18.404/6.840 Intro to the Theory of Computation

Instructor: Mike Sipser

TAs:

- Fadi Atieh, Damian Barabonkov,
- Alex Dimitrakakis, Thomas Xiong,
- Abbas Zeitoun, and Emily Liu

18.404 Course Outline

Computability Theory 1930s – 1950s

- What is computable... or not?
- Examples:
 program verification, mathematical truth
- Models of Computation: Finite automata, Turing machines, ...

Complexity Theory 1960s – present

- What is computable in practice?
- Example: factoring problem
- P versus NP problem
- Measures of complexity: Time and Space
- Models: Probabilistic and Interactive computation

Course Mechanics

Zoom Lectures

- Live and Interactive via Chat
- Live lectures are recorded for later viewing

Zoom Recitations

- Not recorded
- Two convert to in-person
- Review concepts and more examples
- Optional unless you are having difficulty
 <u>Participation</u> can raise low grades
- Attend any recitation

Text

 Introduction to the Theory of Computation Sipser, 3rd Edition US. (Other editions ok but are missing some Exercises and Problems).

Homework bi-weekly – 35%

- More information to follow

Midterm (15%) and Final exam (25%)

- Open book and notes

Check-in quizzes for credit – 25%

- Distinct Live and Recorded versions
- Complete either one for credit within 48 hours
- Initially ungraded; full credit for participation

Course Expectations

Prerequisites

Prior substantial experience and comfort with mathematical concepts, theorems, and proofs. <u>Creativity will be needed for psets and exams.</u>

Collaboration policy on homework

- Allowed. But try problems yourself first.

4

- Write up your own solutions.
- No bibles or online materials.

Role of Theory in Computer Science

- **1.** Applications
- 2. Basic Research
- 3. Connections to other fields
- 4. What is the nature of computation?

5

Let's begin: Finite Automata

Input: finite string Output: <u>Accept</u> or <u>Reject</u>

Computation process: Begin at start state, read input symbols, follow corresponding transitions, <u>Accept</u> if end with accept state, <u>Reject</u> if not.

Examples: $01101 \rightarrow \text{Accept}$ $00101 \rightarrow \text{Reject}$

 M_1 accepts exactly those strings in A where $A = \{w | w \text{ contains substring } 11\}.$

Say that A is the language of M_1 and that M_1 recognizes A and that $A = L(M_1)$.

Finite Automata – Formal Definition

 $\delta(q, a) = r$ means (q)

Defn: A <u>finite automaton</u> M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$

- Q finite set of states
- Σ finite set of alphabet symbols
- δ transition function δ: Q × Σ → Q
- q_0 start state
- *F* set of accept states

Example:

а

►(r)

Finite Automata – Computation

Strings and languages

- A string is a finite sequence of symbols in Σ
- A <u>language</u> is a set of strings (finite or infinite)
- The empty string ε is the string of length 0
- The empty language ϕ is the set with no strings

Defn: M accepts string $w = w_1w_2 \dots w_n$ each $w_i \in \Sigma$ if there is a sequence of states $r_0, r_1, r_2, \dots, r_n \in Q$ where:

$$\begin{array}{l} -r_0 \ = \ q_0 \\ -r_i \ = \ \delta(r_{i-1},w_i) \ \mbox{for} \ \ 1 \le i \le n \\ -r_n \ \epsilon \ F \end{array}$$

Recognizing languages

- $L(M) = \{w \mid M \text{ accepts } w\}$
- L(M) is the language of M
- M recognizes L(M)

Defn: A language is <u>regular</u> if some finite automaton recognizes it.

Regular Languages – Examples

 $L(M_1) = \{w \mid w \text{ contains substring } 11\} = A$

Therefore A is regular

More examples:

Let $B = \{w | w \text{ has an even number of } 1s\}$ B is regular (make automaton for practice).

Let $C = \{w \mid w \text{ has equal numbers of 0s and 1s} \}$ C is <u>not</u> regular (we will prove).

Goal: Understand the regular languages

Regular Expressions

Regular operations. Let *A*, *B* be languages:

- <u>Union</u>: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$
- <u>Concatenation</u>: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$

- <u>Star:</u>

 $A^* = \{x_1 \dots x_k | \text{ each } x_i \in A \text{ for } k \ge 0\}$ Note: $\varepsilon \in A^*$ always

Example. Let $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$.

- $A \cup B = \{\text{good, bad, boy, girl}\}$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- A* = {ε, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ... }

Regular expressions

- Built from Σ , members Σ , \emptyset , ε [Atomic]
- By using U,o,* [Composite]

Examples:

- $(0 \cup 1)^* = \Sigma^*$ gives all strings over Σ
- $\Sigma^* 1$ gives all strings that end with 1
- $\Sigma^* 11\Sigma^* = \text{all strings that contain } 11 = L(M_1)$

Goal: Show finite automata equivalent to regular expressions

Closure Properties for Regular Languages

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under U)

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q_0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

Check-in 1.1

In the proof, if M_1 and M_2 are finite automata where M_1 has k_1 states and M_2 has k_2 states Then how many states does M have? (a) $k_1 + k_2$ (b) $(k_1)^2 + (k_2)^2$ (c) $k_1 \times k_2$ Components of *M*:

 $Q = Q_1 \times Q_2$ = {(q_1, q_2) | q_1 \in Q_1 and q_2 \in Q_2} $q_0 = (q_1, q_2)$ $\delta((q, r), a) = (\delta_1(q, a), \delta_2(r, a))$ $F = F_1 \times F_2 \quad \text{NO! [gives intersection]}$ $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$ Check-in 1.1

Closure Properties continued

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q_0, F)$ recognizing $A_1 A_2$

Quick review of today

- 1. Introduction, outline, mechanics, expectations
- 2. Finite Automata, formal definition, regular languages
- 3. Regular Operations and Regular Expressions
- 4. Proved: Class of regular languages is closed under U
- 5. Started: Closure under , to be continued...

13

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.