18.404/6.840 Lecture 24

1

Last time:

- Probabilistic computation
- The class BPP
- Branching programs
- Arithmetization
- Started showing !" $_{ROBP} \in BPP$

```
Today: (Sipser §10.2)
- Finish !" _{ROBP} \in BPP
```

Review: Probabilistic TMs and BPP

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

coin flip step each choice has 50% probability

Defn: For $! \ge 0$ say PTM \$ decides language %with error probability ! if for every &, Pr[\$ gives the wrong answer about $\& \in \%$] $\le !$.

Amplification lemma: $2^{-.}/01(2)$

Check-in 24.1

Actually using a probabilistic algorithm presupposes a source of randomness. Can we use a standard pseudo-random number generator (PRG) as the source?

- (a) Yes, but the result isn't guaranteed.
- (b) Yes, but it will run in exponential time.
- (c) No, a TM cannot implement a PRG.
- (d) No, because that would show P = BPP.

Check-in 24.1

Review: Branching Programs

Defn: A branching program (BP) is a directed, acyclic (no cycles) graph that has

1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.

- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated start node.

Theorem: EQ_{BP} is coNP-complete (on pset 6)

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: $EQ_{ROBP} = \{ \langle B_1, B_2 \rangle | B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \}$

Theorem: $EQ_{ROBP} \in BPP$

Proof idea: Run B_1 and B_2 on a randomly selected <u>non-Boolean input</u> and accept if get same output.

Method: Use arithmetization (simulating Λ and \vee with + and \times) to define BP operation on non-Boolean inputs.

Boolean Labeling

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1 and off the execution path with 0. Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

Label outgoing edges from nodes

Label nodes from incoming edges

Arithmetization Method

Method: Simulate \land and \lor with + and \times .

$$\begin{array}{ccc} & \swarrow & \to & ' \times / = ' / \\ \hline & \to & (1 - ') \\ & \swarrow & & + / - ' / \end{array}$$

(1' →∧‰

Replace Boolean labeling with arithmetical labeling Inductive rules: Start node labeled 1

‱%

Simulate \vee with + because the BP is acyclic. The execution path can enter a node at most one time.

Non-Boolean Labeling

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Roots of Polynomials

Let $!(") = \frac{3}{6} + \frac{3$

Polynomial Lemma: If ! (") $\neq 0$ is polynomial of degree ≤ 0 then ! has ≤ 0 roots. Proof by induction (see text).

Corollary 1: If $!_{(")}$ and $!_{*}(")$ are both degree ≤ 0 and $!_{(} \neq !_{*}$ then $!_{(}(,) = !_{*}(,)$ for ≤ 0 values,. Proof: Let $! = !_{(} - !_{*}$.

Above holds for any field 4 (a <u>field</u> is a set with + and \times operations that have typical properties). We will use a finite field 4₆ with 7 elements where 7 is prime and +, \times operate mod 7.

Corollary 2: If ! (") $\neq 0$ has degree ≤ 0 and we pick a random $8 \in 4_6$, then $\Pr[!(8) = 0] \leq \frac{\&}{6}$. Proof: There are at most 0 roots out of 7 possibilities.

Theorem (Schwartz-Zippel): If ! (" $(, ..., "_{=}) \neq 0$ has degree ≤ 0 in each " $_{>}$ and we pick random $\&, ..., \& \& \in 4_6$ then $\Pr[!(\&, ..., \& \&) = 0] \leq \frac{=\&}{6}$ Proof by induction (see text).

Symbolic Execution

Leave the ! $_{\$}$ as variables and obtain an expression in the ! $_{\$}$ for the output of the BP.

