
 

  

   
 

 

    

  

  

18.404/6.840 Lecture 15 

Last time: 
- NTIME ! " , NP 
- P vs NP problem 
- Dynamic Programming, #CFG ∈ P 
- Polynomial-time reducibility 

Today: (Sipser §7.5) 
- NP-completeness 

1 



 

         
      

     

   

     
       

   
 

    

     
           

  

       

     

 

    

   
 

! "' 

Quick Review 

Defn: ! is polynomial time reducible to " (! ≤$ ") if ! ≤% " 
by a reduction function that is computable in polynomial time. 

Theorem:  If ! ≤$ " and " ∈ P then ! ∈ P. 

' is computable in polynomial time 

NP = All languages where can verify membership quickly 
P = All languages where can test membership quickly 

?P versus NP question: Does P = NP? 
P NP P = NP 

(!) = + + is a satisfiable Boolean formula} 

Cook-Levin Theorem: (!) ∈ P → P = NP 
Proof plan: Show that every ! ∈ NP is polynomial time reducible to (!). 

2 



   

       
   

    
      

      
        

          

    

   

   

         

  

 
     

   

≤" Example: 3$%& and '()*+, 

Defn: A Boolean formula - is in Conjunctive Normal Form (CNF) if it 
has the form - = / ∨ 1 ∨ 2 ∧ / ∨ 4 ∨ 2 ∨ 5 ∧ ⋯∧ (2 ∨ 5) 

clause clause 

literals 

Literal: a variable or a negated variable 
Clause: an OR (∨) of literals. 
CNF: an AND (∧) of clauses. 
3CNF:  a CNF with exactly 3 literals in each clause. 

3$%& = - - is a satisfiable 3CNF formula} 

Defn:  A 9-clique in a graph is a subset of k nodes all directly connected by edges. 3-clique 

'()*+, = ;, 9 graph ; contains a 9-clique} 

Will show: 3$%& ≤" '()*+, 
4-clique 5-clique 

3 





3"#$ ≤& '()*+, conclusion

- = / ∨ 1 ∨ 2 ∧ / ∨ 1 ∨ 4 ∧ / ∨ 2 ∨ 5 ∧ ⋯ ∧ 7 ∨ 8 ∨ 9

Claim:  - is satisfiable  iff  : has a ;-clique
(→)  Take any satisfying assignment to -.  Pick 1 true literal in each clause.

The corresponding nodes in G are a ;-clique because they don’t have forbidden edges.
(←)  Take any ;-clique in :.  It must have 1 node in each clause. 

Set each corresponding literal TRUE.   That gives a satisfying assignment to -. 

The reduction > is computable in polynomial time.  

Corollary:   '()*+, ∈ P → 3"#$ ∈ P

:
;

>

=
= # clauses

/

1

2 /

1

4 /

2

5 7

8

9
. . .

Check-in 15.1

Check-in 15.1
Does this proof require 
3 literals per clause?

(a) Yes, to prove the 
claim.

(b) Yes, to show it is 
in poly time. 

(c) No, it works for 
any size clauses.

5



NP-completeness

Defn:  ! is NP-complete if
1) ! ∈ NP
2) For all # ∈ NP,  # ≤% !
If ! is NP-complete and ! ∈ P then P = NP.

Cook-Levin Theorem:  '#( is NP-complete
Proof:  Next lecture; assume true

Importance of NP-completeness
1)  Showing ! is NP-complete is evidence of computational intractability.
2)  Gives a good candidate for proving P ≠ NP.

≤% '#( ≤% 3'#( ≤% +,-./0
NP

To show some language + is NP-complete, 
show  3'#( ≤1 +.   

or some other previously shown 
NP-complete language

today

next lecture

≤% 2#34#(2

Check-in 15.2

Check-in 15.2
What language that we’ve previously seen is 
most analogous to '#(?
(a) #TM

(b) 0TM

(c) 0616 8 ≥ 0} 6



!"#$"%! is NP-complete

Theorem:  !"#$"%! is NP-complete
Proof:  Show 3'"% ≤) !"#$"%! (assumes 3'"% is NP-complete)
Idea:  “Simulate” variables and clauses with “gadgets” 

* = ,- ∨ ,/ ∨ ,0 ∧ ,- ∨ ,/ ∨ ,2 ∧ ⋯ ∧

variable gadget

. . .

Zig-zag

clause gadget

4
〈6, 8, 9〉 ,-

8

Zag-zig
Corresponds to setting ,- TRUE
Corresponds to setting ,- FALSE

7



Construction of !

"# . . .

. . .

. . .

. . .

"$

"%

! &

'

( = "# ∨ "$ ∨ "+ ∧ "# ∨ "$ ∨ "- ∧ ⋯ ∧ "%

. . .

. . .

Claim:   ( is satisfiable  iff  ! has a Hamiltonian path from & to '.
(→)  Take any satisfying assignment to (. 

Make corresponding zig-zags and zag-zigs through variable gadgets from & to '.
Make detours to visit the clause nodes 01.

(←)  Take any Hamiltonian path from & to '.  
Show it must be zig-zags and zag-zigs with detours to visit all 01.
Get corresponding truth asst.  It must satisfy ( because path visits all 01.

The reduction 3 is computable 
in polynomial time.  

0#

0$

04

. . .

0# 0$ 04 5 variables
6 clauses

"# positive in 0#

"# negated in 0$
"$ negated in 0#

Check-in 15.3
Would this construction still work if we made ! undirected by changing 
all the arrows to lines?  In other words, would this construction show that 
the undirected Hamiltonian path problem is NP-complete?
(a) Yes, the construction would still work. 
(b) No, the construction depends on ! being directed.

Check-in 15.3
8



Quick review of today

1. NP-completeness

2. !"# and 3!"#
3. 3!"# ≤& '"()"#'
4. 3!"# ≤& *+,-./
5. Strategy for proving NP-completeness:  Reduce

from 3!"# by constructing gadgets that
simulate variables and clauses.

9



MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

	Blank Page



