18.404/6.840 Intro to the Theory of Computation

Instructor: Mike Sipser

TAs:
- Fadi Atieh, Damian Barabonkov,
- Alex Dimitrakakis, Thomas Xiong,
- Abbas Zeitoun, and Emily Liu
18.404 Course Outline

Computability Theory 1930s – 1950s
- What is computable... or not?
- Examples:
 - program verification, mathematical truth
- Models of Computation:
 - Finite automata, Turing machines, ...

Complexity Theory 1960s – present
- What is computable in practice?
- Example: factoring problem
- P versus NP problem
- Measures of complexity: Time and Space
- Models: Probabilistic and Interactive computation
Course Mechanics

Zoom Lectures
- Live and Interactive via Chat
- Live lectures are recorded for later viewing

Zoom Recitations
- Not recorded
- Two convert to in-person
- Review concepts and more examples
- Optional unless you are having difficulty
 Participation can raise low grades
- Attend any recitation

Text
- *Introduction to the Theory of Computation*
 Sipser, 3rd Edition US. (Other editions ok but are missing some Exercises and Problems).

Homework bi-weekly – 35%
- More information to follow

Midterm (15%) and Final exam (25%)
- Open book and notes

Check-in quizzes for credit – 25%
- Distinct Live and Recorded versions
- Complete either one for credit within 48 hours
- Initially ungraded; full credit for participation
Course Expectations

Prerequisites
Prior substantial experience and comfort with mathematical concepts, theorems, and proofs. Creativity will be needed for psets and exams.

Collaboration policy on homework
- Allowed. But try problems yourself first.
- Write up your own solutions.
- No bibles or online materials.
Role of Theory in Computer Science

1. Applications
2. Basic Research
3. Connections to other fields
4. What is the nature of computation?
Let’s begin: Finite Automata

Input: finite string
Output: Accept or Reject

Computation process: Begin at start state, read input symbols, follow corresponding transitions, Accept if end with accept state, Reject if not.

Examples: 01101 → Accept
00101 → Reject

Say that A is the language of M_1 and that M_1 recognizes A and that $A = L(M_1)$.

M_1 accepts exactly those strings in A where $A = \{w| w$ contains substring 11$\}$.

Input: finite string
Output: Accept or Reject

Computation process: Begin at start state, read input symbols, follow corresponding transitions, Accept if end with accept state, Reject if not.

Examples: 01101 → Accept
00101 → Reject

Say that A is the language of M_1 and that M_1 recognizes A and that $A = L(M_1)$.

M_1 accepts exactly those strings in A where $A = \{w| w$ contains substring 11$\}$.

Finite Automata – Formal Definition

Defn: A finite automaton M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$

- Q finite set of states
- Σ finite set of alphabet symbols
- δ transition function $\delta: Q \times \Sigma \to Q$
- q_0 start state
- F set of accept states

Example:

$M_1 = (Q, \Sigma, \delta, q_0, F)$

$\delta = \begin{array}{c|cc}
0 & 1 \\
\hline
q_1 & q_1 & q_2 \\
q_2 & q_1 & q_3 \\
q_3 & q_3 & q_3 \\
\end{array}$

$Q = \{q_1, q_2, q_3\}$

$\Sigma = \{0, 1\}$

$F = \{q_3\}$
Strings and languages
- A **string** is a finite sequence of symbols in Σ
- A **language** is a set of strings (finite or infinite)
- The **empty string** ε is the string of length 0
- The **empty language** \emptyset is the set with no strings

Defn: M accepts string $w = w_1w_2 \ldots w_n$ each $w_i \in \Sigma$ if there is a sequence of states $r_0, r_1, r_2, \ldots, r_n \in Q$ where:
- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$ for $1 \leq i \leq n$
- $r_n \in F$

Recognizing languages
- $L(M) = \{w | M \text{ accepts } w\}$
- $L(M)$ is the **language** of M
- M recognizes $L(M)$

Defn: A language is **regular** if some finite automaton recognizes it.
Regular Languages – Examples

Let M_1 be a finite automaton with states q_1, q_2, and q_3. The transitions are:
- From q_1 on 0 to q_1.
- From q_1 on 1 to q_2.
- From q_2 on 1 to q_3.
- From q_2 on 0 to q_2.
- From q_3 on 0,1 to q_3.

