
6.841: Advanced Complexity Theory Spring 2016

Problem Set – PCPs
Due Date: April 21, 2016

Problem 1 – PCP basics

Prove the following statements:

a) PCPc,s[r, q]Σ ⊆ PCPc,s[r, q · log |Σ|]{0,1 .}

b) PCP1,s[r, q]{0,1} ⊆ PCP1,1− 1
q+ s [r + log q, 2] .{0,1}q

q

c) If |Σ| ≤ poly(n), then PCPc,s[O(log n), 1]Σ ⊆ P.

Problem 2 – Algorithms for MAX-SAT

a) Give a randomized algorithm that, given a 2CNF formula ψ with exactly 2 distinct literals per clause,
outputs an assignment that satisfies at least a 3/4 fraction of ψ’s clauses.

b) Give a deterministic algorithm that, given a 3CNF formula ψ with exactly 3 distinct literals per clause,
outputs an assignment that satisfies at least a 7/8 fraction of ψ’s clauses.

Problem 3: Hardness for CLIQUE

In class, we saw how to prove that it is NP-hard to approximate independent set to within a constant
factor by using the [FGLSS] reduction. By complementing the graph, this gives the same hardness of
approximation result for clique. In this problem, we will see a slightly different way to prove that it is
NP-hard to approximate clique to within a constant factor.

Given a graph G = (V,E) and an integer k, define the kth power of G, Gk = (V ′, E′) to be as follows. The
vertex set V ′ is V k, the set of k-tuples of vertices from V . Two distinct vertices (u1, . . . , uk) and (v1, . . . , vk)
have an edge between them in E′ iff {u1, . . . , uk, v1, . . . , vk} is a clique in G.

Define ω(G) to be the size of the largest clique in G.

a) Show that ω(Gk) = ω(G)k.

b) We know from the PCP Theorem that it is NP-hard to ρ-approximate CLIQUE for some constant ρ. Use
this with part a) to show that, for any constant ρ′, there is no ρ′-approximation algorithm for CLIQUE
unless P=NP. 1

⋃ 1Under stronger assumptions, we can use this method to get an even better result. For example, unless NP
c γ

⊆
DTIME(2(logn)), CLIQUE does not admit a polynomial time 2c 1

− log (n)-approximation algorithm.≥

1

4

Problem 4 – Hardness of Approximation from H̊astad

In this problem, we will use a version of the PCP Theorem proved by H̊astad: completeness is 1−ε, soundness
is 1/2 + ε, the number of queries is 3, and all predicates ψ the verifier uses are of the form xi1 +xi2 +xi3 = b
mod 2, where b is 0 or 1, and ε can be taken to be any positive constant.

a) Let MAX-3LIN be the maximization problem where the input is a set of 3-variable linear equations mod
2 and the goal is to find an assignment satisfying as many equations as possible. Show that for any ε > 0,
there is no (1/2 + ε)-approximation algorithm for MAX-3LIN unless P=NP.

b) Assuming P 6= NP, show that we cannot improve H̊astad’s PCP Theorem to have completeness 1 while
preserving the other parameters.

One of the reasons that we like H̊astad’s PCP so much is not only that it gives an optimal hardness of
approximation result for MAX-3LIN, but also that it allows us to get hardness of approximation results for
many other problems, like the following:

• MAX-E3SAT is the maximization problem where the input is a CNF where each clause has exactly
three literals and the goal is to find an assignment satisfying as many clauses as possible.

• MAX-3MAJ is the optimization problem where the input is a set of constraints over 3 boolean
literals, where each constraint asserts that the majority of its three literals’ values is 1.

• MAX-2SAT be the problem of computing the maximum number of satisfiable clauses in a 2-CNF
instance, where each clause contains at most 2 literals.

We will now use H̊astad’s result to prove hardness of approximation results for each of these problems.

c) Show that for any ε > 0, there is no (7/8 + ε)-approximation algorithm for MAX-E3SAT unless P=NP.
(Hint: Reduce from MAX-3LIN)

d) Show that for any ε > 0, there is no (2/3 + ε)-approximation algorithm for MAX-3MAJ unless P=NP.
(Hint: Reduce from MAX-3LIN)2

e) Show that there is an α such that .99 > α > 3/4 such that it is NP-hard to approximate MAX-2SAT
within a factor of α. (Hint: Reduce from MAX-E3SAT)

