

18.404/6.840 Lecture 24

Last time:
- Probabilistic computation
- The class BPP
- Branching programs
- Arithmetization
- Started showing !" ROBP ∈ BPP

Today: (Sipser §10.2)
- Finish !" ROBP ∈ BPP

1

-

Review: Probabilistic TMs and BPP

coin flip step

each choice has

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM

where each computation step has 1 or 2 possible choices. deterministic

step
50% probability

Defn: For ! ≥ 0 say PTM $ decides language % with error probability !
if for every & , Pr[$ gives the wrong answer about & ∈ %] ≤ ! .

Defn: BPP = % some poly-time PTM decides % with error ! = +⁄, }
Check-in 24.1
Actually using a probabilistic algorithm

Amplification lemma: 2−. /01 2 presupposes a source of randomness.

Can we use a standard pseudo-random

number generator (PRG) as the source?
& ∈ % & ∉ % (a) Yes, but the result isn’t guaranteed.

(b) Yes, but it will run in exponential time.
Many Few Few Many

(c) No, a TM cannot implement a PRG. accepting rejecting accepting rejecting

(d) No, because that would show P = BPP.

2 Check-in 24.1

Review: Branching Programs

Boolean Labeling

Alternative way to view BP computation
Show by example: Input is !" = 0, !# = 1, !$ = 1
The BP follows its execution path.

!"
1

Label all nodes and edges on the execution path with 1
01 1

0 and off the execution path with 0.
Output the label of the output node 1.

1 !# 1 !#
0

0 Obtain the labeling inductively by using these rules: 0 1 0 1
0 0

0 1 '

0 1 ' ∧ !) ' ∧ !) '" ∨ '# ∨ '$

!$!$!)
1 '"

'#
'$1 0

0 0 0 1 0

0 1 = output 0 1
Label outgoing edges from nodes Label nodes from incoming edges

4

Arithmetization Method

Method: Simulate ∧ and ∨ with + and ×.

%&
0 1

'

' (1 − %&) ' %&

' ,
' -

' .

' , + ' - + ' .

%,

%- %-

0 1

0 1

%. %.

0
1 0

1

0
1 0

1

Replace Boolean labeling with arithmetical labeling
Inductive rules:
Start node labeled 1

' ∧ / → ' ×/ = '/
' → 1 − '

' ∨ / → ' + / − '/

Simulate ∨ with + because the BP is acyclic.
The execution path can enter a node
at most one time.

' ∧ %&' ∧ %& ' , ∨ ' - ∨ ' .

5

! "

! # ! #

0 1

0 1

0 1 0
1

Non-Boolean Labeling
Use the arithmetized interpretation of the BP’s computation
to define its operation on non-Boolean inputs.
Example: ! " = 2, ! # = 3 Output = −7

! (
0 1

)

) (1 − ! ()) ! (
) "

) #
) -

) " +) # +) -

1

−1 = 1 1 − 2 1 2 = 2

2

8 = 2 + 6

2 = −1 1 − 3

−3 = −1 3 2 3 = 6

2 1 − 3 = −4

−1

−3 + −4 = −7

Recall labeling rules:

Algorithm sketch for 45 ROBP: “On input : " , : #
1. Pick a random non-Boolean input assignment.
2. Evaluate : " and : # on that assignment.
3. If : " and : # disagree then reject.

If they agree then accept.”

More details and correctness proof to come.
First some algebra…

6

Roots of Polynomials
Let ! " = $%" & + $(" &) (+ $* " &) * + ⋯+ $& be a polynomial.
If , is some constant and ! , = 0 call , a root of ! .

Polynomial Lemma: If ! " ≠ 0 is polynomial of degree ≤ 0 then ! has ≤ 0 roots.
Proof by induction (see text).

Corollary 1: If ! ((") and ! * (") are both degree ≤ 0 and ! (≠ ! *
then ! (, = ! * (,) for ≤ 0 values , .
Proof: Let ! = ! (− ! * .

Above holds for any field 4 (a field is a set with + and × operations that have typical properties).
We will use a finite field 46 with 7 elements where 7 is prime and +, × operate mod 7.

Corollary 2: If ! " ≠ 0 has degree ≤ 0 and we pick a random 8 ∈ 46 , then Pr ! 8 = 0 ≤ ⁄& 6.
Proof: There are at most 0 roots out of 7 possibilities.

Theorem (Schwartz-Zippel): If ! " (, … , "= ≠ 0 has degree ≤ 0 in each ">and
we pick random 8(, … , 8= ∈ 46 then Pr ! 8(, … , 8= = 0 ≤ ⁄=& 6
Proof by induction (see text).

roots

7

! "

! # ! #

0 1

0 1

0 1
0

1

Symbolic Execution
Leave the ! $ as variables and obtain an expression in the ! $
for the output of the BP.

