18.404/6.840 Lecture 25

Last time:

- Schwartz-Zippel Theorem
- $E Q_{\text {ROBP }} \in$ BPP

Today: (Sipser §10.4)

- Interactive Proof Systems
- The class IP
- Graph isomorphism problem
- coNP $\subseteq I P$ (part 1)

Interactive Proofs - Introduction

Illustration: Graph isomorphism testing
Defn: Undirected graphs G and H are isomorphic if they are identical except for a permutation (rearrangement) of the nodes.

Interactive Proofs - Introduction

Illustration: Graph isomorphism testing
Defn: Undirected graphs G and H are isomorphic if they are identical except for a permutation (rearrangement) of the nodes.


```
Defn: ISO = {\langleG,H\rangle| G and H are isomorphic graphs}
ISO E NP
ISO E P ?
ISO is NP-complete ?
ISO}\inNP ?
```

$I S O \in N P$ therefore a Prover can convince a poly-time Verifier that G and H are isomorphic (if true).
Even though $\overline{I S O} \in N P$ is unknown,
a Prover can still convince a poly-time Verifier that G and H are not isomorphic (if true).
Requires interaction and a probabilistic Verifier.

Interactive Proofs - informal model

Professor $=\operatorname{Verifier}(\mathrm{V})$

Professor wants to know if graphs G and H are isomorphic.

- He asks his Students to figure out the answer.
- But he doesn't trust their answer. He must be convinced.

If the Students claim that G and H are isomorphic, they can give the isomorphism and convince him.

But what if they claim that G and H are not isomorphic?

- The Professor randomly and secretly picks G or H and permutes it, then sends the result to the Students.
- If Students can identify which graph the Professor picked reliably (repeat this 100 times), then he's convinced.

Interactive Proofs - formal model

Two interacting parties

Verifier (V): Probabilistic polynomial time TM
Prover (P): Unlimited computational power
Both P and V see input w.
They exchange a polynomial number of polynomial-size messages.
Then V accepts or rejects.

Defn: $\operatorname{Pr}[(\mathrm{V} \leftrightarrow \mathrm{P})$ accepts $w]=$ probability that V accepts when V interacts with P , given input w.
Defn: $\mathrm{IP}=\{A \mid$ for some V and P (This P is an "honest" prover)
$w \in A \rightarrow \operatorname{Pr}[(\mathrm{~V} \leftrightarrow \mathrm{P})$ accepts $w] \geq^{2 / 3}$
$w \notin A \rightarrow$ for any prover $\tilde{\mathrm{P}} \operatorname{Pr}[(\mathrm{V} \leftrightarrow \tilde{\mathrm{P}})$ accepts $w] \leq \frac{1}{1 / 3}$
Think of \tilde{P} as a "crooked" prover trying to make V accept when it shouldn't.
An amplification lemma can improve the error probability from $1 / 3$ to $1 / 2^{\text {poly }(n)}$

$\overline{I S O} \in \mathrm{IP}$

Theorem: $\overline{I S O} \in \operatorname{IP}$
Proof: Protocol for V and (the honest) P on input $\langle G, H\rangle$

1) Repeat twice:
2) $\quad \forall \mathrm{P}$ Randomly choose G or H and permute to get K, then send K
3) \quad PV V Compare K with G and H. Send " G " or " H " (V's choice in step 2)
4) Vaccepts if P was correct both times. Otherwise V rejects.

Check-in 25.1

Suppose we change the model to allow the Prover access to the Verifier's random choices. Now consider the same protocol as described above. What language does it describe?
(a) $\{\langle G, H\rangle \mid G \neq H\}$
(b) $\{\langle G, H\rangle \mid G$ and H are not isomorphic $\}$
(c) $\{\langle G, H\rangle \mid G$ and H are any two graphs $\}$
(d) \varnothing

Facts about IP - Checkin 25.2

Which of the following is true?
Check all that apply
a) $N P \subseteq I P$
b) $\mathrm{BPP} \subseteq \mathrm{IP}$
c) $\mathrm{IP} \subseteq$ PSPACE

Surprising Theorem: PSPACE $\subseteq I P$ so IP = PSPACE
We will prove only a weaker statement: coNP $\subseteq I P$

