

18.404/6.840 Lecture 20

Last time:
- Games and Quantifiers
- Generalized Geography is PSPACE-complete
- Logspace: L and NL

Today: (Sipser §8.4)
- Review NL ⊆ P
- Review NL ⊆ SPACE log% &
- NL-completeness
- NL = coNL

1

Work tape tracks n n
a .

Review: log space

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn: L = SPACE log $
NL = NSPACE log $ doesn’t count towards space used

input tape read-onlyLog space can represent a constant
number of pointers into the input. count cells used here

Examples
1 log $

work tape read/write

1. %%ℛ % ∈ Σ∗} ∈ L
2ababbaaaaaaaaaabbaba= 45, 47 , 48, 499 , … , / = ⋯ , 0 = ⋯ input tape

2. +,-. ∈ NL
correspo di g locationsWork tape tracks the current node onNondeterministically select the nodes

in the input t peof a path connecting / to 0. the guessed path. NL
L

L = NL? Unsolved

2

Review: L ⊆ P

Theorem: L ⊆ P
Proof: Say " decides # in space $ log (.
Defn: A configuration for " on) is *, ,-, ,., / where * is a state,
,- and ,. are the tape head positions, and / is the work tape contents.

The number of such configurations is 0 ×(×$ log (×23 456 7 = $((:) for some <.
,-Therefore " runs in polynomial time.

Conclusion: # ∈ P * read-only input
,.

/

3

recurse

recurse

Review: NL ⊆ SPACE log% &

Theorem: NL ⊆ SPACE log% &
Proof: Savitch’s theorem works for log space

Each recursion level stores 1 config = : log & space.
:(log &)

'()* ⋯), ˽ … ˽
Number of levels = log 2 = : log & .
Total : log% & space.

2 = 45 678 , aaba'9da⋯cab

⋯ 'accept ⋯

4

Review: NL ⊆ P

Theorem: NL ⊆ P
Proof: Say NTM " decides # in space $ log (.

Defn: The configuration graph)*,, for " on - has
nodes: all configurations for " on -
edges: edge from ./ → .1 if ./ can yield .1 in 1 step.

Claim: " accepts - iff the configuration graph)*,,

configuration graph)*,,

.23453 .466783 iff " accepts -
has a path from .23453 to .466783
Polynomial time algorithm 9 for #:
9 = “On input -
1. Construct)*,,. [polynomial size]
2. Accept if there is a path from .23453 to .466783.

./ .1

NL
P

Reject if not.”
L = P? Unsolved L

5

Defn: ! is NL-complete if
1) ! ∈ NL
2) For all # ∈ NL, # ≤% !
Log-space reducibility

NL-completeness
Check-in 20.1
If - is a log-space transducer that computes ., then
for inputs 3 of length &, how long can . 3 be?
(a) at most ' log & (d) at most 27 8

(b) at most '(&) (e) any length
(c) at most polynomial in &

-Defn: A log-space transducer is a TM with three tapes:
1. read-only input tape of size &
2. read/write work tape of size '(log &)
3. write-only output tape

A log-space transducer - computes a function .: Σ∗ → Σ∗

if - on input 3 halts with . 3 on its output tape for all 3.
Say that . is computable in log-space.

Defn: # is log-space reducible to ! (# ≤% !) if # ≤4 !
by a reduction function that is computable in log-space.

6

read-only input

read/write work
' log &

write-only output

Theorem: If # ≤% ! and ! ∈ L then # ∈ L
Proof: TM for # = “On input 3

1. Compute .(3)
2. Run decider for ! on . 3 . Output same.”

BUT we don’t have space to store .(3).
So, (re-)compute symbols of .(3) as needed.

Check-in 20.1

= 〈167 89: <: 8 =>?:〉

!"#$ is NL-complete

Theorem: !"#$ is NL-complete
Proof: 1) !"#$ ∈ NL •

.Give a log-space reduction mapping " to !"#$.

2) For all " ∈ NL, " ≤' !"#$
Let " ∈ NL be decided by NTM (in space) log - .
[Modify (to erase work tape and move heads to left end upon accepting.]

, , ; , ;=

16,7

89:;<: 8;==>?: . / = 1, 3, 4
/ ∈ " iff 1 has a path from 3 to 4

. / =

Here is a log-space transducer # to compute in log-space. 8A 8B
.

read-only input # = “on input /
/ 1. For all pairs 8A, 8B of configurations of (on /.

2. Output those pairs which are legal moves for (.read/write work 8A 8B#
) log - 3. Output 89:;<: and 8;==>?:.”

write-only output
(16,7= 8D, 8E , 8F, 8GG , …) (89:;<: = ⋯) (8;==>?: = ⋯)

7

2"#$ is NL-complete

Theorem: 2"#$ is NL-complete
Proof: 1) Show 2"#$ ∈ NL good exercise

2) Show &#$' ≤) 2"#$
Give log-space reduction f from &#$' to 2"#$.
* +, -, . = 〈1〉

For each node 3 in + put a variable 45 in 1.
For each edge (3, 7) in +, put a clause (45 → 4:) in 1 [equivalent to 45 ∨ 4:].
In addition put the clauses (4< ∨ 4<) and (4= → 4<) in 1.

