18.404/6.840 Lecture 15

Last time:

- NTIME(t(n)), NP
- P vs NP problem
- Dynamic Programming, $A_{\text{CFG}} \in \mathbf{P}$
- Polynomial-time reducibility

Today: (Sipser §7.5)

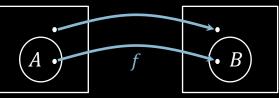
- NP-completeness

1

Quick Review

Defn: A is polynomial time reducible to B $(A \leq_P B)$ if $A \leq_m B$ by a reduction function that is computable in polynomial time.

Theorem: If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$ then $A \in \mathbf{P}$.



f is computable in polynomial time

NP

P = NP

NP = All languages where can <u>verify</u> membership quickly P = All languages where can <u>test</u> membership quickly

P versus NP question: Does P = NP?

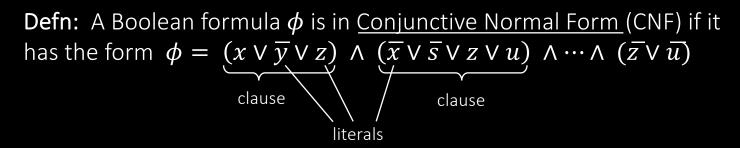
 $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Cook-Levin Theorem: $SAT \in P \rightarrow P = NP$

Proof plan: Show that every $A \in NP$ is polynomial time reducible to SAT.

Ρ

\leq_{P} Example: 3SAT and CLIQUE



Literal: a variable or a negated variable Clause: an OR (V) of literals. CNF: an AND (Λ) of clauses. 3CNF: a CNF with exactly 3 literals in each clause. 3SAT = { $\langle \phi \rangle$ | ϕ is a satisfiable 3CNF formula}

Defn: A <u>k-clique</u> in a graph is a subset of k nodes all directly connected by edges. $CLIQUE = \{\langle G, k \rangle | \text{ graph } G \text{ contains a } k\text{-clique}\}$

Will show: $3SAT \leq_{P} CLIQUE$

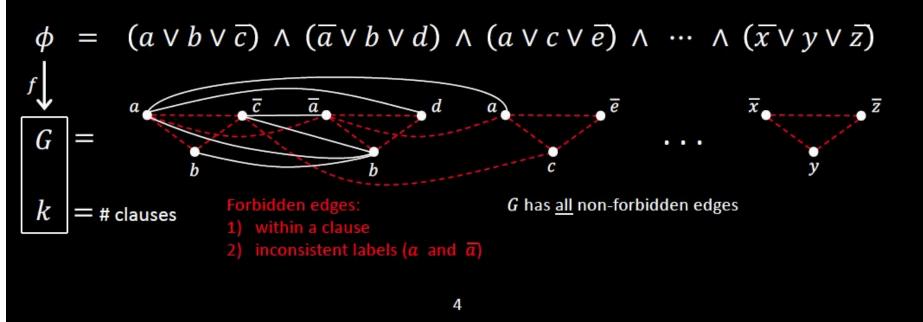
4-clique

5-clique

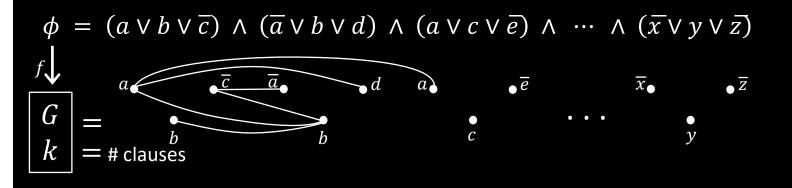
$3SAT \leq_{P} CLIQUE$

Theorem: $3SAT \leq_P CLIQUE$ Proof: Give polynomial-time reduction f that maps ϕ to G, kwhere ϕ is satisfiable iff G has a k-clique.

A satisfying assignment to a CNF formula has ≥ 1 true literal in each clause.



$3SAT \leq_{P} CLIQUE$ conclusion



Claim: ϕ is satisfiable iff G has a k-clique

(\rightarrow) Take any satisfying assignment to ϕ . Pick 1 true literal in each clause. The corresponding nodes in G are a k-clique because they don't have forbidden edges.

(\leftarrow) Take any *k*-clique in *G*. It must have 1 node in each clause. Set each corresponding literal TRUE. That gives a satisfying assignment to ϕ .

The reduction f is computable in polynomial time.

```
Corollary: CLIQUE \in P \rightarrow 3SAT \in P
```

Check-in 15.1

Does this proof require 3 literals per clause?