$L(M_1) = \{ w \mid w \text{ contains substring } 11 \} = A$

Therefore A is regular.

More examples:

Let $B = \{ w \mid w \text{ has an even number of } 1s \}$

B is regular (make automaton for practice).

Let $C = \{ w \mid w \text{ has equal numbers of } 0s \text{ and } 1s \}$

C is not regular (we will prove).

Goal: Understand the regular languages
Regular Expressions

Regular operations. Let A, B be languages:

- **Union:** $A \cup B = \{ w | w \in A \text{ or } w \in B \}$
- **Concatenation:** $A \circ B = \{ xy | x \in A \text{ and } y \in B \} = AB$
- **Star:** $A^* = \{ x_1 \ldots x_k | \text{each } x_i \in A \text{ for } k \geq 0 \}$
 Note: $\varepsilon \in A^*$ always

Example. Let $A = \{ \text{good, bad} \}$ and $B = \{ \text{boy, girl} \}$.

- $A \cup B = \{ \text{good, bad, boy, girl} \}$
- $A \circ B = AB = \{ \text{goodboy, goodgirl, badboy, badgirl} \}$
- $A^* = \{ \varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ...} \}$

Regular expressions
- Built from Σ, members $\Sigma, \emptyset, \varepsilon$ [Atomic]
- By using $\cup, \circ, *$ [Composite]

Examples:
- $(0 \cup 1)^* = \Sigma^*$ gives all strings over Σ
- Σ^*1 gives all strings that end with 1
- $\Sigma^*11\Sigma^* = \text{all strings that contain } 11 = L(M_1)$

Goal: Show finite automata equivalent to regular expressions
Closure Properties for Regular Languages

Theorem: If \(A_1, A_2 \) are regular languages, so is \(A_1 \cup A_2 \) (closure under \(\cup \))

Proof: Let \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognize \(A_1 \)
\(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognize \(A_2 \)

Construct \(M = (Q, \Sigma, \delta, q_0, F) \) recognizing \(A_1 \cup A_2 \)

\(M \) should accept input \(w \) if either \(M_1 \) or \(M_2 \) accept \(w \).

Check-in 1.1

In the proof, if \(M_1 \) and \(M_2 \) are finite automata where \(M_1 \) has \(k_1 \) states and \(M_2 \) has \(k_2 \) states
Then how many states does \(M \) have?
(a) \(k_1 + k_2 \)
(b) \((k_1)^2 + (k_2)^2 \)
(c) \(k_1 \times k_2 \)

Components of \(M \):

\(Q = Q_1 \times Q_2 \)
\(= \{ (q_1, q_2) | q_1 \in Q_1 \text{ and } q_2 \in Q_2 \} \)

\(q_0 = (q_1, q_2) \)

\(\delta((q, r), a) = (\delta_1(q, a), \delta_2(r, a)) \)

\(F = F_1 \times F_2 \) **NO!** [gives intersection]

\(F = (F_1 \times Q_2) \cup (Q_1 \times F_2) \)
Closure Properties continued

Theorem: If \(A_1, A_2 \) are regular languages, so is \(A_1A_2 \) (closure under \(\circ \))

Proof: Let \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognize \(A_1 \)
\(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognize \(A_2 \)

Construct \(M = (Q, \Sigma, \delta, q_0, F) \) recognizing \(A_1A_2 \)

\(M \) should accept input \(w \) if \(w = xy \) where \(M_1 \) accepts \(x \) and \(M_2 \) accepts \(y \).

Doesn’t work: Where to split \(w \)?
Quick review of today

1. Introduction, outline, mechanics, expectations
2. Finite Automata, formal definition, regular languages
3. Regular Operations and Regular Expressions
4. Proved: Class of regular languages is closed under \cup
5. Started: Closure under \circ, to be continued...