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Abstract

Since the introduction of communication complexity four decades ago,
complexity theorists have generally achieved better results and separations
in communication complexity than in normal complexity classes. For
instance, it is known that no pair of PCC, BPPCC, NPCC, and PPCC are
equal, while not a single pair of all the corresponding normal classes P,
BPP, NP, and PP have been proven different. Fewer results have been
shown about larger complexity classes, however, and many of those are not
well known. In particular, material on unbounded-error communication
complexity classes and on PSPACECC is only beginning to materialize.

We survey the structure and relations among the large communication
classes PSPACECC and UPPCC and related topics, namely space bounds
and unbounded error as applied to communication complexity. Along the
way, we define a simple flavor of space-bounded communication with pub-
lic memory, which seems not to have been considered carefully before. We
also give a more concise presentation of some commonly-used character-
izations of unbounded-error protocols from linear algebra, and examine
the separation of UPPCC and PPCC.

1 Introduction

Communication complexity, a modern branch of complexity theory, regards the
number of bits required to be transmitted between two parties (usually named
Alice and Bob) that have different parts of an input to output a solution to a
problem involving both parts. Generally, the problem is taken to be a function
from Alice and Bob’s inputs to a boolean, f : {0, 1}n × {0, 1}n → {0, 1}. The
two parties are assumed to have arbitrary computational power when working
with their inputs; what matters is minimizing the number of bits necessary to
be communicated.

An example of a complexity measure we are concerned with in commu-
nication complexity is the deterministic communication complexity D(f), the
minimum number of bits Alice and Bob must communicate between them in
the worst case to solve some problem f by determining the answer with cer-
tainty. When D(f) = O(polylogn), the problem f is said to be in class PCC.
An example of a problem in PCC is Odd-Max-Bit-In-Union, where the prob-
lem is to output the parity of the highest index in either of the bitstrings Alice
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and Bob received that contains a 1. All that is required is for Alice or Bob to
send over their highest index with a 1 (logn bits for the index), and for the
other to compare this index with theirs. This is an easy problem to solve, but
most are not. (We will see the analogous problem about the intersection of the
inputs — Odd-Max-Bit, the highest index where Alice and Bob’s bitstrings
both contain 1 — later, and see that it is quite hard.)

In general, O(polylogn) communication is considered “efficient” in commu-
nication complexity, and classes NPCC, RPCC, PPCC, BPPCC, and ZPPCC have
definitions analogous to conventional complexity classes. Surprisingly, many of
these have been separated. It has been shown that PCC 6= RPCC 6= NPCC 6= PPCC.
However, while communication is easily understood to be the analogue for time
in traditional complexity theory, other concepts such as space and randomness
carry over to communication complexity less readily. These concepts are noted
for their ability to quickly describe very large complexity classes, however; for
example, PSPACE contains the entire polynomial hierarchy. This paper exam-
ines the analogues of these concepts and the resulting communication complexity
classes in communication complexity, and is structured as follows:

• Section 2 discusses PSPACECC and the more general concept of space-
bounded communication. Compared to time and even randomness, it is
unintuitive to think about what an analogous definition for PSPACECC is.
In this section, we discuss three alternatives for a definition of PSPACECC:

1. a definition based on quantifiers in analogy to the polynomial hier-
archy, considered by Babai et al. [1], who were the first to define
PSPACECC;

2. a definition based on restricting the additional space Alice and Bob
have to remember things between steps, given by Song [13]; and

3. a definition that restricts the size of the communication channel be-
tween Alice and Bob, given by Pálvölgyi [8].

We show that these definitions are equivalent. Then, we study some count-
ing arguments and one-way protocols, as discussed by Brody et al. [3] and
Song [13]. [3] define oblivious and non-oblivious memory based on how
they are used in a type of communication complexity protocols, and prove
that Inner-Product requires at least one bit of non-oblivious memory.

• Section 3 discusses PPCC and UPPCC, two classes analogous to PP from
traditional complexity theory. The latter was first considered implicitly
by Paturi and Simon [9]; Babai et al. [1] are the first to define the former
and place the two side by side. We consider these two classes and explores
the reasons for their difference: both classes allow arbitrary randomness,
but PPCC requires an accuracy of ≥ 1/2 + 2− poly(n), whereas UPPCC al-
lows arbitrary accuracy > 1/2. The reason for considering both classes
is that in normal complexity of decision problems, polynomial run time
dictates a polynomial bound on randomness and the “granularity” of this
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randomness means that an algorithm with accuracy > 1/2 actually must
have accuracy ≥ 1/2 + 2− poly(n).)

Afterwards, we give some examples of the power of the unbounded-error
communication model where any accuracy > 1/2 is acceptable, noting that
Greater-Than takes only 1 bit and Equality only two bits. Along the
way, we examine [9]’s geometric criterion for UPP complexity in depth, giv-
ing several examples and carefully analyzing the bounds. We then discuss
lower bounds on unbounded-error communication complexity by Forster
[5] and Sherstov [12] that build on the above results using techniques from
linear algebra. [5] proves a lower bound on the unbounded-error communi-
cation complexity of functions based on the corresponding matrix’s opera-
tor norm, which explicitly places functions defined by Hadamard matrices
outside UPPCC. Then, [12] bounds the unbounded-error communication
complexity of all symmetric functions, or functions that are completely
determined by the number of bits in the AND of the two inputs, to within
a polylogarithmic factor, which implies that most of them are outside
UPPCC as well.

