18.404/6.840 Lecture 20

Last time:

- Games and Quantifiers
- Generalized Geography is PSPACE-complete
- Logspace: L and NL

Today: (Sipser §8.4)

- Review NL \subseteq P
- Review NL \subseteq SPACE $\left(\log ^{2} n\right)$
- NL-completeness
- NL = coNL

Review: log space

Model: 2-tape TM with read-only input tape for defining sublinear space computation.
Defn: L = SPACE $(\log n)$
NL $=$ NSPACE $(\log n)$
Log space can represent a constant number of pointers into the input.

Examples

1. $\left\{w w^{\mathcal{R}} \mid w \in \Sigma^{*}\right\} \in \mathrm{L}$
2. PATH $\in \mathrm{NL}$

Nondeterministically select the nodes of a path connecting s to t.

Review: $\mathrm{L} \subseteq \mathrm{P}$

Theorem: $\mathrm{L} \subseteq \mathrm{P}$
Proof: Say M decides A in space $O(\log n)$.
Defn: A configuration for M on w is $\left(q, p_{1}, p_{2}, t\right)$ where q is a state, p_{1} and p_{2} are the tape head positions, and t is the work tape contents.

The number of such configurations is $|Q| \times n \times O(\log n) \times d^{O(\log n)}=O\left(n^{k}\right)$ for some k.
Therefore M runs in polynomial time.
Conclusion: $A \in \mathrm{P}$

Review: $\mathrm{NL} \subseteq \operatorname{SPACE}\left(\log ^{2} n\right)$

Theorem: NL \subseteq SPACE $\left(\log ^{2} n\right)$
Proof: Savitch's theorem works for log space
Each recursion level stores 1 config $=O(\log n)$ space.
Number of levels $=\log t=O(\log n)$.
Total $O\left(\log ^{2} n\right)$ space.

Review: $N L \subseteq P$

Theorem: $\mathrm{NL} \subseteq \mathrm{P}$
Proof: Say NTM M decides A in space $O(\log n)$.
Defn: The configuration graph $G_{M, w}$ for M on w has nodes: all configurations for M on w
edges: edge from $c_{i} \rightarrow c_{j}$ if c_{i} can yield c_{j} in 1 step.
Claim: M accepts w iff the configuration graph $G_{M, w}$ has a path from $c_{\text {start }}$ to $c_{\text {accept }}$

Polynomial time algorithm T for A :
$T=$ "On input w

1. Construct $G_{M, w}$. [polynomial size]
2. Accept if there is a path from $c_{\text {start }}$ to $c_{\text {accept }}$. Reject if not."
configuration graph $G_{M, w}$

NL-completeness

Check-in 20.1

If T is a log-space transducer that computes f, then for inputs w of length n, how long can $f(w)$ be?
(a) at most $O(\log n)$
(d) at most $2^{O(n)}$
(b) at most $O(n)$
(e) any length
(c) at most polynomial in n
Defn: A log-space transducer is a TM with three tapes:

1. read-only input tape of size n
2. read/write work tape of size $O(\log n)$

3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ if T on input w halts with $f(w)$ on its output tape for all w. Say that f is computable in log-space.

Defn: A is log-space reducible to $B\left(A \leq_{\mathrm{L}} B\right)$ if $A \leq_{\mathrm{m}} B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{\mathrm{L}} B$ and $B \in \mathrm{~L}$ then $A \in \mathrm{~L}$ Proof: TM for $A=$ "On input w

1. Compute $f(w)$
2. Run decider for B on $f(w)$. Output same."

BUT we don't have space to store $f(w)$.
So, (re-)compute symbols of $f(w)$ as needed.

PATH is NL-complete

Theorem: PATH is NL-complete
Proof: 1) PATH ENL \checkmark
2) For all $A \in N L, A \leq{ }_{\mathrm{L}} P A T H$

Let $A \in \mathrm{NL}$ be decided by NTM M in space $O(\log n)$.
[Modify M to erase work tape and move heads to left end upon accepting.]
Give a log-space reduction f mapping A to PATH.

$$
f(w)=\langle G, s, t\rangle
$$

$w \in A$ iff G has a path from s to t
Here is a log-space transducer T to compute f in log-space.

$T=$ "on input w

1. For all pairs c_{i}, c_{j} of configurations of M on w.
2. Output those pairs which are legal moves for M.
3. Output $c_{\text {start }}$ and $c_{\text {accept. }}$."

