18.404/6.840

Last time:

- NTIME(t(n)), NP

- P vs NP problem

- Dynamic Programming, Acgg € P
- Polynomial-time reducibility

Today: (Sipser §7.5)
- NP-completeness

Lecture 15

Quick Review

Defn: A is polynomial time reducibleto B (A <p B) if A <, B
by a reduction function that is computable in polynomial time.

N
o .

T 7T

Theorem: If A <p B and B €P then A €P.

f is computable in polynomial time

NP = All languages where can verify membership quickly
P = All languages where can test membership quickly

P versus NP question: Does P = NP?

SAT = {(¢)| ¢ is a satisfiable Boolean formula}

Cook-Levin Theorem: SAT € P - P=NP
Proof plan: Show that every A € NP is polynomial time reducible to SAT.

<p Example: 3SAT and CLIQUE

Defn: A Boolean formula ¢ is in Conjunctive Normal Form (CNF) if it
hastheform ¢ = (xVyVvz) A (xVsvzVvu) AN (zVu)

Y Y
clause \\ / clause

literals

Literal: a variable or a negated variable

Clause: an OR (V) of literals.

CNF: an AND (A) of clauses.

3CNF: a CNF with exactly 3 literals in each clause.

3SAT = {{¢p)| ¢ is a satisfiable 3CNF formula}

Defn: A k-cligue in a graph is a subset of k& nodes all directly connected by edges.
CLIQUE = {(G, k)| graph G contains a k-clique}

Will show: 3SAT <p CLIQUE

=

5-clique

3SAT <p CLIQUE

Theorem: 3SAT <p CLIQUE
Proof: Give polynomial-time reduction f that maps ¢ to G, k
where ¢ is satisfiable iff ¢ has a k-clique.

A satisfying assignment to a CNF formula has =1 true literal in each clause.

= (avbvc) A(avbvd) A(avecve) A - AN(xVyVz)

¢
!
G

k — G has all non-forbidden edges
= # clauses —

3SAT <p CLIQUE conclusion

= (avbvc) AN(avbvd) A (avcVve) A - AN (xVyV2z)

¢
i 5
G
k

= # clauses Check-in 15.1
Does this proof require
Claim: ¢ is satisfiable iff G has a k-clique 3 literals per clause?
(—) Take any satisfying assignment to ¢. Pick 1 true literal in each clause.

The corresponding nodes in G are a k-clique because they don’t have forbidden edges.
(<) Take any k-clique in G. It must have 1 node in each clause.
Set each corresponding literal TRUE. That gives a satisfying assignment to ¢.

(a) Yes, to prove the
claim.

(b) Yes, to show itis
in poly time.

The reduction f is computable in polynomial time. (c) No, it works for

Corollary: CLIQUE € P — 3SAT € P any size clauses.

Check-in 15.1

NP-completeness

Defn: B is NP-complete if
1) B ENP
2) ForallAENP, A<pB

next lecture

If B is NP-complete and B € P then P = NP. SAT

Cook-Levin Theorem: SAT is NP-complete today HAMPATH

Proof: Next lecture; assume true To show some language C is NP-complete,
show 3SAT <, C.

Check-in 15.2 \or some other previously shown
NP-complete language

What language that we’ve previously seen is
most analogous to SAT?

(@) Amm
(b) Emy
(c) {0k1%| k =0}

Check-in 15.2

HAMPATH is NP-complete

Theorem: HAMPATH is NP-complete

Proof: Show 3SAT <p HAMPATH (assumes 3SAT is NP-complete)
Idea: “Simulate” variables and clauses with “gadgets”

b = (VX Vxs) AN (X VxaVxy) A - A(

—

clause gadget

variable gadget Zig-zag 4 Corresponds to setting x; TRUE

Zag-zig <« Corresponds to setting x; FALSE

Construction of G

m variables
k clauses

The reduction f is computable
in polynomial time.

Check-in 15.3

Would this construction still work if we made G undirected by changing
all the arrows to lines? In other words, would this construction show that
the undirected Hamiltonian path problem is NP-complete?

(a) Yes, the construction would still work.

(b) No, the construction depends on G being directed.

Check-in 15.3

Quick review of today

NP-completeness
SAT and 3SAT

3SAT <p HAMPATH
3SAT <p CLIQUE

Strategy for proving NP-completeness: Reduce
from 3SAT by constructing gadgets that
simulate variables and clauses.

MIT OpenCourseWare

18.404) / 18.4041) / 6.840] Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit:

https://ocw.mit.edu/
https://ocw.mit.edu/terms

	Blank Page

