
A Survey of the Complexity of Succinctly Encoded Problems

May 5, 2016

Abstract

Succinctness is one of the few ways that we have to get a handle on the complexity of large
classes such as NEXP and EXPSPACE. The study of succinctly encoded problems was started
by Galperin and Wigderson [3], who showed that many simple graph properties such as connect-
edness are NP-complete when the graph is represented by a succinct circuit. Papadimitriou and
Yannakakis [4], building upon this work, were able to show that a large number of NP-complete
graph properties, such as CLIQUE and HAMILTONIAN PATH, become NEXP-complete when
the graph is given as a succinct circuit. Wagner [6] examines the relationship between suc-
cinct circuits and other forms of succinct representation and proves facts about the hardness of
problems in each representation. Das, Scharpfener, and Toran [2] also look at different forms
of succinct representation, specifically using more restricted types of circuit such as CNFs and
DNFs, and show hardness results for Graph Isomorphism under these representations. This
survey will present the main results of these papers in a unified fashion.

1 Introduction

Many computational problems have instances which can be encoded extremely efficiently. For
example, many digital circuit design problems in VLSI make use of the highly regular structure of
the circuits in question to achieve a smaller description of these circuits. In this case, restricting
the search space to circuits which can be represented efficiently speeds up the process of finding
the optimal circuit. Also, the efficient representation allows a smaller amount of space to be used.
This survey will introduce the efficient representations that are most commonly used in theoretical
computer science and will show that for certain problems hard instances can be represented very
efficiently.

The efficient input representation that is the most well-studied in theoretical computer science
is the succinct circuit representation. A succinct circuit representation (SCR) of a Boolean string
(i. e. a string of 0’s and 1’s) is a circuit whose truth-table is the string. The truth-table of a
circuit is the sequence of values it outputs when the inputs range over {0, 1}n. As a result, the size
of the circuit can be logarithmic in the size of its truth-table, yielding a very large compression
factor. This compression is even possible with hard instances of some computational problems,
meaning that often the complexity of a problem when the input is represented as a succinct circuit
is exponentially higher than when the input is represented as a Boolean string. This means that
by studying the complexity of problems represented as succinct circuits, we can find problems in
the exponentially harder versions of common complexity classes. In particular, in [3], there are
many examples of problems such as determining whether a graph is connected which are easy for
graphs represented as adjacency lists but NP-hard for graphs represented as succinct circuits, and

1

in [4], many NP-complete problems, including CLIQUE and INDEPENDENT SET, are shown to
be NEXP-complete when the input is represented as a succinct circuit.

In addition to succinct circuits, there are other representations which also provide insight into
the complexity of problems. In particular, [2] study inputs represented as the truth tables to CNFs
and DNFs. [6] also looks at different representations besides the succinct circuit and succinct
formula representation, specifically integer expressions and the generic hierarchical input language.
An integer expression is an expression whose terms are tuples of integers and union and setwise
addition are the allowed operations. Because addition of two sets A and B can produce a set of
size |A||B|, this means that the size of sets described by integer expressions can be exponential
in the description length, meaning that an integer expression is a succinct representation of some
sets. The generic hierarchical input language (GHIL) was introduced to describe sets of rectangles
for VLSI design, and its terms are tuples of integers, and it is similar to integer expressions except
definitions can be made recursively by referring to previous definitions and addition is only allowed
between a set and a term. Due to the recursive definitions, GHIL-expressions can describe sets
of exponential size and are succinct input representations. These representations have different
properties than succinct circuits, as some problems which are easy when the input is represented
as a succinct circuit are hard when the input is represented as an integer expression or GHIL-
expression, and vice versa. The following survey will define all of these succinct representations,
show hardness results for succinct circuit representations, and then compare different succinct input
representations.

2 Preliminaries

2.1 Succinct Representations

In this section, we will define the succinct representations covered in this survey, including succinct
circuits, CNFs, DNFs, integer expressions, and GHIL-expressions. We can group these representa-
tions into two types; constructive representations such as integer expressions and GHIL-expressions,
which build sets out of smaller sets, and predicative representations such as circuits, CNFs, and
DNFs, which give a predicate which defines the elements of the set.

Definition 1. A succinct circuit representation (SCR) of a string x of length 2n is a Boolean
circuit C with n inputs which has x as its truth-table; that is, for i ∈ {0, 1}n, xi = C(i). We denote
the truth-table of a circuit C by tt(C).

Definition 2. A CNF formula is an AND of ORs; a DNF formula is an OR of ANDs.

Definition 3. A succinct CNF (DNF) representation of a string x is a CNF(DNF) φ which has x
as its truth-table.

Note that succinct CNFs and DNFs are also succinct circuits and thus reduce to succinct
circuits, but the reverse is not true; in particular, there are problems which are hard when the
input is given by a circuit and easy when the circuit is given by a DNF.

Definition 4. For sets A,B ⊆ N, we define A+B = {a+ b|a ∈ A, b ∈ B}.

Definition 5 ([6]). An integer expression is defined as follows:

1. (a1, ..., a Nn) is an (n-dimensional) integer expression for a1, ..., an ∈ .

2

2. If A and B are integer expressions, then A ∪B and A+B are integer expressions.

3. Nothing else is an integer expression.

The integer expression (.....((0∪1)+(0∪2))+(0∪4)+...+(0∪2r)) describes the set {0, 1, ..., 2r+1−
1} which has size exponential in the description length, and it is easy to see that every ∪ or +
operation at most doubles the number of elements in an integer expression. Thus integer expressions
are a succinct representation of sets of tuples of integers.

