
 

   
  

    

    
  
  

 

 
   

18.404/6.840 Lecture 20 

Last time: 
- Games and Quantifiers 
- Generalized Geography is PSPACE-complete 
- Logspace:  L and NL 

Today: (Sipser §8.4) 
- Review NL ⊆ P 
- Review NL ⊆ SPACE log% & 
- NL-completeness 
- NL = coNL 
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Work tape tracks n n
a .

Review: log space 

Model: 2-tape TM with read-only input tape for defining sublinear space computation. 

Defn: L = SPACE log $ 
NL = NSPACE log $ doesn’t count towards space used 

input tape read-onlyLog space can represent a constant 
number of pointers into the input. count cells used here 

Examples 
1 log $ 

work tape read/write 

1. %%ℛ % ∈ Σ∗} ∈ L 
2ababbaaaaaaaaaabbaba= 45, 47 , 48, 499 , … , / = ⋯ , 0 = ⋯ input tape

2. +,-. ∈ NL 
correspo di g locationsWork tape tracks the current node onNondeterministically select the nodes 

in the input t peof a path connecting / to 0. the guessed path. NL 
L 

L = NL? Unsolved 
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Review: L ⊆ P 

Theorem: L ⊆ P 
Proof: Say " decides # in space $ log ( . 
Defn: A configuration for " on ) is *, ,-, ,., / where * is a state, 
,- and ,. are the tape head positions, and / is the work tape contents. 

The number of such configurations is 0 ×(×$ log ( ×23 456 7 = $((:) for some <. 
,-Therefore " runs in polynomial time. 

Conclusion: # ∈ P * read-only input 
,. 

/ 
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recurse 

recurse 

Review: NL ⊆ SPACE log% & 

Theorem: NL ⊆ SPACE log% & 
Proof: Savitch’s theorem works for log space 

Each recursion level stores 1 config = : log & space. 
:(log &) 

'()* ⋯ ), ˽ … ˽ 
Number of levels = log 2 = : log & . 
Total : log% & space. 

2 = 45 678 , aaba'9da⋯cab 

⋯ 'accept ⋯ 
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Review: NL ⊆ P 

Theorem: NL ⊆ P 
Proof: Say NTM " decides # in space $ log ( . 

Defn: The configuration graph )*,, for " on - has 
nodes: all configurations for " on -
edges: edge from ./ → .1 if ./ can yield .1 in 1 step. 

Claim: " accepts - iff the configuration graph )*,, 

configuration graph )*,, 

.23453 .466783 iff " accepts -
has a path from .23453 to .466783 
Polynomial time algorithm 9 for #:
9 = “On input -
1. Construct )*,,. [polynomial size] 
2. Accept if there is a path from .23453 to .466783. 

./ .1 

NL 
P 

Reject if not.” 
L = P? Unsolved L 
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Defn: ! is NL-complete if
1) ! ∈ NL
2) For all # ∈ NL, # ≤% !
Log-space reducibility

NL-completeness 
Check-in 20.1 
If - is a log-space transducer that computes ., then 
for inputs 3 of length &, how long can . 3 be? 
(a) at most ' log & (d) at most 27 8 

(b) at most '(&) (e) any length 
(c) at most polynomial in & 

-Defn: A log-space transducer is a TM with three tapes: 
1. read-only input tape of size & 
2. read/write work tape of size '(log &) 
3. write-only output tape 

A log-space transducer - computes a function .: Σ∗ → Σ∗ 

if - on input 3 halts with . 3 on its output tape for all 3. 
Say that . is computable in log-space. 

Defn: # is log-space reducible to ! (# ≤% !) if # ≤4 ! 
by a reduction function that is computable in log-space. 

6 

read-only input 

read/write work 
' log & 

write-only output 

Theorem:  If # ≤% ! and ! ∈ L then # ∈ L 
Proof: TM for # = “On input 3 

1. Compute .(3) 
2. Run decider for ! on . 3 . Output same.” 

BUT we don’t have space to store .(3). 
So, (re-)compute symbols of .(3) as needed. 

Check-in 20.1 



  
        

  
      

             

      

      
     

 

 

 

 
      

       
 

 

 
  

  

    
    

 

   

 

      
     

 

    

 
    

  
   

            

= 〈167 89: <: 8 =>?:〉

!"#$ is NL-complete 

Theorem: !"#$ is NL-complete 
Proof: 1) !"#$ ∈ NL •

.Give a log-space reduction mapping " to !"#$. 

2)   For all " ∈ NL, " ≤' !"#$ 
Let " ∈ NL be decided by NTM ( in space ) log - . 
[Modify ( to erase work tape and move heads to left end upon accepting.] 

, , ; , ;= 

16,7 

89:;<: 8;==>?: . / = 1, 3, 4 
/ ∈ " iff 1 has a path from 3 to 4 

. / = 

Here is a log-space transducer # to compute in log-space. 8A 8B 
. 

read-only input # = “on input /
/ 1. For all pairs 8A, 8B of configurations of ( on /. 

