18.404/6.840 Lecture 24

Last time:

- Probabilistic computation
- The class BPP
- Branching programs
- Arithmetization
- Started showing!" ROBP E BPP

Today: (Sipser §10.2)

- Finish !" Robp E BPP

Review: Probabilistic TMs and BPP

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: For ! ≥ 0 say PTM $\$$ decides language \%with error probability! if for every \& , Pr[\$ gives the wrong answer about \& $\in \%$] \leq !.

Defn: BPP $=\{\%$ some poly-time PTM decides $\%$ with error $!=+/$, Amplification lemma: 2^{-}. $/ 01(2)$

Check-in 24.1

Actually using a probabilistic algorithm presupposes a source of randomness. Can we use a standard pseudo-random number generator (PRG) as the source?
(a) Yes, but the result isn't guaranteed.
(b) Yes, but it will run in exponential time.
(c) No, a TM cannot implement a PRG.
(d) No, because that would show $\mathrm{P}=$ BPP.

Review: Branching Programs

Defn: A branching prosram (BP) is a directed, acyclic (no cycles) graph that has

1. Query nodes labeled x_{i} and having two outgoing edges labeled 0 and 1.
2. Two output nodes labeled 0 and 1 and having no outgoing edges.
3. A designated start node.

Theorem: $E Q_{\mathrm{BP}}$ is coNP-complete (on pset 6)

Defn: A BP is read-once if it never queries a variable more than once on any path from the start node to an output.

Defn: $E Q_{\text {Robp }}=\left\{\left\langle B_{1}, B_{2}\right\rangle \mid B_{1}\right.$ and B_{2} are equivalent read-once BPs$\}$
Theorem: $E Q_{\text {ROBP }} \in \operatorname{BPP}$
Proof idea: Run B_{1} and B_{2} on a randomly selected non-Boolean input and accept if get same output.
Method: Use arithmetization (simulating \wedge and V with + and \times)
 to define BP operation on non-Boolean inputs.

Boolean Labeling

Alternative way to view BP computation

$$
\text { Show by example: Input is } x_{1}=0, x_{2}=1, x_{3}=1
$$

The BP follows its execution path.
Label all nodes and edges on the execution path with 1 and off the execution path with 0 .
Output the label of the output node 1.
Obtain the labeling inductively by using these rules:

Label outgoing edges from nodes

Label nodes from incoming edges

Arithmetization Method

Method: Simulate \wedge and \vee with + and \times.

$$
\begin{aligned}
& \qquad \wedge / \rightarrow{ }^{\prime} \times /=' / \\
& \Gamma>(1-') \\
& \prime \vee / \rightarrow{ }^{\prime}+/-' /
\end{aligned}
$$

Replace Boolean labeling with arithmetical labeling Inductive rules:
Start node labeled 1

Simulate V with + because the BP is acyclic. The execution path can enter a node at most one time.

Non-Boolean Labeling

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: ${ }^{n}=2,!_{\#}=3$
Recall labeling rules:

Algorithm sketch for 45 ROBP: "On input 〈: " , : \#〉

1. Pick a random non-Boolean input assignment.
2. Evaluate : " and : \# on that assignment.
3. If : " and : \# disagree then reject. If they agree then accept."

More details and correctness proof to come. First some algebra...

Roots of Polynomials

Let ! (" $)=\$ \%^{\prime \prime}+\$(" \&)\left(+\$_{*}{ }^{*} \&\right)^{*}+\cdots+\$ \&$ be a polynomial. If, is some constant and ! (,) = 0 call, a root of ! .

Polynomial Lemma: If ! (") $\neq 0$ is polynomial of degree ≤ 0 then ! has ≤ 0 roots.
Proof by induction (see text).
Corollary 1: If ! (") and ! *(") are both degree ≤ 0 and ! ($\neq!$ *
then ! $(\mathrm{C})=,!*($,$) for \leq 0$ values .
Proof: Let! $=$! $(-!*$.
Above holds for any field 4 (a field is a set with + and \times operations that have typical properties).
We will use a finite field 4_{6} with 7 elements where 7 is prime and,$+ \times$ operate mod 7 .
Corollary 2: If ! (" $) \neq 0$ has degree ≤ 0 and we pick a random $8 \in 4_{6}$, then $\operatorname{Pr}[!(8)=0] \leq{ }^{\&} / 6$. Proof: There are at most 0 roots out of 7 possibilities.