Finally, we briefly the result of Buhrman et al. [4] that separates PPCC from
UPPCC with the explicit problem Odd-Max-Bit, and also look at some
related results from Göös et al. [6], which also has an excellent broader
overview of communication complexity classes.

• Section 4 discusses open problems suggested in these areas.

2 PSPACECC

The communication complexity class PSPACECC was first introduced by Babai
et al. [1] as the natural extension of the analogue of the polynomial hierarchy
in normal complexity theory, using quantifiers. They wrote, “ ‘Unlimited alter-
ation’ will define PSPACECC (although we do not have a notion corresponding
to space).”

Since, as in the case of NPCC, we can assume Alice and Bob do not commu-
nicate after receiving the certificate from the prover since the prover can include
their communication in the certificate, we can define PSPACECC as follows:

Definition 1. PSPACECC is the class of families of functions {fn}∞n=1, where
fn : {0, 1}n × {0, 1}n → {0, 1}, such that for each n, there exists a positive
integer k = O(polylogn) and functions φ, ψ such that fn(x, y) = 1 iff

∃u1∀u2∃u3 . . . ∀u2k(φ(x, u1, . . . , u2k) ∨ ψ(y, u1, . . . , u2k)),

where each ui ranges over O(polylogn)-length strings.

(Since we can choose k depending on n, the exact nature and number of the
quantifiers doesn’t matter.)

However, there are natural ways to produce a notion of space in communica-
tion protocols. Pálvölgyi [8] defines PSPACECC apparently independently of [1]:
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In their model, Alice and Bob are still capable of computing anything, but have
limited shared memory they can use to record and remember messages passed
between them. This can be formalized as follows:

Definition 2. A public s(n)-space-bounded communication protocol is defined
by two transition functions φ : {0, 1}n×{0, 1}s0,1 → {0, 1}s ∪{Halt0,Halt1}.

Alice and Bob have an s-bit shared memory, which is initially all 0s. Taking
turns, Alice or Bob can either put a new message into the shared memory,
depending on only their input and the previous message in the shared memory,
or halt and declare the answer, according to the transition function.

Such a protocol computes a function f if for all inputs x, y, one of Alice and
Bob halts and declares the answer f(x, y).

The more-studied definition of a space bound is given by Song [13], who
gives the same definition of PSPACECC as [1], using alternating quantifiers, but
later defines (essentially) the following natural notion of space and proves in
Corollary 3.2 that it is an equivalent definition.

Definition 3. A (private) s(n)-space-bounded communication protocol is de-
fined by two transition functions φ0,1 : {0, 1} × {0, 1}n × {0, 1}s → ({0, 1}s ×
{0, 1}) ∪ {Halt0,Halt1}.

Alice and Bob each have an s-bit private memory, which is initially all 0s.
Taking turns, Alice or Bob can either:

i. set the contents of their memory and send a single bit to the other player,
both only depending on their input, the previous contents of their memory,
and the previous bit received from the other player; or

ii. halt and declare the answer,

according to the transition function.
Such a protocol computes a function f if for all inputs x, y, one of Alice and

Bob halts and declares the answer f(x, y).

In this model, it is important that Alice and Bob can only send each other
single bits in each turn, since otherwise the bits in transit between them are like
a type of memory.

Also note that there are many ways to define exactly when a protocol halts;
for simplicity, we allow either player to unilaterally halt the protocol and declare
the answer. Most reasonable ways are equivalent up to an additive constant,
since at worst Alice and Bob can designate two messages to indicate to each
other that the protocol should halt with a certain output, or spend an extra bit
asking whether the other player has an answer.

In fact, the natural definitions of PSPACECC derived from the two notions
of memory above are asymptotically equivalent, and both coincide with the
quantifier-based definition:

Theorem 1. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function.
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i. If there exists a public s-space-bounded communication protocol that com-
putes f , then there exists a private (s+ log s+ 1)-space-bounded communi-
cation protocol that computes f .

ii. If there exists a private s-space-bounded communication protocol that com-
putes f , then there exists a public (2s + 2)-space-bounded communication
protocol that computes f .

Proof. i. Alice and Bob can simulate a public s-space-bounded communica-
tion protocol with a private (s + log s + 1)-space-bounded communication
protocol as follows. Both players will have s bits of their private memory
reflecting the contents of the shared memory. Each turn in the original
protocol where Alice writes a message in the shared memory translates into
2s turns in the private protocol (which both players count using log s bits
in their own private memories). At the start of these turns, Alice computes
the new message and records it in her private memory; then, over the 2s
turns, Alice sends Bob her new message bit by bit, and Bob sends 0s. A
similar translation occurs when Bob wants to send Alice a message, with
roles swapped. (Both players use the last bit to record whose turn it is to
send bits.)

ii. Alice and Bob can simulate a private s-space-bounded communication pro-
tocol with a public (2s+ 2)-space-bounded communication protocol as fol-
lows. The shared memory has s bits storing Alice’s private memory, s bits
storing Bob’s private memory, 1 bit recording whose turn it is to send a
message, and 1 bit where players write a message to send/receive.

Theorem 2. PSPACECC is precisely the class of families of functions com-
putable by public O(polylogn)-space-bounded communication protocols.

Proof. The proof is similar to the proof in traditional complexity theory that
TQBF is PSPACE-complete, so we will just briefly sketch it.

• Any PSPACECC function can be simulated by a public O(polylog n)-space-
bounded communication protocol because the players can recursively eval-
uate the truth of each quantifier, using shared memory to store the settings
for each variable in each quantifier so far.