Show + has an path from - to . iff 1 is unsatisfiable.
(→) Follow implications to get a contradiction.
(←) If + has no path from - to ., then assign all 45 TRUE where 3 is reachable from -,

and all other variables FALSE. That gives a satisfying assignment to 1.

Straightforward to show * is computable in log-space.
8

Theorem: If some NL-machine (log-space NTM)
computes -./ℎ, then some NL-machine computes 8.
Proof: “On input 〈1, 3〉
1. Let < ← 0
2. For each node 7
3. If -./ℎ 1, 3, 7 = YES, then < ← < + 1
4. If -./ℎ 1, 3, 7 = NO, then continue
5. Output <”

Next: Converse of above

NL = coNL (part 1/4)

Theorem (Immerman-Szelepcsényi): NL = coNL
Proof: Show !"#$ ∈ NL

Defn: NTM & computes function ': Σ∗ → Σ∗ if for all ,
1) All branches of & on , halt with ' , on the tape or reject.
2) Some branch of & on , does not reject. Check-in 20.2

Consider the statements: YES, if 1 has a path from 3 to /Let -./ℎ 1, 3, / = 5
NO, if not (1) !"#$ ∈ NL, and

-./ℎ 1, 3, 7 = YES} (2) Some NL-machine computes the -./ℎ function. Let 6 = 6 1, 3 = 7
Let 8 = 8 1, 3 = |6| What implications can we prove easily?

1 6 (a) (1) → (2) only

6 = Reachable nodes 3 (b) (2) → (1) only
8 = # reachable (c) Both implications

8 = |6| (d) Neither implication
9 Check-in 20.2

NL = coNL (part 2/4) – key idea
Theorem: If some NL-machine computes !, then some NL-machine computes "#$ℎ.
Proof: “On input 〈',), $〉
1. Compute !
2. + ← 0
3. For each node .
4. Nondeterministically go to (p) or (n)

(p) Nondeterministically pick a path from) to . of length ≤ 0. 5'
If fail, then reject.)If . = $, then output YES, else set + ← + + 1.

(n) Skip . and continue. ! = |5|
5. If + ≠ ! then reject.
6. Output NO.” [found all ! reachable nodes and none were $}

10

NL = coNL (part 3/4)
YES, if (has a path * to % of length ≤ 1 Let #$%ℎ" (, *, % = 8 NO, if not

Let 6" = 6" (, * = / #$%ℎ" (, *, / = YES}
Let !" = !" (, * = |6"|
Theorem: If some NL-machine computes !", then some NL-machine computes #$%ℎ" .
Proof: “On input 〈(, *, %〉
1. Compute !" (
2. , ← 0
3. For each node /
4. Nondeterministically go to (p) or (n) !" = |6"|(p) Nondeterministically pick a path from * to / of length ≤ 1.

If fail, then reject.
If / = %, then output YES, else set , ← , + 1.

(n) Skip / and continue.
5. If , ≠ !" then reject.
6. Output NO” [found all !" reachable nodes and none were %}

11

6"

*

*
,

7"

!" = |7"|

7"'(

Hence :;<= ∈ NL
“On input 〈*, ,, %〉
1. !? = 1.
2. Compute each !"'(from !" for 3 = 1 to @.
3. Accept if #$%ℎA(*, ,, %) = NO.
4. Reject if #$%ℎA(*, ,, %) = YES.”

NL = coNL (part 4/4)

Theorem: If some NL-machine computes !", then some NL-machine computes #$%ℎ"'(.
Proof: “On input 〈*, ,, %〉
1. Compute !
2. . ← 0
3. For each node 1
4. Nondeterministically go to (p) or (n)

(p) Nondeterministically pick a path from , to 1 of length ≤ 3.
If fail, then reject.
If 1 has an edge to %, then output YES, else set . ← . + 1.

(n) Skip 1 and continue. Check-in 20.3
5. If . ≠ !" then reject. Can we now show 2E;< is NL-complete?
6. Output NO.” [found all !" reachable nodes (a) No.

and none had an edge to %} (b) Yes.

Corollary: Some NL-machine computes !"'(from !" . Yes: :;<= ≤F :;<= & :;<= ≤F 2E;<

So :;<= ≤F 2E;< thus :;<= ≤F 2E;<

12 Check-in 20.3

Quick review of today

1. Log-space reducibility

2. L = NL? question

3. !"#$ is NL-complete

4. 2&"# is NL-complete

5. NL = coNL

13

MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