Theorem (Schwartz-Zippel): If ! (" $\left., \ldots,{ }^{\prime}=\right) \neq 0$ has degree ≤ 0 in each " $>$ and we pick random $8\left(, \ldots, 8_{=} \in 4_{6}\right.$ then $\operatorname{Pr}\left[!\left(8, \ldots, 8_{2}\right)=0\right] \leq=\& / 6$
Proof by induction (see text).

Symbolic Execution

Leave the ! \$ as variables and obtain an expression in the ! \$ for the output of the BP.

$E Q_{\text {ROBP }} \in \operatorname{BPP}$

Algorithm for $E Q_{\text {ROBP }}=$ "On input $\left\langle B_{1}, B_{2}\right\rangle$ [on variables x_{1}, \ldots, x_{m}]

1. Find a prime $q \geq 3 m$.
2. Pick a random non-Boolean input assignment $r=r_{1}, \ldots, r_{m}$ where each $r_{i} \in \mathbb{F}_{q}$.
3. Evaluate B_{1} and B_{2} on r by using arithmetization.
4. If B_{1} and B_{2} agree on r then accept.

If they disagree then reject."
Claim: (1) $B_{1} \equiv B_{2} \rightarrow \operatorname{Pr}\left[p_{1}(r)=p_{2}(r)\right]=1$
(2) $B_{1} \not \equiv B_{2} \rightarrow \operatorname{Pr}\left[p_{1}(r)=p_{2}(r)\right] \leq 1 / 3$

Proof (1): If $B_{1} \equiv B_{2}$ then they agree on all Boolean inputs.
Thus their functions have the same truth table.
Thus their associated polynomials p_{1} and p_{2} are identical.
Thus p_{1} and p_{2} always agree (even on non-Boolean inputs).
Proof (2): If $B_{1} \not \equiv B_{2}$ then $p_{1} \neq p_{2}$ so $p=p_{1}-p_{2} \neq 0$.
From Schwartz-Zippel, $\operatorname{Pr}\left[p_{1}(r)=p_{2}(r)\right] \leq d m / q \leq m / 3 m=1 / 3$.
(Note that $d=1$.)

Check-in 24.2

If the BPs were not read-once, the polynomials might have exponents ≥ 1. Where would the proof fail?
(a) $B_{1} \equiv B_{2}$ implies they agree on all Boolean inputs
(b) Agreeing on all Boolean inputs implies $p_{1}=p_{2}$
(c) Having $p_{1}=p_{2}$ implies p_{1} and p_{2} always agree
p_{1} and p_{2} each have the form:

$E Q_{\text {ROBP }} \in \operatorname{BPP}$

Algorithm for $E Q_{\text {ROBP }}=$ "On input $\left\langle B_{1}, B_{2}\right\rangle$ [on variables x_{1}, \ldots, x_{m}]

1. Find a prime $q \geq 3 m$.
2. Pick a random non-Boolean input assignment $r=r_{1}, \ldots, r_{m}$ where each $r_{i} \in \mathbb{F}_{q}$.
3. Evaluate B_{1} and B_{2} on r by using arithmetization.
4. If B_{1} and B_{2} agree on r then accept.

If they disagree then reject."
Claim: (1) $B_{1} \equiv B_{2} \rightarrow \operatorname{Pr}\left[p_{1}(r)=p_{2}(r)\right]=1$
(2) $B_{1} \not \equiv B_{2} \rightarrow \operatorname{Pr}\left[p_{1}(r)=p_{2}(r)\right] \leq 1 / 3$

Proof (1): If $B_{1} \equiv B_{2}$ then they agree on all Boolean inputs.
Thus their functions have the same truth table.
Thus their associated polynomials p_{1} and p_{2} are identical.
Thus p_{1} and p_{2} always agree (even on non-Boolean inputs).
Proof (2): If $B_{1} \not \equiv B_{2}$ then $p_{1} \neq p_{2}$ so $p=p_{1}-p_{2} \neq 0$.
From Schwartz-Zippel, $\operatorname{Pr}\left[p_{1}(r)=p_{2}(r)\right] \leq d m / q \leq m / 3 m=1 / 3$.
(Note that $d=1$.)

Check-in 24.3

If p_{1} and p_{2} were exponentially large expressions, would that be a problem for the time complexity?
(a) Yes, but luckily they are polynomial in size.
(b) No, because we can evaluate them without writing them down.
p_{1} and p_{2} each have the form:

Quick review of today

1. Simulated Read-once Branching Programs by polynomials
2. Gave probabilistic polynomial equality testing method
3. Showed!" robp \in BPP

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

