FINAL EXAM SOLUTIONS

1. (a) False, hierarchy theorem. (b) True, Savitch's theorem.
(c) True , PSPACE is closed under complement.
(d) Open, stated in lecture. (e) True, follows from definition.
(f) Open, implies $\mathrm{NP}=\mathrm{coNP}$ (considering language $0 S A T \cup 1 \overline{S A T}$); negation implies PSPACE \neq NP.
(g) Open, equivalent to NP = coNP. (h) Open, stated in lecture.
(i) False, implies PSPACE $=$ EXPSPACE .
(j) True, recompute bits of first reduction.
(k) Open, equivalent to NP $=$ coNP.
(1) True, $S A T$ is decidable.
(m) False, implies PSPACE $=$ NL.
(n) Open, equivalent to $\mathrm{P}=\mathrm{NP}$.
(o) True, $P A T H \in \mathrm{P}$.
(p) True, NL = coNL.
2. First, show that C is in EXPTIME. Here's the algorithm:
"On input $\langle M, w, i, j, \alpha\rangle$:
3. Run M on w for j steps. If it halts in fewer steps, reject.
4. Accept if the i th symbol of the configuration of the j th step is α. Otherwise, reject."

To analyze the running time of this algorithm, observe that to simulate one step of M we only need to update M 's configuration and the counter which records how long M has been running. Both can be done within $O(j)$ steps (actually much less is possible, but unnecessary here). We run M for at most j steps, so the total running time of this algorithm is $O\left(j^{2}\right)$, and that is exponential in the size of the input, because j represented in binary, so $|j|=\log _{2} j$ and thus $j^{2}=\left(2^{|j|}\right)^{2}=2^{2|j|} \leq 2^{2 n}$, where n is the length of the entire input.
Second, we show that C is EXPTIME-hard, that is, that every language in EXPTIME is polynomial time reducible to C. Let $A \in$ EXPTIME where M decides A in time $2^{n^{k}}$. Modify M so that when it accepts it first moves its head to the left-hand end of the tape and then enters the accept state $q_{\text {accept }}$. Then the reduction of A to C is the polynomial time computable function f, where $f(w)=\left\langle M, w, 1, j, q_{\text {accept }}\right\rangle$ and $j=2^{n^{k}}$.
3. First, SOLITAIRE \in NP because we can check in polynomial time that a solution works.

Second, show that $3 S A T \leq_{\mathrm{P}}$ SOLITAIRE.
Given ϕ with k variables x_{1}, \ldots, x_{k} and l clauses c_{1}, \ldots, c_{l}, first remove any clauses that contain both x_{i} and $\overline{x_{i}}$. These clauses are useless anyway and would mess up the coming construction. Construct the following $l \times k$ game G.
If x_{i} is in clause c_{j} put a blue stone in row c_{j}, column x_{i}.
If $\overline{x_{i}}$ is in clause c_{j} put a red stone in row c_{j}, column x_{i}.
(We can make it a square $m \times m$ by repeating a row or adding a blank column as necessary without affecting solvability).
Claim: ϕ is satisfiable iff G has a solution.
(\rightarrow) : Take a satisfying assignment. If x_{i} is true (false), remove the red (blue) stones from the corresponding column. So, stones corresponding to true literals remain. Since every clause has a true literal, every row has a stone.
(\leftarrow) : Take a game solution. If the red (blue) stones were removed from a column, set the corresponding variable true (false). Every row has a stone remaining, so every clause has a true literal. Therefore ϕ is satisfied.
4. Show that $A_{\mathrm{T} M} \leq_{\mathrm{m}} I N P$.

Assume (to get a contradiction) that TM R decides $I N P$. Construct the following TM S deciding A_{TM}.
"On input $\langle M, w\rangle$:

1. Construct the following $\mathrm{TM} M_{1}$:
"On input x :
2. If $x \in E Q_{\mathrm{REX} \uparrow}$, accept.
3. Run M on w.
4. If M accepts w, accept."
5. Run R on M_{1}.
6. If R accepts, accept; otherwise, reject."

Observe that if M accepts w, then $L\left(M_{1}\right)=\Sigma^{*}$, and if M doesn't accept w, then $L\left(M_{1}\right)=$ $E Q_{\mathrm{REX} \uparrow}$. So, $L\left(M_{1}\right) \in \mathrm{P}$ exactly when M accepts w.
5. (a) Obviously $O D D-P A R I T Y \in \mathrm{~L}$ and we know $\mathrm{L} \subseteq \mathrm{NL}$. We proved that PATH is NPcomplete and so every language in NL is log-space reducible to PATH.
Note: Giving a direct reduction from ODD-PARITY to PATH is possible too.
(b) If PATH $\leq_{\mathrm{L}} O D D-P A R I T Y$ then $P A T H \in \mathrm{~L}$ and thus $\mathrm{NL}=\mathrm{L}$, solving a big open problem.
6. We can assume without loss of generality that our BPP machine makes exactly n^{r} coin tosses on each branch. Thus the problem of determining the probability of accepting a string reduces to counting how many branches are accepting and comparing this number with $\frac{2}{3} 2^{\left(n^{r}\right)}$.
So given w, we generate all binary strings x of length n^{r} (we can do this in PSPACE) and simulate M on w using x as the source of randomness. If M accepts, then we increment a count. At the end, we see how many branches have accepted. If that number is more than $\frac{2}{3} 2^{\left(n^{r}\right)}$ we accept else we reject. This works because of the definition of what it means for a BPP machine to accept. If $w \in L$ then more than $\frac{2}{3}$ of M 's branches must accept. If $w \notin L$ then at most $\frac{1}{3}$ of its branches can accept.
7. (a) No, the prover for $\# S A T$ is not a weak Prover, as far as we know. Calculating the cooeficients of the polynomials seems to require more than polynomial time.
(b) The class weak-IP $=$ BPP. Clearly, BPP \subseteq weak-IP because the Verifier can simply ignore the Prover. Conversely, weak-IP \subseteq BPP because we can make a BPP machine which simulates both the Verifier and the weak Prover P. If $w \in A$ then P causes the Verifier to accept with high probability and so will the BPP machine. If $w \notin A$ then P causes the Verifier to accept with low probability and so will the BPP machine.

MIT OpenCourseWare
https://ocw.mit.edu/

18.404J / 18.4041J / 6.840J Theory of Computation

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