• Conversely, to prove that a function computed by a public O(polylogn)-
space-bounded communication protocol is in PSPACECC, note that be-
cause there are only 2O(polylogn) possible messages in the shared memory,
protocols can only last for 2O(polylogn) steps. Also, players can individu-
ally verify that some message in the shared memory would have led to the
next message. So we can inductively use quantifiers to bisect the history of
messages in the shared memory. This lets us compute, using O(polylogn)
quantifiers, whether a history of messages of length 2O(polylogn) exists that
goes from the initial state to some state where either player halts and out-
puts 1.

5



Corollary 1. PSPACECC is precisely the class of families of functions com-
putable by private O(polylog n)-space-bounded communication protocols.

This is also Corollary 3.2 of [13], so the reader may consult that for an
alternate proof.

2.1 Counting Arguments

A nice feature of the communication protocols considered above is that they are
easy to count. Counting allows us to prove that even (1 − ε)n bits of memory
is not enough to calculate all functions, much less the O(polylog n) bits allowed
by PSPACECC; it also allows us to prove a space hierarchy theorem.

2n

Concretely, fix n. Note that there are 22 functions n n

{0, 1}, but, according to the above definitions, only

public s-space-bounded communication protocols and

( f : {0, 1} × {0, 1}
s 2n+s

)2
≈ s·2n+s

→
+1

(2 + 2) 2
2

· s 2n+s+1

(2 2 + 2) ≈

2s·2
n+s+2

private s-space-bounded communication proto

(
cols. So for any ε

)
< 1,

there exist functions that cannot be computed by ε ·n-space-bounded communi-
cation protocols of either flavor; in fact, considering the limit of the ratio quickly
yields that most functions cannot be so computed. The reader may consult [13]
for the (simple) computational details.

Theorem 3. (Theorem 3.7 of [13]) For any ε < 1, as n approaches infin-
ity, the fraction of functions computable by ε · n-space-bounded communication
approaches 0.

2n+s

Furthermore, there are 2 functions that only depend on the first s bits of
Alice’s input, which can clearly be computed by either flavor of s-space-bounded
communication protocol. For public protocols, only one step is needed, in which
Alice writes the first s bits in the shared memory and sends it over to Bob; for
private protocols, Alice can send it over bit by bit, with Bob writing down the
bits one by one in his private memory.

As a result, we have the following space hierarchy theorem:

Theorem 4. (approximately Corollary 12 of [3]) For every s(n) < n − log n
and large enough n, there exist functions computable by (s+log s+O(1))-space-
bounded communication protocols (of either flavor) not computable by s-space-
bounded communication protocols.

2.2 One-Way Protocols and Oblivious versus Non-Oblivious
Memory

Brody et al. [3] further examine space-bounded one-way communication com-
plexity, which involves communication protocols in which all communication
is from Alice to Bob, along with the concepts of oblivious and non-oblivious
memory:
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Definition 4. • Oblivious memory is memory that does not depend on in-
put (only on messages received from the other player).

• Non-oblivious (or general) memory is memory that may depend on input.

In general, Bob has both oblivious and non-oblivious memory, and oblivi-
ous and non-oblivious memory may have different bounds. In particular, one
typically examines cases where non-oblivious memory has a tighter bound than
oblivious memory.

Equality and Inner-Product have different complexities in this model:

Theorem 5. Equality can be computed with no non-oblivious bits and O(log n)
oblivious bits.

Proof. In a protocol for Equality, Alice simply sends bits over and Bob checks
each one to his corresponding bit, using oblivious bits to keep track of the index
in their bitstrings. No non-oblivious bits are used.

Theorem 6. (Theorem 22 of [3]) To compute Inner-Product with no non-
oblivious bits requires at least n/8 oblivious bits.

The proof is quite technically detailed, so we can only offer some basic in-
tuition: Every bit in Alice’s communication can potentially unilaterally flip the
answer to Inner-Product, so if Bob can’t store Alice’s entire input, he needs
a bit that will vary depending on his input, so at least one bit is necessary.

Even more precisely: Without non-oblivious bits, note that in each step,
Bob’s oblivious memory and Alice’s message can be computed based on only
Alice’s input. If Bob’s oblivious memory is bounded, there are too few memory
states to allow Bob to correctly answer for all possible pairs of inputs, due to
the way any bit in Alice’s input can potentially flip the answer.

On the other hand, Inner-Product is computable with one non-oblivious
bit and O(log n) oblivious bits, as Bob could simply store the cumulative sum
so far as a bit at any stage in the process. So assuming the availability of
O(polylog n) oblivious bits, exactly one non-oblivious bit is required for Inner-
Product.

2.3 Further One-Way Memory-Limited Communication

Song [13] continues to develop the theory of one-way space-bounded communi-
cation complexity by limiting Bob’s memory further.

The first model considered is the (one-way) memoryless model, in which
Alice can remember how many steps have occurred in the protocol, and sends
Bob a message of length s in each step. Bob has no memory and does not know
how many steps have occurred. After receiving each message, he decides whether
to halt and accept, halt and reject, or continue; this decision can depend only
on the message he received and his input. (In this model, we may equivalently
assume Alice has s bits of memory, since the protocol can only usefully go on
for 2s steps — there is no point in sending the same message twice.)

7



Although Bob’s lack of memory makes this seems like a very weak model,
one should note that it can certainly compute the simple functions considered in
Section 2.1, and thus have similar guarantees from the space hierarchy theorem.
Perhaps more surprising is this link into the polynomial hierarchy:

Theorem 7. (Theorem 4.6 of [13]) The set of functions computable in the
CC

(one-way) memoryless model with s = O(polylog n) is precisely PNP .