$EQ_{\text{ROBP}} \in \text{BPP}$

Algorithm for $EQ_{\text{ROBP}} =$ "On input $\langle B_1, B_2 \rangle$ [on variables x_1, \dots, x_m]

1. Find a prime $q \ge 3m$.

2. Pick a random *non-Boolean* input assignment $r = r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.

3. Evaluate B_1 and B_2 on r by using arithmetization.

4. If B_1 and B_2 agree on r then *accept*. If they disagree then *reject*."

Claim: (1)
$$B_1 \equiv B_2 \rightarrow \Pr[p_1(r) = p_2(r)] = 1$$

(2) $B_1 \not\equiv B_2 \rightarrow \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs. Thus their functions have the same truth table. Thus their associated polynomials p_1 and p_2 are identical. Thus p_1 and p_2 always agree (even on non-Boolean inputs).

Proof (2): If $B_1 \not\equiv B_2$ then $p_1 \neq p_2$ so $p = p_1 - p_2 \neq 0$. From Schwartz-Zippel, $\Pr[p_1(r) = p_2(r)] \leq \frac{dm}{q} \leq \frac{m}{3m} = \frac{1}{3}$. (Note that d = 1.)

Check-in 24.2

9

If the BPs were not read-once, the polynomials might have exponents ≥ 1 . Where would the proof fail?

(a) $B_1 \equiv B_2$ implies they agree on all Boolean inputs

(b) Agreeing on all Boolean inputs implies $p_1 = p_2$

(c) Having $p_1 = p_2$ implies p_1 and p_2 always agree

 $\begin{array}{c} p_1 \text{ and } p_2 \text{ each have the form:} \\ (1 - x_1) & (x_2) & (1 - x_3) & (x_4) & \cdots & (1 - x_m) \\ + & (x_1) & (x_2) & (x_3) & (1 - x_4) & \cdots & (x_m) \\ + & (x_1) & (1 - x_2)(1 - x_3) & (x_4) & \cdots & (x_m) \\ & & \vdots \\ + & (x_1) & (x_2) & (1 - x_3) & (x_4) & \cdots & (x_m) \\ & & & & \\ \end{array}$

$EQ_{\text{ROBP}} \in \text{BPP}$

Algorithm for $EQ_{\text{ROBP}} =$ "On input $\langle B_1, B_2 \rangle$ [on variables x_1, \dots, x_m]

1. Find a prime $q \ge 3m$.

2. Pick a random *non-Boolean* input assignment $r = r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.

3. Evaluate B_1 and B_2 on r by using arithmetization.

4. If B_1 and B_2 agree on r then *accept*. If they disagree then *reject*."

Claim: (1)
$$B_1 \equiv B_2 \rightarrow \Pr[p_1(r) = p_2(r)] = 1$$

(2) $B_1 \not\equiv B_2 \rightarrow \Pr[p_1(r) = p_2(r)] \le 1/3$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs. Thus their functions have the same truth table. Thus their associated polynomials p_1 and p_2 are identical. Thus p_1 and p_2 always agree (even on non-Boolean inputs).

Proof (2): If $B_1 \not\equiv B_2$ then $p_1 \neq p_2$ so $p = p_1 - p_2 \neq 0$. From Schwartz-Zippel, $\Pr[p_1(r) = p_2(r)] \leq \frac{dm}{q} \leq \frac{m}{3m} = \frac{1}{3}$. (Note that d = 1.)

Check-in 24.3

If p_1 and p_2 were exponentially large expressions, would that be a problem for the time complexity?

- (a) Yes, but luckily they are polynomial in size.
- (b) No, because we can evaluate them without writing them down.

 $\begin{array}{c} p_1 \text{ and } p_2 \text{ each have the form:} \\ (1 - x_1) & (x_2) & (1 - x_3) & (x_4) & \cdots & (1 - x_m) \\ + & (x_1) & (x_2) & (x_3) & (1 - x_4) & \cdots & (x_m) \\ + & (x_1) & (1 - x_2)(1 - x_3) & (x_4) & \cdots & (x_m) \\ & & \vdots \\ + & (x_1) & (x_2) & (1 - x_3) & (x_4) & \cdots & (x_m) \\ & & & & \\ \end{array}$

Quick review of today

- 1. Simulated Read-once Branching Programs by polynomials
- 2. Gave probabilistic polynomial equality testing method
- 3. Showed !" $_{ROBP} \in \overline{BPP}$

11

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.