$\overline{2 S A T}$ is NL-complete

Theorem: $\overline{2 S A T}$ is NL-complete

Proof: 1) Show $\overline{2 S A T} \in N L$ good exercise
2) Show PATH $\leq_{L} \overline{2 S A T}$

Give log-space reduction from PATH to $\overline{2 S A T}$.

$$
f(\langle G, s, t\rangle)=\langle\phi\rangle
$$

For each node u in G put a variable x_{u} in ϕ.
For each edge (u, v) in G, put a clause $\left(x_{u} \rightarrow x_{v}\right)$ in ϕ [equivalent to $\left(\overline{x_{u}} \vee x_{v}\right)$].
In addition put the clauses $\left(x_{s} \vee x_{S}\right)$ and $\left(x_{t} \rightarrow \overline{x_{S}}\right)$ in ϕ.
Show G has an path from s to t iff ϕ is unsatisfiable.
(\rightarrow) Follow implications to get a contradiction.
(\leftarrow) If G has no path from s to t, then assign all x_{u} TRUE where u is reachable from s, and all other variables FalSE. That gives a satisfying assignment to ϕ.

Straightforward to show f is computable in log-space.

NL = coNL (part 1/4)

Theorem (Immerman-Szelepcsényi): NL = coNL
Proof: Show $\overline{\text { PATH }} \in$ NL
Defn: NTM M computes function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ if for all w

1) All branches of M on w halt with $f(w)$ on the tape or reject.
2) Some branch of M on w does not reject.

Let $\operatorname{path}(G, s, t)=\left\{\begin{array}{l}\mathrm{YES}, \text { if } G \text { has a path from } s \text { to } t \\ \text { NO, if not }\end{array}\right.$
Let $R=R(G, s)=\{u \mid \operatorname{path}(G, s, u)=\mathrm{YES}\}$
Let $c=c(G, s)=|R|$
$R=$ Reachable nodes
$c=$ \# reachable

Check-in 20.2
Consider the statements:
(1) $\overline{P A T H} \in \mathrm{NL}$, and
(2) Some NL-machine computes the path function.

What implications can we prove easily?
(a) (1) \rightarrow (2) only
(b) (2) \rightarrow (1) only
(c) Both implications
(d) Neither implication

NL = coNL (part 2/4) - key idea

Theorem: If some NL-machine computes c, then some NL-machine computes path.
Proof: "On input $\langle G, s, t\rangle$

1. Compute c
2. $k \leftarrow 0$
3. For each node u
4. Nondeterministically go to (p) or (n)
(p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.
If $u=t$, then output YES, else set $k \leftarrow k+1$.
(n) Skip u and continue.
5. If $k \neq c$ then reject.

6. Output NO." [found all c reachable nodes and none were t \}

NL = coNL (part 3/4)

Let path $d_{d}(G, s, t)=\left\{\begin{array}{l}\text { YES, if } G \text { has a path } s \text { to } t \text { of length } \leq d \\ \text { NO, if not }\end{array}\right.$
Let $R_{d}=R_{d}(G, s)=\left\{u \mid \operatorname{path}_{d}(G, s, u)=\mathrm{YES}\right\}$
Let $c_{d}=c_{d}(G, s)=\left|R_{d}\right|$
Theorem: If some NL-machine computes c_{d}, then some NL-machine computes path ${ }_{d}$.
Proof: "On input $\langle G, s, t\rangle$

1. Compute c_{d}
2. $k \leftarrow 0$
3. For each node u
4. Nondeterministically go to (p) or (n)
(p) Nondeterministically pick a path from s to u of length $\leq d$.
 If fail, then reject.
If $u=t$, then output YES, else set $k \leftarrow k+1$.
(n) Skip u and continue.
5. If $k \neq c_{d}$ then reject.
6. Output NO" [found all c_{d} reachable nodes and none were t \}

NL = coNL (part 4/4)

Theorem: If some NL-machine computes c_{d}, then some NL-machine computes $p a t h_{d+1}$.
Proof: "On input $\langle G, s, t\rangle$

1. Compute c
2. $k \leftarrow 0$
3. For each node u
4. Nondeterministically go to (p) or (n)
(p) Nondeterministically pick a path from s to u of length $\leq d$.

If fail, then reject.
If u has an edge to t, then output YES, else set $k \leftarrow k+1$.
(n) Skip u and continue.
5. If $k \neq c_{d}$ then reject.
6. Output NO." [found all c_{d} reachable nodes and none had an edge to $t\}$

Corollary: Some NL-machine computes c_{d+1} from c_{d}.

Check-in 20.3
Can we now show 2SAT is NL-complete?
(a) No.
(b) Yes.

Yes: $\overline{P A T H} \leq_{\mathrm{L}} P A T H$ \& PATH $\leq_{\mathrm{L}} \overline{2 S A T}$
So $\overline{P A T H} \leq_{\mathrm{L}} \overline{2 S A T}$ thus PATH $\leq_{\mathrm{L}} 2 S A T$

Quick review of today

1. Log-space reducibility
2. $\mathrm{L}=\mathrm{NL}$? question
3. PATH is NL-complete
4. $\overline{2 S A T}$ is NL-complete
5. $\mathrm{NL}=\mathrm{coNL}$

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