To understand the class PNPCC

, we should define the concept of an oracle in
communication complexity:

Definition 5. (Definition 6.4 of [1], loosely translated) In a communication
protocol with some class C of communication complexity problems as an oracle,
either Alice or Bob can pick f ∈ C, f : {0, 1}m × {0, 1}m → {0, 1}, and g, h :
{0, 1}n → {0, 1}m, and obtain the values f(g(x), h(y)), where x, y are Alice and
Bob’s inputs, respectively.

The proof of Theorem 7 invokes a concept of rectangle overlays developed
by [13], which are a more powerful version of the rectangle partitions often
considered in communication complexity. We will only briefly sketch the proof.

Proof. (Sketch)

• CC

To convert a one-way memoryless protocol to a PNP protocol, Alice and
Bob use the NPCC oracle to binary-search the timeline of messages Alice
would send in the memoryless protocol for the first one that Bob declares
an answer on.

• To convert a PNPCC

protocol to a one-way memoryless protocol, Alice brute-

forces all possible computational histories of the PNPCC

protocol, including
all possible sequences of oracle answers and every possible certificate that
she would accept for every YES answer. For every oracle query, she always
sends all possible histories where the answer is YES before trying a history
where the answer is NO. Bob waits for a computation history where every
certificate for an oracle query is also one he would accept, and outputs the

answer that the PNPCC

protocol would give.

The second model considered is the (one-way) limited memory model. As
above, Alice can remember how many steps have occurred in the protocol, and
sends Bob a message of length s in each step. Bob still does not know how
many steps have occurred, but can set himself to one of k memory states, which
persist between steps. After receiving each message, he decides whether to halt
and accept, halt and reject, or set his memory state and continue; this decision
can depend only on the message he received, his input, and his previous memory
state. Amazingly, even for k = 5 this model does everything the general model
does with little overhead:
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Theorem 8. (Theorem 5.14 of [13]) The set of languages computed by a one-
way limited memory model with s = O(polylog n) and k = 5 is precisely PSPACECC.

The proof of this appeals to a model of computation known as branching
programs: see [2]. While the proof is too long to give here, we can give some
sense of the flavor, including motivation for the constant 5:

Lemma 1. (Lemma 3 of [2]) There are 5-cycles σ and τ in S5 such that the
commutator στσ−1τ−1 is also a 5-cycle.

Proof.
(12345)(13542)(54321)(24531) = (14352).

(Curiously, [2] writes this sequence of 5-cycles but composes it left-to-right.
We follow the right-to-left convention of composing functions above. Fortu-
nately, the lemma is robust to this issue!)

The relationship between the permutations in this lemma and our one-way
limited-memory model of communication complexity is as follows: if we fix Bob’s
input and the message he receives from Alice in some timestep, we can think of
what Bob does to his memory state in this step as a permutation over memory
states. (It could be any function from memory states to memory states, but
permutations are the most powerful, since they don’t lose memory information.)
So for example, if Bob calculates the 5-cycle σ = (14352) from Alice’s message
and his input and is currently in memory state 2, he sets his memory state to
σ(2) = 1.

This lemma allows Alice and Bob to compose permutations together to build
a sort of AND gate. For example, if Bob runs these four instructions:

1. If y is true, follow permutation τ−11 ; else do nothing (i.e. follow the iden-
tity permutation)

2. If y is false, follow permutation σ−12 ; else do nothing

3. If y1 is true, follow permutation τ ; else do nothing

4. If y2 is false, follow permutation σ; else do nothing

then Bob will have performed the commutator στσ−1τ−1 if y1 is true and y2 is
false, and otherwise will have done nothing, since the permutations will cancel
out. Since the commutator is itself a 5-cycle, this AND gate can be fed into a
larger AND gate.

The overall proof strategy of Theorem 8 is to convert the general commu-
nication protocol to a type of low-depth circuit with “local preprocessing”, a
feature defined by [13] that allows it to compute arbitrary functions of booleans
in only one half. The low-depth circuit can then be converted into a branching
program with the lemma and strategy above.
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3 PPCC and UPPCC

The other type of large communication complexity classes is obtained by allow-
ing randomness and very small bias, so it is enough for a protocol to accept with
probability 1/2 + ε for small ε, which may be o(1). By default, we will consider
private randomness.

Definition 6. A protocol computes a function with bias β if, for every pair of
inputs, it computes the right answer with probability at least 1/2 + β.

We may contrast the classes we are about to consider with BPPCC, which is
the class of functions computable with constant positive bias, often taken to be
1/6 or 1/4. The exact value does not matter due to amplification. Two large
communication complexity classes are defined with very small bias in this way,
PPCC and UPPCC.

Definition 7. • PPCC is the communication complexity class of problems
that can be solved with a protocol with access to private randomness that
uses O(polylogn) communication, and computes the answer with bias
Ω(1/2polylogn).

• UPPCC is the communication complexity class of problems that can be
solved with a protocol with access to private randomness using O(polylog n)
communication, and computes the answer with arbitrary positive bias.

