18.404/6.840 Lecture 9

Last time:

- $A_{\rm TM}$ is undecidable
- The diagonalization method
- $\overline{A_{\mathrm{TM}}}$ is T-unrecognizable
- The Reducibility Method, preview

Today: (Sipser §5.1, §5.3)

- The Reducibility Method for proving undecidability and T-unrecognizability.
- General reducibility
- Mapping reducibility

The Reducibility Method

If we know that some problem (say $A_{\rm TM}$) is undecidable, we can use that to show other problems are undecidable.

Defn: $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$

Recall Theorem: $HALT_{TM}$ is undecidable

Proof by contradiction, showing that $A_{\rm TM}$ is reducible to $HALT_{\rm TM}$:

Assume that $HALT_{TM}$ is decidable and show that A_{TM} is decidable (false!). Let TM R decide $HALT_{TM}$. Construct TM S deciding A_{TM} .

S = "On input $\langle M, w \rangle$

- 1. Use *R* to test if *M* on *w* halts. If not, *reject*.
- 2. Simulate M on w until it halts (as guaranteed by R).
- 3. If *M* has accepted then *accept*.
 - If *M* has rejected then *reject*.

TM S decides A_{TM} , a contradiction. Therefore $HALT_{\text{TM}}$ is undecidable.

Reducibility – Concept

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that A_{NFA} is reducible to A_{DFA} .

Example 3: From Pset 2, *PUSHER* is reducible to E_{CFG} . (Idea- Convert push states to accept states.)

If A is reducible to B then solving B gives a solution to A.

- then B is easy $\rightarrow A$ is easy.

- then A is hard $\rightarrow B$ is hard.

this is the form we will use

Check-in 9.1

Is Biology reducible to Physics?

- (a) Yes, all aspects of the physical world may be explained in terms of Physics, at least in principle.
- (b) No, some things in the world, maybe life, the brain, or consciousness, are beyond the realm pf Physics.
- (c) I'm on the fence on this question!

$E_{\rm TM}$ is undecidable

Let $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: $E_{\rm TM}$ is undecidable

Proof by contradiction. Show that $A_{\rm TM}$ is reducible to $E_{\rm TM}$.

Assume that E_{TM} is decidable and show that A_{TM} is decidable (false!). Let TM R decide E_{TM} . Construct TM S deciding A_{TM} .

S = "On input $\langle M, w \rangle$

- 1. Transform *M* to new TM M_w = "On input *x*
 - 1. If $x \neq w$, reject.
 - 2. else run *M* on *w*
 - 3. Accept if M accepts."

2. Use *R* to test whether $L(M_w) = \emptyset$

3. If YES [so *M* rejects *w*] then *reject*.

If NO [so *M* accepts *w*] then *accept*.

 M_w works like M except that it always rejects strings x where $x \neq w$.

So $L(M_w) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$

Mapping Reducibility

Defn: Function $f: \Sigma^* \to \Sigma^*$ is <u>computable</u> if there is a TM F where F on input w halts with f(w) on its tape, for all strings w.

Defn: <u>A is mapping-reducible to B</u> $(A \leq_m B)$ if there is a computable function f where $w \in A$ iff $f(w) \in B$.

Example: $A_{\text{TM}} \leq_{\text{m}} \overline{E_{\text{TM}}}$ The computable reduction function f is $f(\langle M, w \rangle) = \langle M_w \rangle$ Recall TM $M_w =$ "On input xBecause $\langle M, w \rangle \in A_{\text{TM}}$ iff $\langle M_w \rangle \in \overline{E_{\text{TM}}}$ 1. If $x \neq w$, reject. $(M \text{ accepts } w \text{ iff } L(\langle M_w \rangle) \neq \emptyset$)3. Accept if M accepts."