2. Output those pairs which are legal moves for (.read/write work 8A 8B# 
) log - 3. Output 89:;<: and 8;==>?:.” 

write-only output 
(16,7= 8D, 8E , 8F, 8GG , … ) (89:;<: = ⋯) (8;==>?: = ⋯) 
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2"#$ is NL-complete 

Theorem: 2"#$ is NL-complete 
Proof: 1) Show 2"#$ ∈ NL good exercise 

2) Show &#$' ≤) 2"#$ 
Give log-space reduction f from &#$' to 2"#$.
* +, -, . = 〈1〉 

For each node 3 in + put a variable 45 in 1. 
For each edge (3, 7) in +, put a clause (45 → 4:) in 1 [equivalent to 45 ∨ 4: ]. 
In addition put the clauses (4< ∨ 4<) and (4= → 4<) in 1. 

Show + has an path from - to . iff 1 is unsatisfiable. 
(→) Follow implications to get a contradiction. 
(←) If + has no path from - to ., then assign all 45 TRUE where 3 is reachable from -, 

and all other variables FALSE. That gives a satisfying assignment to 1. 

Straightforward to show * is computable in log-space. 
8 



     
   

    
       

    

 

  

      
   

     
    

   
 

    
 
 

   

    

   

 

 
  

 
     

     

 

 

 

  

     
   
  

        

       
   

  

   
 

   

Theorem:  If some NL-machine (log-space NTM)
computes -./ℎ, then some NL-machine computes 8.
Proof: “On input 〈1, 3〉
1.  Let < ← 0
2. For each node 7
3.     If -./ℎ 1, 3, 7 = YES, then < ← < + 1
4.     If -./ℎ 1, 3, 7 = NO, then continue
5. Output <”

Next: Converse of above

NL = coNL (part 1/4) 

Theorem (Immerman-Szelepcsényi): NL = coNL 
Proof: Show !"#$ ∈ NL 

Defn: NTM & computes function ': Σ∗ → Σ∗ if for all , 
1) All branches of & on , halt with ' , on the tape or reject. 
2) Some branch of & on , does not reject. Check-in 20.2 

Consider the statements: YES, if 1 has a path from 3 to /Let -./ℎ 1, 3, / = 5 
NO, if not (1) !"#$ ∈ NL, and 

-./ℎ 1, 3, 7 = YES} (2) Some NL-machine computes the -./ℎ function. Let 6 = 6 1, 3 = 7 
Let 8 = 8 1, 3 = |6| What implications can we prove easily? 

1 6 (a) (1) → (2) only 

6 = Reachable nodes 3 (b) (2) → (1) only 
8 = # reachable (c) Both implications 

8 = |6| (d) Neither implication 
9 Check-in 20.2 



     
       

   
   
  
    
          

        
 
    

  
 

        

   
 

 
 

   

   
 

 

NL = coNL (part 2/4) – key idea 
Theorem:  If some NL-machine computes !, then some NL-machine computes "#$ℎ. 
Proof: “On input 〈', ), $〉 
1. Compute ! 
2. + ← 0 
3. For each node . 
4. Nondeterministically go to (p) or (n) 

(p) Nondeterministically pick a path from ) to . of length ≤ 0. 5' 
If fail, then reject. )If . = $, then output YES, else set + ← + + 1. 

(n) Skip . and continue. ! = |5|
5.  If + ≠ ! then reject. 
6. Output NO.” [found all ! reachable nodes and none were $} 
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NL = coNL (part 3/4) 
YES, if ( has a path * to % of length ≤ 1 Let #$%ℎ" (, *, % = 8 NO, if not 

Let 6" = 6" (, * = / #$%ℎ" (, *, / = YES} 
Let !" = !" (, * = |6"| 
Theorem:  If some NL-machine computes !", then some NL-machine computes #$%ℎ" . 
Proof: “On input 〈(, *, %〉 
1. Compute !" (
2. , ← 0 
3. For each node / 
4. Nondeterministically go to (p) or (n) !" = |6"|(p) Nondeterministically pick a path from * to / of length ≤ 1. 

If fail, then reject. 
If / = %, then output YES, else set , ← , + 1. 

(n) Skip / and continue. 
5.  If , ≠ !" then reject. 
6. Output NO” [found all !" reachable nodes and none were %} 
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*
,

7"

!" = |7"|

7"'(

Hence :;<= ∈ NL
“On input 〈*, ,, %〉
1. !? = 1.
2. Compute each !"'( from !" for 3 = 1 to @.
3. Accept if #$%ℎA(*, ,, %) = NO.
4. Reject if #$%ℎA(*, ,, %) = YES.”

NL = coNL (part 4/4) 

Theorem:  If some NL-machine computes !", then some NL-machine computes #$%ℎ"'(. 
Proof: “On input 〈*, ,, %〉 
1. Compute ! 
2. . ← 0 
3. For each node 1 
4. Nondeterministically go to (p) or (n) 

(p) Nondeterministically pick a path from , to 1 of length ≤ 3. 
If fail, then reject. 
If 1 has an edge to %, then output YES, else set . ← . + 1. 

(n) Skip 1 and continue. Check-in 20.3 
5.  If . ≠ !" then reject. Can we now show 2E;< is NL-complete? 
6. Output NO.” [found all !" reachable nodes (a) No. 

and none had an edge to %} (b) Yes. 

Corollary: Some NL-machine computes !"'( from !" . Yes: :;<= ≤F :;<= & :;<= ≤F 2E;< 

So :;<= ≤F 2E;< thus :;<= ≤F 2E;< 

12 Check-in 20.3 



   

 

  

 

 

 

 

 

Quick review of today 

1. Log-space reducibility 

2. L = NL? question 

3. !"#$ is NL-complete 

4. 2&"# is NL-complete 

5. NL = coNL 
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