Observe that the two classes PPCC and UPPCC have only one analogous class,
PP, in the traditional complexity of deterministic algorithms. The reason is that
in traditional complexity, randomness is essentially already counted as part of
the complexity, since an algorithm must devote computational time to using
that randomness, and the fact that limited randomness is available actually
means the bias cannot be too small while being positive. More specifically, if a
protocol only uses k bits of randomness, its bias must be an integral multiple
of 1/2k. So, any deterministic algorithm running in poly(n) time with positive
bias automatically has Ω(1/2poly(n)) bias, and the analogues of PPCC and UPPCC

become identical in traditional complexity theory.
In addition, note that [1] defines PPCC by limiting the protocol to only use

O(polylog n) randomness. This is stricter than our definition, since for the same
reasons as above, O(polylog n) randomness implies a bias of Ω(1/2polylogn). The
fact that these definitions are still equivalent can be seen from the conversion
in the standard proof of Newman’s theorem, which we restate as a standalone
theorem below:

Theorem 9. (based on Newman’s theorem) A randomized protocol P that com-
putes a function f : {0, 1}n×{0, 1}n → {0, 1} with bias β can be converted to a
randomized protocol P ′ with bias β− δ that uses the same amount of communi-
cation but only O(log n+ log δ−1) bits of randomness.

For a proof, see [10].
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Corollary 2. PPCC is the communication complexity class of problems that can
be solved with a randomized protocol using O(polylog n) communication and
O(polylog n) bits of randomness.

Newman’s theorem also allows us to see that PPCC is unchanged if we con-
sider public instead of private randomness.

Corollary 3. PPCC is the communication complexity class of problems that can
be solved with a randomized protocol using O(polylog n) communication and
O(polylog n) bits of public randomness.

However, note that Theorem 9 does not imply that UPPCC is unchanged if
we consider public randomness, and in fact it is different. Fortunately, UPPCC

with public randomness is not a very interesting class (a result noted at least in
passing in [12], Section 2.1):

Theorem 10. All function f : {0, 1}n ×{0, 1}n → {0, 1} can be computed with
a protocol using O(1) communication and O(n) bits of public randomness with
positive bias.

Proof. Alice checks if the first n bits of public randomness exactly match her
input. If so, she tells Bob this, so Bob knows Alice’s input and can compute
and output the correct value of f . Otherwise, they output a random bit. This
computes f with bias 1/2n+1.

3.1 Power of Unbounded-Error Communication

Intuitively, the model of unbounded-error communication is very powerful. Per-
haps the simplest example is Greater-Than, which can be computed with 1
bit of communication.

In general:

Definition 8. For a function f : {0, 1}n × {0, 1}n → {0, 1}, let UPP(f) de-
note the unbounded-error communication complexity of f , that is, the minimum
number of bits Alice and Bob must exchange in a communication complexity
protocol with unlimited private randomness before one of them can declare the
answer with > 1/2 accuracy.

Theorem 11.
UPP(Greater-Than) = 1.

Proof. Alice and Bob both divide their numbers by 2n, to get pa and pb respec-
tively. Alice chooses to send the bit ‘1’ over to Bob with probability pa + ε;
otherwise, she sends ‘0’. Bob chooses the bit ‘1’ with probability pa and ‘0’
otherwise, and compares this to the number Alice sends. If one of them pro-
duces bit ‘1’ and the other produces bit ‘0’, the one who produces bit ‘1’ is
declared to have the larger number. Otherwise, either ‘0’ or ‘1’ is outputted
with probability 1/2.
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Regardless what numbers Alice and Bob have, if Alice’s number is greater
than or equal to Bob’s, Alice generates a 1 while Bob generates a 0 with higher
probability than Alice generating a 0 while Bob generates a 1. In the case of
equals, Alice has a higher probability of being evaluated as greater than or equals
due to adding ε to pa. If Alice’s number is less than Bob’s, then Alice generates
a 1 while Bob generates a 0 with lower probability than Alice generating a 0
while Bob generates a 1. In either of these cases, the two generating the same
bit gives either result with 1/2 probability, so overall in any case the correct
answer is generated with probability > 1/2.

A more interesting example is given by Equality, which can be computed
with positive bias after Alice sends Bob just 2 bits! (In fact, she does not need
the full second bit — she can restrict herself to 3 possible messages, say 00,
01, and 10!) In other words, UPP(Equality) = 2. The proof is considerably
trickier, however; we prove this result below as Corollary 5.

To equip ourselves to prove this, we give a condensed version of some key
results of [9], including what we believe to be a more geometrically intuitive
version of their Protocol 1. Their first result is the observation that UPP proto-
cols can be assumed to be one-way with only 1 bit of overhead, an interesting
type of restricted protocol that reappears from our analysis of space-bounded
communication protocols. We give our own less formal proof of this result and
invite the reader to read the original paper for a more formal and symbolic
treatment.

Definition 9. For a function f : {0, 1}n×{0, 1}n → {0, 1}, let UPP (f) denote→
the unbounded-error one-way communication complexity of f : the minimum
number of bits Alice must send Bob, in a communication complexity protocol
with unlimited private randomness where Bob cannot send bits to Alice, before
Bob can declare the answer with > 1/2 accuracy.

Theorem 12. (Theorem 1 of [9]) Fix a function f : {0, 1}n×{0, 1}n → {0, 1}.
Suppose there exists a protocol that computes f with positive bias using c bits of
communication and private randomness. Then there exists a one-way protocol
that computes f with at most c+1 bits of communication: that is, in this protocol,
Alice sends Bob c+ 1 bits and Bob declares the answer. In other words,

UPP (f) ≤ UPP(f) + 1.→

Proof. Alice randomly chooses a bitstring and pretends it is Bob’s input, then
simulates the protocol with an imaginary copy of Bob under this assumption.
Then she sends the entire history and the output to Bob, who checks if imaginary
Bob’s answers are all actually the answers Bob would have actually given under
the original protocol (which happens at least if the random bitstring Alice chose
exactly matches Bob’s input, hence with positive probability). If so, he outputs
the declared output; otherwise, he outputs a random bit.

