯ 001 Try 2 = 0303 ∈ &. 
#

≤ "
$ %

Try 2 = 031031 ∈ &. Show cannot be pumped 2 = $%# satisfying the 3 conditions. 
$%%# ∉ & Contradiction! Therefore & is not regular. 
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Example 3 of Proving Non-regularity 

Variant: Combine closure properties with the Pumping Lemma. 

Let ! = # # has equal numbers of 0s and 1s}
Show: ! is not regular 

Proof by Contradiction: 
Assume (for contradiction) that ! is regular. 
We know that 0∗1∗ is regular so ! ∩ 0∗1∗ is regular (closure under intersection). 
But ) = ! ∩ 0∗1∗ and we already showed ) is not regular. Contradiction! 
Therefore our assumption is false, so ! is not regular. 
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3 rules
R,S
0,1
S

Example of ') generating a string

S

0 S 1

0 S 1

R
ε

S

0S1

00S11

00R11

0011

% ' = 0-1- ≥ 0

In '):

Tree of
substitutions

Resulting
string

∈ % ')

Context Free Grammars 
') 

S → 0S1 

S → R }(Substitution) Rules 

R → ε 
Rule: Variable → string of variables and terminals 
Variables: Symbols appearing on left-hand side of rule 
Terminals: Symbols appearing only on right-hand side 
Start Variable: Top left symbol 

Grammars generate strings 
1. Write down start variable 
2. Replace any variable according to a rule 

Repeat until only terminals remain 
3. Result is the generated string 
4. %(') is the language of all generated strings. 

11 

Check-in 3.3 

(a) 001101 

(b) 000111 

(c) 1010 

(d) ε 

'3 S → RR 
R → 0R1 

R → ε 
Check all of the strings that are in %('3): 

Check-in 3.3 



   

      
        

         
  

  

Quick review of today 

1. Conversion of  DFAs to regular  expressions 
Summary:  DFAs,  NFAs,  regular expressions are al l  equivalent 

2.  Proving languages not regular by using the pumping lemma 
and closure properties 

3.  Context  Free Grammars 
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