Problem 5 (Optional): A “Long Code” Test

This problem is meant as an introduction to use of Fourier analysis in complexity theory. Although, the
problem is optional and will not be graded, you are encouraged to work on it for your own benefit and
discuss it with us or each other.
Let [n] = {1, . . . , n}. For S ⊆ [n], define χS : {−1, 1}n → R as χ 3

S(x) = i∈S xi. It is not hard to see that

∀S =

∏
6 T,

∑
χS(x)χT (x) = 0,

x

2In fact, there is a 2/3-approximation algorithm for MAX-3MAJ, making this result tight.
3For this problem we work with the representation of Boolean hypercube as∑{−1, 1}n. One could equivalently work with

the {0, 1}n representation; for this simply change the definition of χS(x) to (−1) xi i . The {−1, 1}n representation however is
usually more convenient.

2

and hence the set of functions {χS : S ⊆ [n]} form an orthonormal basis for the vector space of real-valued
functions over the Boolean hypercube (with respect to the inner product 〈f, g〉 = 1)).2n x f(x)g(x Hence,
every function f : {−1, 1}n → R can be written as linear combinations of χS ’s as

∑
∑

ˆf(x) = f(S)χS(x), (1)
S⊆[n]

ˆwhere the f(S)’s are called the Fourier coefficients of f .4

ˆ ˆi) Show that f(S) as defined by Eq. (1) satisfies f(S) = Exf(x)χS(x), where the expectation is taken with
respect to the uniform distribution.

ii) Show that
∑ ˆ

S f(S)2 = E 2
xf(x) .

iii) [BLR test] Let f : {−1, 1}n → {−1, 1}. Define ε as

Pr [f(x)f(y) = f(x
x,y

· y)] = 1− ε.

where x · y denotes∑the entry-wise multiplication of x and y.

Show that 1− ˆ2ε = S [n] f(S)3. Conclude that there exists S ⊆ [n] such that Prx[f(x) = χ⊆ S(x)] ≥ 1−ε.

Let C be a set of Boolean functions {−1, 1}n → {−1, 1}. A local test for C works as follows: Given an
unknown function f : {−1, 1}n → {−1, 1} given as a table of values, a local test makes q queries to f . If
f ∈ C the test should accept with probability 1, and if f is δ-far from every function in C then the test
should reject with probability Ω(δ). One example of a local test that we saw in class (and also above) is the
BLR test, which is a 3-query test for the class of linear functions L = {χS : S ⊆ [n]}. In this problem we
will develop a 6-query test for “dictator functions” D = {χ i : i ∈ [n]} - i.e. the set of functions of the form{ }
f(x) = xi for some i ∈ [n].

a) Let a, b, c ∈ {−1, 1} be bits. Give an expression in terms of a, b, c which evaluates to 0 if a = b = c, and
to 1 otherwise. (This is called the Not All Equal (NAE) predicate.)

b) Consider the following 3-query test (the “NAE” test) on a function f : Pick x, y, z ∈ {−1, 1}n in the
following way: Pick (xi, yi, zi) at random from {−1, 1}3\{(1, 1, 1), (−1,−1,−1)}, i.e. so that xi, yi, and
zi are not all equal. Do this for each coordinate i ∈ [n] to construct x, y, and z. Then, test that f(x),
f(y), and f(z) are not all equal.

Show that
3

Pr[NAE test accepts] =
4
− 3

f
4

S

∑
(̂S)2(−1/3)|S|

⊆[n]

(As an aside, note that if f is a dictator, the NAE test accepts with probability 1.)

c) Give a 6-query local test for D (Hint: Combine the BLR and NAE tests).

Note: The “Long Code” was used by H̊astad to prove the inapproximability result for MAX-3LIN referenced in
problem 4. This code encodes a string w ∈ {−1, 1}logn with the truth table of the dictator function χ{w : 1, 1 n

} {− } →
{−1, 1}, incurring a doubly exponential blowup. H̊astad heavily uses Fourier analysis to analyze the 3-query test of
his PCP. The proof of this result is contained in chapter 22 of Arora-Barak.

4For further information on the use of Fourier analysis in complexity theory, visit
http://www.cs.cmu.edu/∼odonnell/boolean-analysis/. Lectures 2 and 3 will provide sufficient background for solving
this problem.

3

http://www.cs.cmu.edu/~odonnell/boolean-analysis/

MIT OpenCourseWare
https://ocw.mit.edu

18.405J / 6.841J Advanced Complexity Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