Mapping Reductions - properties

Theorem: If $A \leq_{m} B$ and B is decidable then so is AProof: Say TM R decides B. Construct TM S deciding A:

S = "On input w

- 1. Compute f(w)
- 2. Run *R* on f(w) to test if $f(w) \in B$
- 3. If *R* halts then output same result."

Corollary: If $A \leq_m B$ and A is undecidable then so is B

Theorem: If $A \leq_m B$ and B is T-recognizable then so is AProof: Same as above.

Corollary: If $A \leq_m B$ and A is T-unrecognizable then so is B

Check-in 9.2

Suppose $A \leq_{m} B$. What can we conclude? Check all that apply. (a) $B \leq_{m} A$ (b) $A \leq_{m} B$ (c) None of the above

Check-in 9.2

Mapping vs General Reducibility

Mapping Reducibility of A to B: Translate A-questions to B-questions.

- A special type of reducibility
- Useful to prove T-unrecognizability

- May be conceptually simpler
- Useful to prove undecidability

Noteworthy difference:

- A is reducible to \overline{A}
- A may not be mapping reducible to \overline{A} . For example $\overline{A_{\text{TM}}} \leq_{\text{m}} A_{\text{TM}}$

Check-in 9.3

B

We showed that if $A \leq_{m} B$ and B is T-recognizable then so is A.

Is the same true if we use general reducibility instead of mapping reducibility?

(a) Yes

(b) No

Check-in 9.3

Reducibility – Templates

To prove *B* is undecidable:

- Show undecidable A is reducible to B. (often A is A_{TM})

- Template: Assume TM *R* decides *B*. Construct TM *S* deciding *A*. Contradiction.

To prove *B* is T-unrecognizable:

- Show T-unrecognizable A is mapping reducible to B. (often A is A_{TM})

- Template: give reduction function f.

$E_{\rm TM}$ is T-unrecognizable

Recall $E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$ **Theorem:** E_{TM} is T-unrecognizableProof: Show $\overline{A_{TM}} \leq_m E_{TM}$ Reduction function: $f(\langle M, w \rangle) = \langle M_w \rangle$ Recall TM $M_w =$ "On input x1. If $x \neq w$, reject.Explanation: $\langle M, w \rangle \in \overline{A_{TM}}$ iff $\langle M_w \rangle \in E_{TM}$ 1. If $x \neq w$, reject.M rejects w iff $L(\langle M_w \rangle) = \emptyset$ 3. Accept if M accepts."

$EQ_{\rm TM}$ and $EQ_{\rm TM}$ are T-unrecognizable

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ **Theorem:** Both EQ_{TM} and EQ_{TM} are T-unrecognizable Proof: (1) $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$ (2) $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$ For any w let $T_w =$ "On input x T_w acts on all inputs the way M acts on w. 1. Ignore x. 2. Simulate *M* on *w*." (1) Here we give f which maps A_{TM} problems (of the form $\langle M, w \rangle$) to EQ_{TM} problems (of the form $\langle T_1, T_2 \rangle$). $f(\langle M, w \rangle) = \langle T_w, T_{reject} \rangle$ T_{reject} is a TM that always rejects. (2) Similarly $f(\langle M, w \rangle) = \langle T_w, T_{\text{accept}} \rangle$ T_{accept} always accepts.

Reducibility terminology

Why do we use the term "reduce"?

When we reduce A to B, we show how to solve A by using B and conclude that A is no harder than B. (suggests the \leq_m notation)

Possibility 1: We bring A's difficulty down to B's difficulty. Possibility 2: We bring B's difficulty up to A's difficulty.

Quick review of today

- 1. Introduced The Reducibility Method to prove undecidability and T-unrecognizability.
- 2. Defined mapping reducibility as a type of reducibility.
- **3.** $E_{\rm TM}$ is undecidable.
- 4. $E_{\rm TM}$ is T-unrecognizable.
- 5. EQ_{TM} and $\overline{EQ_{\text{TM}}}$ are T-unrecognizable.

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.