
 

   
 

  

 

    

  

 

    

  
   

 

18.404/6.840 Lecture 19 

Last time: 
- Review !"##$%DFA ∈ PSPACE 

- Savitch’s Theorem: NSPACE * + ⊆ SPACE *- + 

- ./01 is PSPACE-complete 

Today: (Sipser §8.3 – §8.4) 

- Games and Quantifiers 

- The Formula Game 

- Generalized Geography is PSPACE-complete 

- Logspace:  L and NL 
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which ended the previous place. No repeats allowed. 
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Boston

Nebraska
Arkansas

Alaska

yers take turns picking places that start with the let

sume two players:
yer I and Player II

Games and Complexity 

Geography game 

Check-in 19.1 

Let ! be the graph below. 

Which player has a winning strategy in the 
Generalized Geography game starting at node $? 

(a) Player I ! = 
(b) Player II $ 
(c) Neither player I 
(d) Both players 

The first player stuck (= cannot move) loses. 
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Kalamazoo 

San Oregon 
Francisco Generalized Geography Game 

Played on any directed graph. 
Players take turns picking nodes 

Oklahoma that form a simple path. 
The first player stuck loses. 

Defn: !! = !, $ Player I has a forced win in 
Generalized Geography on graph ! starting at node $}. 
“forced win” also called a “winning strategy” means 
that the player will win if both players play optimally. 

Theorem:  !! is PSPACE-complete 
Check-in 19.1 



 

  
 

     

     
      

            

       
     
   

           
     

 

 

 
 

      

 

             

 
 

 
 

          
    

  

Games and Quantifiers 

-The Formula Game 
Given QBF ! = ∃$% ∀$' ∃$( ⋯ ∃/∀ $+ ⋯ ∧ ⋯∧ ⋯ 
There are two Players “∃” and “∀”. 

Player ∃ assigns values to the ∃-quantified variables. 
Player ∀ assigns values to the ∀-quantified variables. 
The players choose the values according to the order of the quantifiers in !. 

After all variables have been assigned values, we determine the winner: Check-in 19.2 
Player ∃ wins if the assignment satisfies -. Which player has a winning 
Player ∀ wins if not. strategy in the formula game on 
Claim: Player ∃ has a forced win in the formula game on ! iff ! is TRUE. ! = ∃$ ∀6 $ ∨ 6 ∧ $ ∨ 6 
Therefore ! Player ∃ has a forced win on !} = /012. (a) ∃-player 

Next: show /012 ≤4 55. (b) ∀-player 
(c) Neither player 

Check-in 19.2 3 



   
          

  

   

      
  
          

  

 

 
  

   

      

 
   

  

   
 

        

 

!! is PSPACE-complete 

Theorem: !! is PSPACE-complete 
Proof: 1) !! ∈ PSPACE (recursive algorithm, exercise) 

2) #$%& ≤( !! 

Give reduction ) from #$%& to !!. ) * = 〈!, .〉 

Construct ! to mimic the formula game on *.
! has Players I and II 
Player I plays role of ∃-Player in *. Ditto for Player II and the ∀-Player. 

⋯ ∧ ⋯ ∧ ⋯ 
) 

* = ∃23 ∀24 ∃25 ⋯ ∃/∀ 28 

assume in cnf 

! = 
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Constructing the !! graph ! 

Illustrate construction by example 
Say " = ∃%& ∀%( ∃%) ⋯ ∀%+ [ ( %& ∨ %( ∨ %) ) ∧ (%& ∨ %( ∨ %1) ∧ ⋯∧ ( ⋯ ) ]

! = 3( 3+ 

Endgame 
∀ ∃ should win if assignment satisfied all clauses

3+ ∀ should win if some unsatisfied clause 

Implementation 

∃ ∀ picks clause node claimed unsatisfied
∃ picks literal node claimed to satisfy the clause 
liar will be stuck 

TRUE FALSE 

∀ ⋯33

%)% %( %& %( %1 

%( 

⋮ 
%5 

%& 

3& 

∃ 

∀ ∀ 

I = ∃ II = ∀ 

∃ 

∀ 

∃∃ 
∀ 

∃ 

6∃ 6 

%&%& 

3& 3( 
∀ 
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Log space 

To define sublinear space computation, do not count input as part of space used. 
Use 2-tape TM model with read-only input tape. 

Defn: L = SPACE log $ 
NL = NSPACE log $ read-only input tape does not count towards space used 

Log space can represent a constant 
number of pointers into the input. count cells used here 

read/write work tape Examples 

1. %%ℛ % ∈ Σ∗} ∈ L 
ababbaaaaaaaaaabbaba 

2. +,-. ∈ NL 

1 log $ 

Work tape tracks corresponding locations NL
Nondeterministically select the nodes in the input tape. of a path connecting / to 0. L 

L = NL? Unsolved 
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Log space properties 

Theorem: L ⊆ P 
Proof: Say " decides # in space $ log ( . 
Defn: A configuration for " on ) is *, ,-, ,., / where * is a state, 
,- and ,. are the tape head positions, and / is the tape contents. 
The number of such configurations is 0 ×(×$ log ( ×23 456 7 = $((:) for some <. 

Therefore " runs in polynomial time. ,-
Conclusion: # ∈ P * 

,. 

Theorem: NL ⊆ SPACE log. ( /
Proof: Savitch’s theorem works for log space 
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.466783

./ .1

NL
L

P

Unsolved

NL properties 

Theorem: NL ⊆ P 
Proof: Say NTM " decides # in space $ log ( . 
Defn: The configuration graph )*,, for " on - has )*,, nodes: all configurations for " on -

edges: edge from ./ → .1 if ./ can yield .1 in 1 step. 
.23453 

Claim: " accepts - iff the configuration graph )*,, 

has a path from .23453 to .466783 
Polynomial time algorithm 9 for #:
9 = “On input -
1. Construct the )*,,. 
2. Accept if there is a path from .23453 to .466783. 

Reject if not.” 
L = 

8 

Check-in 19.3 
We showed that ;#9< ∈ NL. 
What is the best we know about the 
deterministic space complexity of ;#9<? 
(a) ;#9< ∈ PSPACE 
(b) ;#9< ∈ SPACE(() 
(c) ;#9< ∈ SPACE log@ ( 

(d) ;#9< ∈ SPACE log ( 

Check-in 19.3 



   

 

    

   

 

 

Quick review of today 

1. The Formula Game 

2. Generalized Geography is PSPACE-complete 

3. Log space: L and NL 

4. Configuration graph 

5. NL ⊆ P 
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