Equality can hold: the most trivial example is a function such as f(x, y) = x0
that only depends on Alice’s input. Then clearly UPP(f) = 0, since Alice can
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just declare the answer; but UPP (f) = 1, since Alice can just tell Bob the→
correct output and have him declare it, while Bob is hapless to guess the answer
without at least one bit from Alice. A more sophisticated example is given after
Corollary 4.

Their second result is a geometric characterization of functions that can be
computed with positive-bias randomized protocols. The characterization deals
with half-spaces in Rd, which is a choice of half of Rd delimited by a hyperplane.
We state this more precisely below.

Theorem 13. (Theorem 2 of [9]) Fix a function f : {0, 1}n×{0, 1}n → {0, 1}.
Let d be the smallest positive integer such that there exists an arrangement of 2n

half-spaces h1, . . . , h2n in Rd satisfying this condition: for every input x, there
exists a point Px such that Px ∈ hy iff f(x, y) = 1. (Also note we can assume
no Px lies on any half-space-delimiting-hyperplane by slightly adjusting it if this
does not hold.) Let m be the smallest positive integer such that there exists a
one-way protocol with private randomness that computes f with positive bias,
in which Alice sends one of m messages to Bob and Bob declares the answer.
Then

d+ 1 = m.

As a consequence, the one-way positive-bias communication complexity of f
is exactly

UPP (f) = dlogme = dlog(d+ 1)→ e .

Proof. Let T be the d-dimensional hypertriangle in Rd+1 given by points whose
coordinates are all nonnegative and sum to 1.

• To prove the forward direction, project the arrangement onto T and scale
it such that all points Px lie in T .

If Alice’s input is x, Alice finds the point Px and sends a random message
from the d possible messages to Bob, choosing message i with probability
equal to the ith coordinate of Px.

If Bob’s input is y, Bob finds the half-space hy and constructs a linear
function `y of Rd+1 such that 0 ≤ `y(P ) ≤ 1 on T and `y(P ) ≥ 1/2
precisely when P ∈ hy. (This can be done by fixing a point P0 on the
border of hy, taking the dot product of P − P0 with a normal to hy,
scaling suitably, and then adding 1/2.) Then when Bob receives bitstring
s, Bob constructs the point P ′ that has the sth coordinate 1 and all other
coordinates 0 and accepts with probability `y(P ′).

This protocol works because Bob’s function is linear, so for fixed x and
y, since the average value of P ′ is precisely P along all coordinates, the
expected value of `y(P ′) is precisely `y(Px), which is > 1/2 precisely when
f(x, y) = 1.

• To prove the reverse direction, the process can be simply reversed after
setting d = m− 1: for each x, Alice’s probabilities of transmitting each of
the m possible messages can be combined into the coordinates of a single
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point Px on T , and for each y, Bob’s probability of accepting if he receives
the bitstring s can be interpolated into a linear function `y on T . Then
the half-spaces hy can be recovered from `y. Since the protocol accepts
on inputs (x, y) if and only if Px ∈ hy, we know that the half-spaces hy
satisfy the theorem conditions.

Combining this with Theorem 12 gives:

Corollary 4. dlog(d+ 1)e − 1 ≤ UPP(f) ≤ dlog(d+ 1)e.
Example. Consider a functionf described by the communication matrix

0 0 0 00 1 0 1 .
1 0 1 0


1 1 1 1


For this function, we have d = 2, since you can


take two copies each of the two

half-spaces with positive x-coordinate and positive y-coordinate, respectively,
in R2. This is minimal, since two points (“hyperplanes” in R1) cannot partition
R1 into 4 regions; but since all 4 rows are distinct if you restrict to the first two
columns, all 4 Px must be distinct and must be in different regions as partitioned
by the points corresponding to the first two columns. Then UPP (f) = 2.→

However, if we transpose thematrix to get

0 0 1 10 1 0 10 0 1 1


0 1 0 1


and consider (by abuse of matrix notation) the


resulting function fT , we now

have d = 1: we can take the rays

(−∞, 0], (−∞, 3], [4,∞), [1,∞)

for the four columns respectively, and the points

5, 2, 5, 2

for the four rows respectively. This implies

UPP(f) = UPP(fT ) = UPP (fT ) = 1.→

As a result,

dlog(df + 1)e − 1 = UPP(f) = 1 = UPP(fT ) =
⌈
log(dfT + 1)

⌉
,

so both equalities in Corollary 4 can hold.
With the geometric criterion of Theorem 13 (which is in fact constructive,

since we can convert an arrangements of half-spaces to a protocol and back), it
is not too hard to see that Equality has a 3-message protocol, because it is
equivalent to the following statement:
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Lemma 2. For any k, there exists a configuration of k half-planes (defined by
lying on one side of lines in R2) such that every half-plane contains some point
not in any other half-plane.

Proof. Fix a circle and draw k distinct tangents to it. For each tangent, take
the half-plane defined by it that does not contain the circle. Then a point just
outside the circle and near a point of tangency of a line ` will be separated from
the circle by only that line.

Corollary 5.
UPP(Equality) = 2.

Proof. For any n, the configuration given by Lemma 2 satisfies Theorem 13 in
R2. Thus, d = 2 in Theorem 13, so m = 3 and UPP(Equality) = dlogme =
2.

