18.404/6.840 Lecture 15

Last time:

- NTIME($t(n))$, NP
- P vs NP problem
- Dynamic Programming, $A_{\text {CFG }} \in P$
- Polynomial-time reducibility

Today: (Sipser §7.5)

- NP-completeness

Quick Review

Defn: A is polynomial time reducible to $B\left(A \leq_{\mathrm{p}} B\right)$ if $A \leq_{\mathrm{m}} B$ by a reduction function that is computable in polynomial time.

Theorem: If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$ then $A \in \mathrm{P}$.

f is computable in polynomial time

NP = All languages where can verify membership quickly
P = All languages where can test membership quickly
P versus NP question: Does $P=N P ?$
SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$
Cook-Levin Theorem: SAT $\in \mathrm{P} \rightarrow \mathrm{P}=\mathrm{NP}$

Proof plan: Show that every $A \in N P$ is polynomial time reducible to $S A T$.

\leq_{p} Example: 3 SAT and CLIQUE

Defn: A Boolean formula ϕ is in Conjunctive Normal Form (CNF) if it has the form $\phi=\underbrace{(x \vee \bar{y} \vee z)} \wedge \underbrace{(\bar{x} \vee \bar{s} \vee z \vee u)} \wedge \cdots \wedge(\bar{z} \vee \bar{u})$ clause clause

Literal: a variable or a negated variable
Clause: an OR (V) of literals.
CNF: an AND (\wedge) of clauses.
3CNF: a CNF with exactly 3 literals in each clause.
$3 S A T=\{\langle\phi\rangle \mid \phi$ is a satisfiable 3CNF formula $\}$
Defn: A \underline{k}-clique in a graph is a subset of k nodes all directly connected by edges. CLIQUE $=\{\langle G, k\rangle \mid$ graph G contains a k-clique $\}$

Will show: 3 SAT \leq_{p} CLIQUE

$3 S A T \leq_{\mathrm{p}} C L I Q U E$

Theorem: 3 SAT \leq_{P} CLIQUE
Proof: Give polynomial-time reduction f that maps ϕ to G, k
where ϕ is satisfiable iff G has a k-clique.
A satisfying assignment to a CNF formula has ≥ 1 true literal in each clause.
$\phi=(a \vee b \vee \bar{c}) \wedge(\bar{a} \vee b \vee d) \wedge(a \vee c \vee \bar{e}) \wedge \cdots \wedge(\bar{x} \vee y \vee \bar{z})$

$k=$ \# clauses
Forbidden edges:
G has all non-forbidden edges

1) within a clause
2) inconsistent labels (a and \bar{a})

$3 S A T \leq_{\mathrm{p}}$ CLIQUE conclusion

Claim: ϕ is satisfiable iff G has a k-clique
(\rightarrow) Take any satisfying assignment to ϕ. Pick 1 true literal in each clause.
The corresponding nodes in G are a k-clique because they don't have forbidden edges.
(\leftarrow) Take any k-clique in G. It must have 1 node in each clause.
Set each corresponding literal True. That gives a satisfying assignment to ϕ.
The reduction f is computable in polynomial time.
Corollary: CLIQUE $\in \mathrm{P} \rightarrow 3 S A T \in \mathrm{P}$

Check-in 15.1

Does this proof require 3 literals per clause?
(a) Yes, to prove the claim.
(b) Yes, to show it is in poly time.
(c) No, it works for any size clauses.

NP-completeness

Defn: B is NP-complete if

1) $B \in N P$
2) For all $A \in N P, A \leq_{p} B$

If B is NP -complete and $B \in \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}$.
Cook-Levin Theorem: SAT is NP-complete Proof: Next lecture; assume true

Check-in 15.2

What language that we've previously seen is most analogous to SAT?
(a) $A_{T M}$
(b) E_{TM}
(c) $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

To show some language C is NP-complete, show $3 S A T \leq_{P} C$.
or some other previously shown NP-complete language

HAMPATH is NP-complete

Theorem: HAMPATH is NP-complete
Proof: Show $3 S A T \leq_{P}$ HAMPATH (assumes $3 S A T$ is NP-complete)
Idea: "Simulate" variables and clauses with "gadgets"

Construction of G

The reduction f is computable in polynomial time.

Check-in 15.3

Would this construction still work if we made G undirected by changing all the arrows to lines? In other words, would this construction show that the undirected Hamiltonian path problem is NP-complete?
(a) Yes, the construction would still work.
(b) No, the construction depends on G being directed.

Quick review of today

1. NP-completeness
2. SAT and $3 S A T$
3. $3 S A T \leq_{P}$ HAMPATH
4. 3 SAT \leq_{P} CLIQUE
5. Strategy for proving NP-completeness: Reduce from 3SAT by constructing gadgets that simulate variables and clauses.

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

