18.404/6.840 Lecture 20

1

Last time:

- Games and Quantifiers
- Generalized Geography is PSPACE-complete
- Logspace: L and NL

Today: (Sipser §8.4)

- Review $NL \subseteq P$
- Review NL \subseteq SPACE $(\log^2 n)$
- NL-completeness
- -NL = coNL

Review: log space

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Review: $L \subseteq P$

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Defn: A configuration for M on w is (q, p_1, p_2, t) where q is a state, p_1 and p_2 are the tape head positions, and t is the work tape contents.

The number of such configurations is $|Q| \times n \times O(\log n) \times d^{O(\log n)} = O(n^k)$ for some k.

Therefore M runs in polynomial time. Conclusion: $A \in P$

Review: $NL \subseteq SPACE(\log^2 n)$

Review: $NL \subseteq P$

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The <u>configuration graph</u> $G_{M,w}$ for M on w has **nodes:** all configurations for M on w**edges:** edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: *M* accepts *w* iff the configuration graph $G_{M,w}$ has a path from c_{start} to c_{accept}

Polynomial time algorithm *T* for *A*:

- T = "On input w
- 1. Construct $G_{M,w}$. [polynomial size]
- 2. Accept if there is a path from c_{start} to c_{accept} . Reject if not."

NL-completeness

Check-in 20.1

If T is a log-space transducer that computes f, then for inputs w of length n, how long can f(w) be?

- (a) at most $O(\log n)$
- (d) at most $2^{O(n)}$

(b) at most O(n)

- (e) any length
- (c) at most polynomial in n

Defn: A log-space transducer is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is <u>log-space reducible</u> to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{L} B$ and $B \in L$ then $A \in L$ Proof: TM for A = "On input w

- 1. Compute f(w)
- 2. Run decider for B on f(w). Output same."

BUT we don't have space to store f(w). So, (re-)compute symbols of f(w) as needed. Check-in 20.1

PATH is NL-complete

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in NL$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

 $f(w) = \langle G, s, t \rangle$

 $w \in A$ iff G has a path from s to t

Here is a log-space transducer T to compute f in log-space.

T = "on input w

- 1. For all pairs c_i , c_j of configurations of M on w.
- 2. Output those pairs which are legal moves for *M*.
- 3. Output c_{start} and c_{accept} ."

ξ

2SAT is NL-complete

Theorem: 2SAT is NL-complete Proof: 1) Show $\overline{2SAT} \in NL$ good exercise 2) Show $PATH \leq_L \overline{2SAT}$ Give log-space reduction f from PATH to $\overline{2SAT}$. $f(\langle G, s, t \rangle) = \langle \phi \rangle$

For each node u in G put a variable x_u in ϕ . For each edge (u, v) in G, put a clause $(x_u \to x_v)$ in ϕ [equivalent to $(\overline{x_u} \lor x_v)$]. In addition put the clauses $(x_s \lor x_s)$ and $(x_t \to \overline{x_s})$ in ϕ .

Show G has an path from s to t iff ϕ is unsatisfiable.

- (\rightarrow) Follow implications to get a contradiction.
- (\leftarrow) If G has no path from s to t, then assign all x_u TRUE where u is reachable from s, and all other variables FALSE. That gives a satisfying assignment to ϕ .

Straightforward to show f is computable in log-space.

8

NL = coNL (part 1/4)

Theorem (Immerman-Szelepcsényi): NL = coNLProof: Show $\overline{PATH} \in NL$

Defn: NTM *M* computes function $f: \Sigma^* \to \Sigma^*$ if for all *w*

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of *M* on *w* does not reject.

Let $path(G, s, t) = \begin{cases} YES, & \text{if } G \text{ has a path from } s \text{ to } t \\ NO, & \text{if not} \end{cases}$ Let $R = R(G, s) = \{u \mid path(G, s, u) = YES\}$ Let c = c(G, s) = |R|

R = Reachable nodes *c* = # reachable

9

Check-in 20.2

Consider the statements:

- (1) $\overline{PATH} \in NL$, and
- (2) Some NL-machine computes the *path* function.

What implications can we prove *easily*?

- (a) $(1) \rightarrow (2)$ only
- (b) $(2) \rightarrow (1)$ only
- (c) Both implications
- (d) Neither implication

Check-in 20.2

NL = coNL (part 2/4) - key idea

Theorem: If some NL-machine computes c, then some NL-machine computes path. Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node u
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.

If u = t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c$ then *reject*.
- 6. Output NO." [found all *c* reachable nodes and none were *t*}

NL = coNL (part 3/4)

Let $path_d(G, s, t) = \begin{cases} YES, \text{ if } G \text{ has a path } s \text{ to } t \text{ of length} \leq d \\ NO, \text{ if not} \end{cases}$ Let $R_d = R_d(G, s) = \{u \mid path_d(G, s, u) = YES\}$ Let $c_d = c_d(G, s) = |R_d|$

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_d$. Proof: "On input (G, s, t)

- 1. Compute *c*_d
- 2. *k* ← 0
- 3. For each node u
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then *reject*.

If u = t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then *reject*.
- 6. Output NO" [found all c_d reachable nodes and none were t}

NL = coNL (part 4/4)

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. Proof: "On input (G, s, t)

12

- 1. Compute *c*
- 2. *k* ← 0
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$.
 - If fail, then reject.

If u has an edge to t, then output YES, else set $k \leftarrow k \pm$

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then *reject*.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes c_{d+1} from c_d .

<u>+ 1.</u>
Check-in 20.3
Can we now show 2 <i>SAT</i> is NL-complete?
(a) No.
(b) Yes.
Yes: $\overline{PATH} \leq_{L} PATH \& PATH \leq_{L} \overline{2SAT}$
So $\overline{PATH} \leq_{\mathrm{L}} \overline{2SAT}$ thus $PATH \leq_{\mathrm{L}} 2SAT$
Chock in 20.2

Quick review of today

- 1. Log-space reducibility
- 2. L = NL? question
- 3. *PATH* is NL-complete
- 4. $\overline{2SAT}$ is NL-complete
- 5. NL = coNL

13

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.