3.2 Linear-Algebraic Characterization of UPP

Note also that if we increment the dimension by 1, we can consider half-spaces
in Rd+1 whose delimiting hyperplanes pass through the origin, which are called
homogeneous. [5] uses this phrasing, which is easier to work with using linear
algebraic tools, because then each half-space can be described with a single
inner product as {u | 〈u, vy〉 > 0} for some vector vy. Theorem 3 in [9] also
uses a related rephrasing in terms of rank of matrices that sign-represent the
communication matrix, which becomes the basis for many further proofs in this
area.

ˆDefinition 10. A matrix M sign-represents a matrix M with entries in {0, 1}
if the following conditions are true:

• ˆIf Mxy = 0, then Mxy < 0;

• ˆIf Mxy = 1, then Mxy > 0.

The sign-rank of M is the minimum rank of any matrix that sign-represents M .

We collect these equivalent criteria in a lemma:

Lemma 3. • Let d be defined as in Theorem 13.

• Let d′ be the smallest positive integer such that there exists an arrangement
′

of 2n homogeneous half-spaces h1, . . . , h2n in Rd satisfying this condition:
for every input x, there exists a point Px such that Px ∈ hy iff f(x, y) = 1.

• Let d′′ be the smallest positive integer such that there exist 2n unit vectors
ux and 2n unit vectors vy such that for all x, y, the sign of 〈ux, vy〉 gives
the value of f(x, y), that is:

– If f(x, y) = 0, then 〈ux, vy〉 < 0;

– If f(x, y) = 1, then 〈ux, vy〉 > 0.
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• (Theorem 3 of [9]) Let d′′′ be the sign-rank of the communication matrix
of f .

Then d′ = d′′ = d′′′ and d ≤ d′ ≤ d+ 1.

Proof. • It is clear that d ≤ d′, since we’re just adding the restriction that
the half-spaces be homogeneous. To see that d′ ≤ d + 1, just note that
an arrangement of half-spaces in Rd can be converted to an arrangement
of homogeneous half-spaces in Rd+1 by projecting onto the hyperplane
of T as above and turning each (d − 1)-dimensional hyperplane h into a
d-dimensional hyperplane h′ that passes through h and the origin.

• We have already essentially proven d′ = d′′: just note that each homoge-
neous half-space can be written {u | 〈u, vy〉 > 0} for some vector vy, and
normalize each Px to get vx. Then note that it does no harm to normalize
these vectors.

• ˆWe use the classical fact from linear algebra: the rank d′′′ of a matrix M is
ˆthe minimum positive integer such that M can be written as a product of

two matrices AB, where A has dimensions 2n× d′′′ and B has dimensions
d′′′×2n. Then if we take ux to be the rows of A and vy to be the columns
of B, we see that this is equivalent to the previous definition so d′′ = d′′′.

Note, by the way, that these inequalities can both be tight:
Examples.

• Consider a function f described by the communication matrix
0 0 0 0 0 0 0 0


0 0 1 0 0 0 0 00 1 0 0 0 0 0 00 1 1 0 0 0 0 0


1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0


1 1 0 0 0 0 0 0

 .
1 1 1 0 0 0 0 0


For this function, we ha


ve d = d


′ = 3, since you can take the three half-

spaces with positive x-coordinate, positive y-coordinate, and positive z-
coordinate, respectively, in R3 (in addition to five other trivial half-spaces
with hyperplanes far away from the origin that do not contain it). This
is tight since three lines cannot partition R2 into 8 regions, but since all
8 rows are distinct, all 8 Px must be distinct and must be in different
regions. Then UPP(f) = 2.

• However, if we delete the last row (and copy some other row, say the first
one, to keep the matrix square) and consider the function described by
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the communication matrix
0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 1 0 0 0 0 0


0 1 0 0 0 0 0 0


 .

0 1 1 0 0 0 0 0


1 0 0 0 0 0 0 0


1 0 1 0 0 0 0 0


1 1 0 0 0 0 0 0


we have d = 2 while d′ = 3, since three lines


can partition R2 into 7

regions and we can arrange three half-planes to have 7 points satisfying
Theorem 13, but not if all three lines are required to go through the origin.
Then UPP(f) = 1.

However, the important result arises from combining Lemma 3 with Corollary 4:

Corollary 6.
dlog d′e − 1 ≤ UPP(f) ≤ dlog(d′ + 1)e .

The inequality on the left side is weaker by 1 than what [5] cites to be the
main theorem of [9]. Despite having given examples where equality holds for
all four inequalities in Lemma 3 and Corollary 4, however, we were unable to
construct an example showing that the left inequality above is tight or prove
the tightened version without the −1. An example of f where equality on the
left side holds would have to simultaneously satisfy UPP(f) = UPP (f)−1 and→
dlog d′e = dlog(d+ 1)e. A further consequence is that, since UPP(·) and d′ are
both symmetric with respect to the roles of Alice and Bob, if (abusing matrix
notation again) we consider the function fT defined by fT (x, y) = f(y, x), then
we must have UPP(f) = UPP(fT ) = UPP (fT ) − 1 as well. So such an f→
must require some back-and-forth communication between Alice and Bob in all
optimal protocols. This rules out many simple functions.

In any case, using Corollary 6 and tools from linear algebra, [5] produces a
bound based on the operator norm of the communication matrix that proves that
several functions, including Inner-Product, requires at least n/2− 1 = Θ(n)
bits.

