
     

   

 
  

  

18.404/6.840 Intro to the Theory of Computation 

Instructor: Mike Sipser 

TAs: 
- Fadi Atieh, Damian Barabonkov, 
- Alex Dimitrakakis, Thomas Xiong, 
- Abbas Zeitoun, and Emily Liu 
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  18.404 Course Outline 

Computability Theory 1930s – 1950s 
- What is computable… or not? 

- Examples: 

program verification, mathematical truth 

- Models of Computation: 

Finite automata, Turing machines, … 
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Complexity Theory 1960s – present 
- What is computable in practice? 

- Example: factoring problem 

- P versus NP problem 

- Measures of complexity: Time and Space 

- Models: Probabilistic and Interactive computation 



 

 
   

      

  
 
   

    
    

  
 

    
      

    

  
   

      
 

     
  

      

     

Course Mechanics 

Zoom Lectures 
- Live and Interactive via Chat 
- Live lectures are recorded for later viewing 

Zoom Recitations 
- Not recorded 
- Two convert to in-person Homework bi-weekly – 35% 
- Review concepts and more examples - More information to follow 

- Optional unless you are having difficulty 
Participation can raise low grades 

- Attend any recitation 

Midterm (15%) and Final exam (25%) 
- Open book and notes 

Text Check-in quizzes for credit – 25% 

- Introduction to the Theory of Computation - Distinct Live and Recorded versions 

Sipser, 3rd Edition US. (Other editions ok but - Complete either one for credit within 48 hours 
are missing some Exercises and Problems). - Initially ungraded; full credit for participation 
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Course Expectations 

Prerequisites 
Prior substantial experience and comfort with 
mathematical concepts, theorems, and proofs. 
Creativity will be needed for psets and exams. 

Collaboration policy on homework 
- Allowed. But try problems yourself first. 
- Write up your own solutions. 
- No bibles or online materials. 
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Role of Theory in Computer Science 

1. Applications 
2. Basic Research 
3. Connections to other fields 
4. What is the nature of computation? 
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Let’s begin: Finite Automata 
0 1!1 

*1 *2 *3 

0,1 
1 

0 

Input: finite string 
Output: Accept or Reject States: *1 *2 *3 

Computation process: Begin at start state, 1Transitions: read input symbols, follow corresponding transitions, 
Accept if end with accept state, Reject if not. Start state: 

Examples: 01101 → Accept 
Accept states: 00101 → Reject 

!1 accepts exactly those strings in # where 
# = {&| & contains substring 11}. 

Say that # is the language of !1 and that !1 recognizes # and that # = -(!1). 
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Finite Automata – Formal Definition 

Defn: A finite automaton ! is a 5-tuple (#, Σ, &, '0, )) 
# finite set of states 

Σ finite set of alphabet symbols 
Example: & transition function &: #×Σ → # 

a& (', .) = 0 means ' 0 0'0 start state !1 1 
0,1 

1) set of accept states '1 '2 '3 
0 

!1 = (#, Σ, &, '1, )) & = 0 1
# = {'1, '2, '3} '1 '1 '2
Σ = {0, 1} '2 '1 '3 

) = {'3} '3 '3 '3 
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Finite Automata – Computation 

Strings and languages 
- A string is a finite sequence of symbols in Σ 

- A language is a set of strings (finite or infinite) 

- The empty string ε is the string of length 0 
Recognizing languages - The empty language ø is the set with no strings 
- :(#) = {$| # accepts $} 
- :(#) is the language of # 

Defn:  # accepts string $ = $1$2 … $) each $* + Σ - # recognizes :(#) 
if there is a sequence of states ,0, ,1, ,2, , … , ,) + / 
where: 

- ,0 = 00 

- ,* = 1(,345, $*) for 1 ≤ * ≤ ) Defn: A language is regular if some 
- ,) + 8 finite automaton recognizes it. 
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Regular Languages – Examples 

0 1"1 

81 82 83 

0,1 
1 

0 

More examples: 
! "# = {&| & contains substring 11} = 5 

Let 6 = & & has an even number of 1s}
Therefore 5 is regular 6 is regular (make automaton for practice). 

Let 7 = & & has equal numbers of 0s and 1s}
7 is not regular (we will prove). 

Goal: Understand the regular languages 
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Regular Expressions 

Regular operations. Let !, # be languages: 

- Union: ! ∪ # = & & ∈ ! or & ∈ #} 
- Concatenation: ! ∘ # = *+ * ∈ ! and + ∈ #} = !# 

- Star: !∗ = *- … */ each *0 ∈ ! for 1 ≥ 0} 
Note: ε ∈ !∗ always 

Example. Let ! = {good, bad} and # = {boy, girl}. 
- ! ∪ # = {good, bad, boy, girl} 

- ! ∘ # = !# = {goodboy, goodgirl, badboy, badgirl} 

- !∗ = {ε, good, bad, goodgood, goodbad, badgood, 
badbad, goodgoodgood, goodgoodbad, … } 

Regular expressions 
- Built from Σ, members Σ, ∅, ε [Atomic] 

- By using ∪,∘,∗ [Composite] 

Examples: 
- 0 ∪ 1 ∗ = Σ∗ gives all strings over Σ 

- Σ∗1 gives all strings that end with 1 
- Σ∗11Σ∗ = all strings that contain 11 = : ;-

Goal: Show finite automata equivalent to regular expressions 
10 
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,

Closure Properties for Regular Languages 
Theorem: If !", !$ are regular languages, so is !" ∪ !$ (closure under ∪) 

Proof: Let &" = ()", Σ, +" , ," , -") recognize !" 

&$ = ()$, Σ, +$ , ,$ , -$) recognize !$ 

Construct & = () , Σ , + , ,0, - ) recognizing !" ∪ !$ 

& should accept input 0 if either &" or &$ accept 0. 

Components of 2:
Check-in 1.1 

) = )"×)$ 
In the proof, if &" and &$ are finite automata = ,", ,$ ," ∈ )" and ,$ ∈ )$}
where &" has 8" states and &$ has 8$ states ,6 = (,", ,$)Then how many states does & have? 
(a) 8" + 8$ + ,, 1 , 7 = +" ,, 7 , +$ 1, 7 

(b) 8" 
$ + 8$ 

$ - = -"×-$ NO! [gives intersection] 
(c) 8"×8$ - = -"×)$ ∪ )"×-$ 

Check-in 1.1 11 



  

          

    

 

    
 

    

      

   

       

       

    

  
   

   

 
 

 

 

Closure Properties continued 

Theorem: If !", !$ are regular languages, so is !"!$ (closure under ∘) 
Proof: Let &" = ()", Σ, +" , ," , -") recognize !" 

&$ = ()$, Σ, +$ , ,$ , -$) recognize !$ 

Construct & = () , Σ , + , ,0, - ) recognizing !"!$ 

& should accept input 0 
if 0 = 12 where 

&" accepts 1 and &$ accepts 2. 

&$&" 

& 

0 
1 2 

Doesn’t work: Where to split 0? 
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Quick review of today 

1. Introduction,  outl ine,  mechanics,  expectations 

2.  Finite Automata,  formal definit ion,  regular languages 

3.  Regular Operations and Regular Expressions 

4.  Proved: Class of regular languages is c losed under ∪ 

5. Started:  Closure under ∘ ,  to be continued… 
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