18.404/6.840 Lecture 19

1

Last time:

- Review $LADDER_{DFA} \in PSPACE$
- Savitch's Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- TQBF is PSPACE-complete

Today: (Sipser §8.3 – §8.4)

- Games and Quantifiers
- The Formula Game
- Generalized Geography is PSPACE-complete
- Logspace: L and NL

Games and Complexity

Check-in 19.1

Games and Quantifiers

The Formula Game

Given QBF $\phi = \exists x_1 \forall x_2 \exists x_3 \cdots (\exists / \forall) x_k [(\cdots) \land \cdots \land (\cdots)]$ There are two Players "∃" and "∀".

Player \exists assigns values to the \exists -quantified variables. Player \forall assigns values to the \forall -quantified variables. The players choose the values according to the order of the quantifiers in ϕ .

After all variables have been assigned values, we determine the winner: Player \exists wins if the assignment satisfies ψ . Player \forall wins if not.

Claim: Player \exists has a forced win in the formula game on ϕ iff ϕ is TRUE. Therefore $\{\langle \phi \rangle | \text{ Player } \exists \text{ has a forced win on } \phi \} = TQBF$.

Next: show $TQBF \leq_P GG$.

Check-in 19.2

Which player has a winning strategy in the formula game on $\phi = \exists x \forall y [(x \lor y) \land (\overline{x} \lor \overline{y})]$

(a) ∃-player

- (b) ∀-player
- (c) Neither player

Check-in 19.2

GG is PSPACE-complete

Theorem: GG is PSPACE-complete Proof: 1) $GG \in PSPACE$ (recursive algorithm, exercise) 2) $TQBF \leq_P GG$

Give reduction *f* from *TQBF* to *GG*. $f(\langle \phi \rangle) = \langle G, a \rangle$

Construct G to mimic the formula game on ϕ . G has Players I and II

Player I plays role of \exists -Player in ϕ . Ditto for Player II and the \forall -Player.

$$\phi = \exists x_1 \forall x_2 \exists x_3 \cdots (\exists / \forall) x_k \left[(\cdots) \land \cdots \land (\cdots) \right]$$

$$\downarrow f$$

$$G =$$

4

Constructing the GG graph G

Endgame

∃ should win if assignment satisfied all clauses ∀ should win if some unsatisfied clause

Implementation

∀ picks clause node claimed unsatisfied \exists picks literal node claimed to satisfy the clause liar will be stuck

Log space

To define sublinear space computation, do not count input as part of space used. Use 2-tape TM model with read-only input tape.

Log space properties

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Defn: A configuration for M on w is (q, p_1, p_2, t) where q is a state, p_1 and p_2 are the tape head positions, and t is the tape contents. The number of such configurations is $|Q| \times n \times O(\log n) \times d^{O(\log n)} = O(n^k)$ for some k.

Therefore M runs in polynomial time. Conclusion: $A \in P$

Theorem: $NL \subseteq SPACE(\log^2 n)$ Proof: Savitch's theorem works for log space

7

NL properties

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The <u>configuration graph</u> $G_{M,w}$ for M on w has **nodes:** all configurations for M on w**edges:** edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: *M* accepts *w* iff the configuration graph $G_{M,w}$ has a path from c_{start} to c_{accept}

Polynomial time algorithm T for A:

- T = "On input w
- 1. Construct the $G_{M,W}$.
- 2. Accept if there is a path from c_{start} to c_{accept} . Reject if not."

Quick review of today

9

- 1. The Formula Game
- 2. Generalized Geography is PSPACE-complete
- 3. Log space: L and NL
- 4. Configuration graph
- 5. NL⊆P

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.