Theorem 14. (Theorem 2.2 of [5], specialized) Consider the communication

matrix M1 ∈ {− 2n 2n
1, 1} ×

with {±1} as entries instead of {0, 1}. With d′ as in
Lemma 3,

2n
d′ ≥ .

‖M1‖

Proof. (Sketch) By choosing a suitable linear transformation (Theorem 4.1 of
[5]), we may rebalance the ux so that

x

∑
uxu

T
x = 2n

∈X
· Id′/d′.
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Then

x

∑ 2n

∈X
|〈ux, vy〉| ≥

d′

and we can bound the operator norm ‖M1‖ with the scalar products 〈ux, vy〉
(Lemma 2.1 of [5]) to get

2n ·
(

2n

d′

)2

≤
∑
y∈Y

(∑
x∈X
|〈ux, vy〉|

)2

≤ 2n ‖M1‖2 =⇒ 2n

d′
≤ ‖M1‖ .

Corollary 7. (Corollary 2.1 of [5])

UPP(f) ≥ n− log2 ‖M1‖ − 1.

Then, becauseM1 of the matrix for Inner-Product has orthogonal columns,
we have ‖M1‖ =

√
2n, so:

Corollary 8. (Corollary 2.2 of [5])

UPP(Inner-Product) ≥ n/2− 1.

As discussed, [5] states these two results without the −1, and we are not
sure whether it can be removed. However, asymptotics are unaffected and the
result as stated still suffices to place Inner-Product well outside UPP.

[12] builds on this result to obtain bounds on the unbounded-error commu-
nication complexity of all symmetric functions, which are functions that only
depend on the number of bits in x∧ y (the most well-known of which are prob-
ably Inner-Product and Disjoint). Another result is by [11], which proves
that Π2P is not included in UPP.

3.3 Separation from PPCC

[4] separates UPPCC from PPCC with the problem Odd-Max-Bit: given bit-
strings {x }n n

i i=1 and {yi}i=1 what is the parity of the highest index i such that
xi = yi = 1?

Theorem 15. (Section 3.1 of [4])

UPP(Odd-Max-Bit) = O(log n).

Proof. Alice picks a number randomly from {1, . . . , n} such that she picks i with
probability

2i

2n+1 − 1

(the denominator is just a normalizing constant). She sends i and xi to Bob
(taking dlog ne+ 1 bits). If Bob finds that xi = yi = 1, he outputs the parity of
i; otherwise, he outputs randomly. This computes Odd-Max-Bit with positive
bias.
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Theorem 16. (Section 3.2 of [4]) At least Ω(n1/3) communication is required
to compute Odd-Max-Bit with Ω(1/2polylogn) bias.

A proof of this theorem is rather difficult, and relies on a result of Razborov
involving quantum communication.

Incidentally, [6] observes that Odd-Max-Bit is in fact in PNPCC

, very low
on the communication complexity polynomial hierarchy, and so this provides a
lower bound for PPCC with that class.

The idea is to note that Nondisjoint is in NPCC, so to compute Odd-Max-
Bit Alice and Bob can use O(log n) oracle calls to Nondisjoint to binary-
search for the longest suffixes of their inputs that are nondisjoint, whereupon

they know the answer. Thus, Odd-Max-Bit ∈ PNPCC

.
CC

A related contribution of [6] is to place PNP inside UPP (in fact, in a some-
what smaller class they designate UPostBPP�), which provides an interesting
link between the unbounded-error classes considered in this section and space-
bounded classes in light of Theorem 7:

Theorem 17. (Observeation 25 of [6])

PNPCC

⊆ UPP.

Proof. (Sketch) For each NPCC oracle query, Alice and Bob guess the oracle
answer is YES and pick a random certificate with very high probability, and the
oracle answer is NO for very low probability. For each YES answer, they check
the randomly chosen certificate verifies the YES answer. If any certificate fails
to verify, they output a random bit; otherwise, they output the answer based
on the guessed oracle answers. For suitably chosen probabilities, they will be
more likely to guess the sequence of correct oracle answers and certificates for
all the YES answers than any strict subset thereof, and will thus be more likely
to output the correct answer in that case, and thus in general.

4 Open Problems

The biggest open problem involving the two types of classes surveyed is probably
whether UPPCC ⊆ PSPACECC. [1] conjectures that this is false and the two
classes are incomparable. (As we have seen, Inner-Product and some other
problems are known to be outside UPPCC, but easily shown to be in PSPACECC.)

Somewhat more generally, it would be interesting to have an explicit descrip-
tion a function outside PSPACECC. Section 3.5.1 of [13] discusses of the diffi-
culty of this. Proving a function outside PSPACECC would also prove it outside
SPACE(O(polylog n)) in normal deterministic complexity theory; few problems
have such bounds except for PSPACE-complete problems such as TQBF, and
due to concerns over uniformity, proving even those to be outside PSPACECC

would imply PSPACE 6⊆ NC1, which is probably stronger than the celebrated
2010 result NEXP 6⊆ ACC0 of [14].

19



Taking a broader view, it would be interesting to continue some of the work
of [6] to more precisely relate the probabilistic classes like PPCC and UPPCC to
classes in the polynomial hierarchy. They also mention the open problem of
whether UPPCC is closed under intersection, which reflects the issues the very
low bias makes it hard to compose communication protocols.

Looking at the techniques invoked in this survey instead, it might be inter-
esting to examine suitably-defined one-way protocols in other communication
complexity classes and see whether they are less powerful and by how much.

Finally, although constant terms are probably generally uninteresting in a
complexity theory setting, we have the issue of whether the −1 term in Corol-
lary 6 can be removed.
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