18.404/6.840 Lecture 25

Last time:

- Schwartz-Zippel Theorem
- $EQ_{\text{ROBP}} \in \text{BPP}$

Today: (Sipser §10.4)

- Interactive Proof Systems
- The class IP
- Graph isomorphism problem
- $coNP \subseteq IP$ (part 1)

Interactive Proofs – Introduction

Illustration: Graph isomorphism testing **Defn:** Undirected graphs *G* and *H* are <u>isomorphic</u> if they are identical except for a permutation (rearrangement) of the nodes.

Interactive Proofs – Introduction

Illustration: Graph isomorphism testing

Defn: Undirected graphs G and H are <u>isomorphic</u> if they are identical except for a permutation (rearrangement) of the nodes.

 $ISO \in NP$ therefore a Prover can convince a poly-time Verifier that G and H are isomorphic (if true).

Even though $\overline{ISO} \in NP$ is unknown,

a Prover can still convince a poly-time Verifier that G and H are <u>not</u> isomorphic (if true).

Requires interaction and a probabilistic Verifier.

Interactive Proofs – informal model

Probabilistic polynomial time TM

© Sesame Workshop. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Professor = Verifier (V)

Unlimited computation

Graduate Students = Prover (P)

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Professor wants to know if graphs *G* and *H* are isomorphic. - He asks his Students to figure out the answer.

- But he doesn't trust their answer. He must be convinced.

If the Students claim that G and H are isomorphic, they can give the isomorphism and convince him.

But what if they claim that G and H are <u>not</u> isomorphic?
The Professor randomly and secretly picks G or H and permutes it, then sends the result to the Students.
If Students can identify which graph the Professor picked reliably (repeat this 100 times), then he's convinced.

Interactive Proofs – formal model

Two interacting parties Verifier (V): Probabilistic polynomial time TM Prover (P): Unlimited computational power

Both P and V see input w.

They exchange a polynomial number of polynomial-size messages. Then V *accepts* or *rejects*.

```
Defn: \Pr[(V \leftrightarrow P) \text{ accepts } w] = \text{probability that V accepts when V interacts with P, given input w.}

Defn: IP = \{A \mid \text{for some V and P} (\text{This P is an "honest" prover})

w \in A \rightarrow \Pr[(V \leftrightarrow P) \text{ accepts } w] \ge 2/3

w \notin A \rightarrow \text{ for any prover } P \Pr[(V \leftrightarrow \tilde{P}) \text{ accepts } w] \le 1/3
```

Think of \tilde{P} as a "crooked" prover trying to make V accept when it shouldn't. An amplification lemma can improve the error probability from $\frac{1}{3}$ to $\frac{1}{2poly(n)}$

$\overline{ISO} \in IP$

Theorem: $\overline{ISO} \in IP$

Proof: Protocol for V and (the honest) P on input $\langle G, H \rangle$

- 1) Repeat twice:
- 2) $\forall P$ Randomly choose G or H and permute to get K, then send K
- 3) $P \to V$ Compare K with G and H. Send "G" or "H" (V's choice in step 2)
- 4) Vaccepts if P was correct both times. Otherwise V rejects.

Check-in 25.1

Suppose we change the model to allow the Prover access to the Verifier's random choices. Now consider the same protocol as described above. What language does it describe?

- (a) $\{\langle G, H \rangle | G \neq H\}$
- (b) $\{\langle G, H \rangle \mid G \text{ and } H \text{ are not isomorphic } \}$
- (c) $\{\langle G, H \rangle | G \text{ and } H \text{ are any two graphs } \}$
- (d) Ø

Facts about IP – Checkin 25.2

Which of the following is true? Check all that apply

- a) NP \subseteq IP
- b) BPP \subseteq IP
- c) $IP \subseteq PSPACE$

Surprising Theorem: $PSPACE \subseteq IP$ so IP = PSPACE

We will prove only a weaker statement: $coNP \subseteq IP$

#SAT problem

Defn: $\#SAT = \{\langle \phi, k \rangle | \text{ Boolean formula } \phi \text{ has exactly } k \text{ satisfying assignments} \}$

Let $\#\phi$ = the number of satisfying assignments of Boolean formula ϕ . So $\#SAT = \{\langle \phi, k \rangle | k = \#\phi\}$

Defn: Language *B* is <u>NP-hard</u> if $A \leq_P B$ for every $A \in$ NP. (Note: *B* is NP-complete if *B* is NP-hard and $B \in$ NP.)