\#SAT problem

Defn: \#SAT $=\{\langle\phi, k\rangle \mid$ Boolean formula ϕ has exactly k satisfying assignments $\}$
Let \# $\phi=$ the number of satisfying assignments of Boolean formula ϕ.
So \#SAT $=\{\langle\phi, k\rangle \mid k=\# \phi\}$
Defn: Language B is NP -hard if $A \leq_{\mathrm{p}} B$ for every $A \in \mathrm{NP}$.
(Note: B is NP-complete if B is NP-hard and $B \in N P$.)
Theorem: \#SAT is coNP-hard
Proof: Show $\overline{S A T} \leq_{P} \# S A T$

$$
f(\langle\phi\rangle)=\langle\phi, 0\rangle
$$

To show coNP $\subseteq I P$ we will show \#SAT $\in I P$

\#SAT \in IP - notation

$\# S A T=\{\langle\phi, k\rangle \mid$ Boolean formula ϕ has exactly k satisfying assignments $\}$
Theorem: \#SAT EIP
Proof: First some notation. Assume ϕ has m variables x_{1}, \ldots, x_{m}.
Let $\phi(0)$ be ϕ with $x_{1}=0$ (0 substituted for x_{1}) $0=$ FALSE and $1=$ True.
Let $\phi(01)$ be ϕ with $x_{1}=0$ and $x_{2}=1$.
Let $\phi\left(a_{1} \ldots a_{i}\right)$ be ϕ with $x_{1}=a_{1}, \ldots, x_{i}=a_{i}$ for $a_{1}, \ldots, a_{i} \in\{0,1\}$.
Call a_{1}, \ldots, a_{i} presets. The remaining x_{i+1}, \ldots, x_{m} stay as unset variables.
Let \# $\phi=$ the number of satisfying assignments of ϕ.
Let \# $\phi(0)=$ the number of satisfying assignments of $\phi(0)$.
Let $\# \phi\left(a_{1} \ldots a_{i}\right)=$ the number of satisfying assignments of $\phi\left(a_{1} \ldots a_{i}\right)$

Check-in 25.3

If $\# \phi=9$ and $\# \phi(0)=6$ then what do we know?
a) $\# \phi(1)=3$
c) $\# \phi(00) \leq 5$
b) $\# \phi(1)=15$
d) none of these

1. $\# \phi\left(a_{1} \ldots a_{i}\right)=$

$$
\# \phi\left(a_{1} \ldots a_{i} 0\right)+\# \phi\left(a_{1} \ldots a_{i} 1\right)
$$

2. $\# \phi\left(a_{1} \ldots a_{m}\right)=\phi\left(a_{1} \ldots a_{m}\right)$

$\# S A T \in I P \quad-1^{\text {st }}$ attempt

Theorem: \#SAT EIP

Proof: Protocol for V and (the honest) P on input $\langle\phi, k\rangle$
0) P sends $\# \phi$; V checks $k=\# \phi$

1) P sends \# $\phi(0)$, \# $\phi(1) ; \mathrm{V}$ checks $\# \phi=\# \phi(0)+\# \phi(1)$
2) P sends $\# \phi(00), \# \phi(01), \# \phi(10), \# \phi(11) ; \mathrm{V}$ checks $\# \phi(0)=\# \phi(00)+\# \phi(01)$ $\# \phi(1)=\# \phi(10)+\# \phi(11)$
! P Pends $\# \phi(\overbrace{(0 \cdots 0)}^{m}, \ldots, \# \phi(1 \cdots 1) ;$ V checks $\# \phi(\overbrace{(0 \cdots 0)}^{m-1}=\# \overbrace{(0 \cdots 00)}^{m-1}+\# \phi(0 \cdots 01)$
$\stackrel{m}{\overbrace{0}}$ V checks $\# \phi(1 \cdots 1)=\# \phi(1 \cdots 10)+\# \phi(1 \cdots 11)$
$m+1) \mathrm{V}$ checks $\# \phi(0 \cdots 0)=\phi(0 \cdots 0)$
$\# \phi(1 \cdots 1)=\phi(1 \cdots 1)$
V accepts if all checks are correct. Otherwise V rejects.
Problem: Exponential. How to fix?

Idea for fixing \#SAT \in IP protocol

Quick review of today

1. Introduced the interactive proof system model
2. Defined the class IP
3. Showed $\overline{I S O} \in I P$
4. Started showing \#SAT $\in \operatorname{IP}$ to prove that coNP \subseteq IP

MIT OpenCourseWare

https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