1

1 − ! " ! "

1 − ! " 1 − ! #
+ (! ") ! #

(1 − ! ") 1 − ! #

1 − ! " (x#)
(! ") ! #

(! ") 1 − ! #

1 − ! " x#
+ (! ") 1 − ! #

! $
0 1

+

+(1 − ! $) +! $

+" +# +,

+" + +# + +,

Recall
labeling rules:

1 − ! " ! "

= output

= 1 − ! " x# , 1 − ! , ! . ⋯ (1 − ! 0)
+ ! " ! # ! , 1 − ! . ⋯ ! 0
+ ! " 1 − ! # 1 − ! , ! . ⋯ (! 0)

⋮

+ ! " ! # 1 − ! , ! . ⋯ (! 0)

form of
output

Corresponds to the TRUE rows in the
truth table of the Boolean function

Exponents ≤ 1
due to “read-once”

Assume read exactly once so that for each 3
(! $) or (1 − ! $) appears in every row

8

Algorithm for !"ROBP = “On input (), (+ [on variables ,), … , ,.]

1. Find a prime / ≥ 32.

2. Pick a random non-Boolean input assignment 3 = 3), … , 3. where each 34 ∈ 67.

3. Evaluate () and (+ on 3 by using arithmetization.

4. If () and (+ agree on 3 then accept.
If they disagree then reject.”

Claim: (1) () ≡ (+ → Pr :) 3 = :+ 3 = 1
(2) () ≢ (+ → Pr :) 3 = :+ 3 ≤ ⁄) ?

Proof (1): If () ≡ (+ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials :) and :+ are identical.

Thus :) and :+ always agree (even on non-Boolean inputs).

Proof (2): If () ≢ (+ then :) ≠ :+ so : = :) − :+ ≠ 0.

From Schwartz-Zippel, Pr :) 3 = :+ 3 ≤ ⁄C. 7 ≤ ⁄. ?. = ⁄) ?.

(Note that D = 1.)

!"ROBP ∈ BPP

:) and :+ each have the form:

1 − ,) ,+ 1 − ,? ,E ⋯ (1 − ,.)
+ ,) ,+ ,? 1 − ,E ⋯ ,.
+ ,) 1 − ,+ 1 − ,? ,E ⋯ (,.)

⋮
+ ,) ,+ 1 − ,? ,E ⋯ (,.)

,)
0 1

0 1

()
,E

0 1

0 1

(+

arithmetize

:) :+

Check-in 24.2

Check-in 24.2

If the BPs were not read-once, the polynomials might

have exponents ≥ 1. Where would the proof fail?

(a) () ≡ (+ implies they agree on all Boolean inputs

(b) Agreeing on all Boolean inputs implies :) = :+
(c) Having :) = :+ implies :) and :+ always agree

9

Algorithm for !"ROBP = “On input (), (+ [on variables ,), … , ,.]

1. Find a prime / ≥ 32.

2. Pick a random non-Boolean input assignment 3 = 3), … , 3. where each 34 ∈ 67.

3. Evaluate () and (+ on 3 by using arithmetization.

4. If () and (+ agree on 3 then accept.
If they disagree then reject.”

Claim: (1) () ≡ (+ → Pr :) 3 = :+ 3 = 1
(2) () ≢ (+ → Pr :) 3 = :+ 3 ≤ ⁄) ?

Proof (1): If () ≡ (+ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials :) and :+ are identical.

Thus :) and :+ always agree (even on non-Boolean inputs).

Proof (2): If () ≢ (+ then :) ≠ :+ so : = :) − :+ ≠ 0.

From Schwartz-Zippel, Pr :) 3 = :+ 3 ≤ ⁄C. 7 ≤ ⁄. ?. = ⁄) ?.

(Note that D = 1.)

!"ROBP ∈ BPP

:) and :+ each have the form:

1 − ,) ,+ 1 − ,? ,E ⋯ (1 − ,.)
+ ,) ,+ ,? 1 − ,E ⋯ ,.
+ ,) 1 − ,+ 1 − ,? ,E ⋯ (,.)

⋮
+ ,) ,+ 1 − ,? ,E ⋯ (,.)

,)
0 1

0 1

()
,E

0 1

0 1

(+

arithmetize

:) :+

Check-in 24.3

Check-in 24.3

If :) and :+ were exponentially large expressions,

would that be a problem for the time complexity?

(a) Yes, but luckily they are polynomial in size.

(b) No, because we can evaluate them without

writing them down.

10

Quick review of today

1. Simulated Read-once Branching Programs by polynomials

2. Gave probabilistic polynomial equality testing method

3. Showed !" ROBP ∈ BPP

11

MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