- (a) Yes, to prove the claim.
- (b) Yes, to show it is in poly time.
- (c) No, it works for any size clauses.

Check-in 15.1

NP-completeness

Defn: *B* is <u>NP-complete</u> if

- 1) $B \in NP$
- 2) For all $A \in NP$, $A \leq_P B$

If B is NP-complete and $B \in P$ then P = NP.

Cook-Levin Theorem: *SAT* is NP-complete Proof: Next lecture; assume true

Check-in 15.2

What language that we've previously seen is most analogous to *SAT*?

- (a) *A*_{TM}
- (b) *E*_{TM}

(c) $\{0^k 1^k | k \ge 0\}$

To show some language C is NP-complete, show $3SAT \leq_P C$.

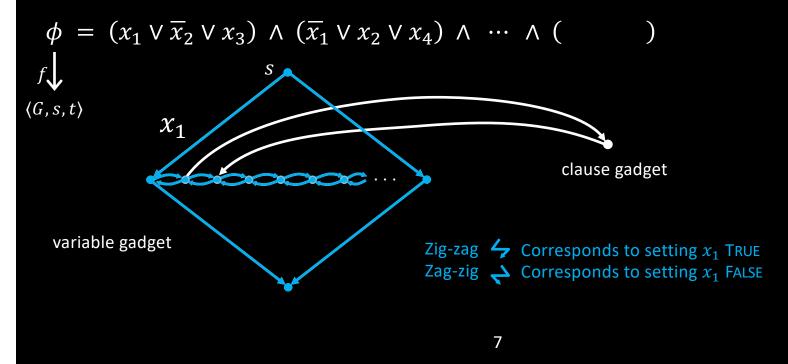
or some other previously shown
NP-complete language

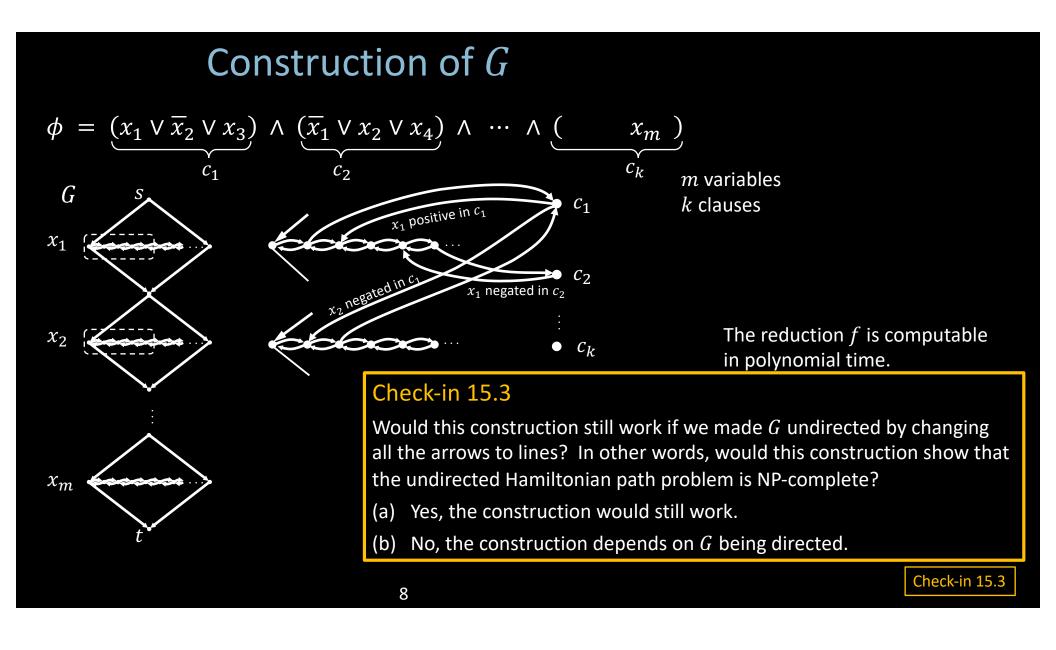
6

Check-in 15.2

HAMPATH is NP-complete

Theorem: HAMPATH is NP-complete Proof: Show $3SAT \leq_P HAMPATH$ (assumes 3SAT is NP-complete) Idea: "Simulate" variables and clauses with "gadgets"





Quick review of today

- 1. NP-completeness
- 2. *SAT* and 3*SAT*
- 3. $3SAT \leq_P HAMPATH$
- 4. $3SAT \leq_P CLIQUE$
- 5. Strategy for proving NP-completeness: Reduce from 3*SAT* by constructing gadgets that simulate variables and clauses.

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.