Theorem: #*SAT* is coNP-hard Proof: Show $\overline{SAT} \leq_P \#SAT$ $f(\langle \phi \rangle) = \langle \phi, 0 \rangle$

To show $coNP \subseteq IP$ we will show $\#SAT \in IP$

8

$#SAT \in IP$ – notation

 $\#SAT = \{\langle \phi, k \rangle \mid Boolean \text{ formula } \phi \text{ has exactly } k \text{ satisfying assignments} \}$ **Theorem:** $\#SAT \in IP$ **Proof:** First some notation. Assume ϕ has *m* variables x_1, \ldots, x_m . Let $\phi(0)$ be ϕ with $x_1 = 0$ (0 substituted for x_1) 0 = FALSE and 1 = TRUE. Let $\phi(01)$ be ϕ with $x_1 = 0$ and $x_2 = 1$. Let $\phi(a_1 \dots a_i)$ be ϕ with $x_1 = a_1, \dots, x_i = a_i$ for $a_1, \dots, a_i \in \{0, 1\}$. Check-in 25.3 Call a_1, \ldots, a_i presets. The remaining x_{i+1}, \ldots, x_m stay as unset variables. If $\#\phi = 9$ and $\#\phi(0) = 6$ then what do we know? Let $\#\phi$ = the number of satisfying assignments of ϕ . a) $\#\phi(1) = 3$ c) $\#\phi(00) \le 5$ Let $\#\phi(0)$ = the number of satisfying assignments of $\phi(0)$. Let $\#\phi(a_1 \dots a_i)$ = the number of satisfying assignments of $\phi(a_1 \dots a_i)$ b) $\#\phi(1) = 15$ d) none of these Equivalently: $\#\phi(a_1 \dots a_i) = \sum_{a_{i+1}, \dots, a_m} \phi(a_1 \dots a_m)$ 1. $\#\phi(a_1 \dots a_i) =$ $\#\phi(a_1 \dots a_i 0) + \#\phi(a_1 \dots a_i 1)$ $\in \{0,1\}$ 2. $\#\phi(a_1 \dots a_m) = \phi(a_1 \dots a_m)$

9

Check-in 25.3

$#SAT \in IP - 1^{st}$ attempt

Theorem: $\#SAT \in IP$ **Proof:** Protocol for V and (the honest) P on input $\langle \phi, k \rangle$ P sends $\#\phi$; V checks $k = \#\phi$ 0) P sends $\#\phi(0), \#\phi(1)$; V checks $\#\phi = \#\phi(0) + \#\phi(1)$ 1) P sends $\#\phi(00), \#\phi(01), \#\phi(10), \#\phi(11);$ V checks $\#\phi(0) = \#\phi(00) + \#\phi(01)$ 2) $\#\phi(1) = \#\phi(10) + \#\phi(11)$ $: \underbrace{m}_{m} \text{P sends } \#\phi(0\cdots0), \dots, \#\phi(1\cdots1); \text{ V checks } \#\phi(0\cdots0) = \#\phi(0\cdots00) + \#\phi(0\cdots01)$ m + 1) V checks $\#\phi(0\cdots 0) = \phi(0\cdots 0)$ V checks $\#\phi(1\cdots 1) = \#\phi(1\cdots 10) + \#\phi(1\cdots 11)$ $\#\phi(0)$ $\#\phi(1)$ $\#\phi(00) \ \#\phi(01) \ \#\phi(10) \ \#\phi(11)$ $#\phi(1\cdots 1) = \phi(1\cdots 1)$ V accepts if all checks are correct. Otherwise V rejects. $\#\phi(0\cdots 0)$ $\#\phi(1\cdots 1)$ Ш Problem: Exponential. How to fix? $\phi(0 \cdots 0)$ $\phi(1 \cdots 1)$

Idea for fixing $\#SAT \in IP$ protocol

Quick review of today

- 1. Introduced the interactive proof system model
- 2. Defined the class IP
- 3. Showed $\overline{ISO} \in IP$
- 4. Started showing $\#SAT \in IP$ to prove that $coNP \subseteq IP$

12

MIT OpenCourseWare https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.