Definition 6 ([6]). A General Hierarchical Input Language (GHIL)-expression is defined as follows:

1. (a1, ..., an) is a GHIL-expression for a1, ..., an ∈ N.

2. 〈i〉 is a GHIL-expression (〈i〉 is interpreted as the ith GHIL-expression already defined

3. If A, B are GHIL-expressions then A ∪B is a GHIL-expression.

4. If A is a GHIL-expression then A+(b1, ..., bn) = {(a1+b1, a2+b2, ..., an+bn)|(a1, ..., an) ∈ A}
is a GHIL-expression.

5. Nothing else is a GHIL-expression.

The set that a GHIL-expression describes is the last GHIL-expression in the sequence. To show
that a GHIL-expression is a succinct representation, we want to exhibit a set of size exponential in
the description length. Consider the GHIL-expression {0, 〈0〉 ∪ (〈0〉+ 1), 〈1〉+ (〈1〉+ 2), ..., (〈r〉) ∪
(〈r〉) + 2r}. By induction we can show that the ith GHIL-expression in this sequence contains the
numbers from 0 to 2i − 1. Thus this gives a set of size 2r+1 with a description of size r2. This
implies that GHIL-expressions are a succinct representation of sets. It is also easy to see that the
size of the set of a GHIL-expression can only grow exponentially in the description length.

There are important reducibilities between these input representations. Obviously succinct
CNFs, DNFs, and formulas reduce to succinct circuits. What is not so obvious is that integer
expressions reduce to GHIL-expressions.

Proposition 1 ([6]). For every integer expression we can find a GHIL-expression which describes
the same set in logarithmic space.

We present a sketch of the proof here. Suppose we have some integer expression A. We will
proceed by induction. If A = (a1, ..., an), then A is also a GHIL-expression. If A = A1 ∪ A2, then
we take the GHIL-expressions describing A1 and A2 and take the union, which is also a GHIL-
expression. If A = A1 + A2, we do the following. We replace every instance of (a1, ..., an) in A2

with A1 + (a1, ..., an). To see that this works, note that every element in A2 is the sum of tuples in
the GHIL-expression for A2, and adding A1 to these tuples makes it so that these sums of tuples
also include an element of A1, which yields exactly A1 +A2.

In general, we will find that there is no reducibility between integer expressions or GHILs and
any of boolean circuits, formulas, or CNFs unless P = NP; this is because the membership problem
for GHIL-expressions and integer expressions is NP-complete while the membership problem for
boolean representations is in P, and the nonemptiness problem for GHIL-expressions and integer
expressions is P-complete while the nonemptiness problem is NP-complete for circuits, formulas,
and CNFs.

3

2.2 Local Reductions

What kinds of reductions extend from the setting of ordinary representations to the setting of
succinct representations? If we have a problem which reduces to another problem in polynomial
time, in general the same reducibility will not work when the instances are represented succinctly,
as now the instances have exponential size. However, if we look at weaker reductions, we can scale
these up to polynomial time reductions for succinct representations.

Definition 7. A time t(n)-projection from language A to language B is a function f such that
x ∈ A ↔ f(x) ∈ B and there exists a machine M running in time t(n) that given random access
to (x, i) outputs the ith bit of f(x).

We can think of projections as very local reductions; the machine only has time to read a
small fraction of the input for small values of t(n) (typically we consider t(n) polylogarithmic in
n), so each output bit depends on a small fraction of the input bits. These local reductions are
still powerful; almost all known NP-complete problems have a projection from SAT [4]. Given this
reduction which works locally, we can turn it into a reduction for succinct circuits which runs in
polynomial time.

Proposition 2 ([4]). Suppose that A reduces to B under polylogarithmic-time projections. Then
the set {C|tt(C) ∈ A} reduces to {C|tt(C) ∈ B} under polynomial time many-one reductions.

The proof is simple; consider the machine M which runs in polylogarithmic time and computes
the output bits of f . M runs in polynomial time on an input of exponential size, so we can turn
M into a circuit, replacing random access to the tape with the succinct instance. Then, this
composition is a succinct circuit representation of f(tt(C)).

The notion of projections gives us a useful way to lift hardness results for problems to hardness
results for problems with succinct input representations. In particular, the succinct version of
problems that are NP-complete under projections are NEXP-complete.

2.3 Class Operators

For some of the results, we will need to define the following operators on complexity classes.

Definition 8. ∃C is the set of languages L such that x ∈ L ↔ ∃y ∈ {0, 1}p(|x|)(x, y) ∈ L′ where
L′ ∈ C.

Remark. ∃P = NP.

Similarly, we can define the ∀ operator, and we will have that ∀P = coNP. In addition, we will
need to define the counting operator; this operator counts the number of ’proofs’ that a statement
is in the language, as we can consider the ∃ operator as saying that a string is in the language if
there exists a proof such that the language of strings with proofs is in the base set.

Definition 9. CC is the set of languages L such that x ∈ L ↔ |{y ∈ {0, 1}p(n) : (x, y) ∈ L′}| ≥
f(|x|) for some f computable in polynomial time and L′ ∈ C.

Remark. CP = PP.

4

3 Results

3.1 Hardness for Succinct Circuit Representations

We will begin with looking at properties of succinct circuit representations, and then we will con-
tinue with other representations in order to highlight similarities and differences between succinct
circuit representations and other representations. Our first result is that a variety of graph problems
are NP-complete for succinct circuits.

Definition 10. The succinct circuit representation of a graph G with 2n vertices is a circuit C(x, y)
such that C(x, y) = 1 iff x and y have an edge between them in G.

Theorem 1 ([3]). The following problems are NP-hard for graphs represented as succinct circuits:

1. Determining whether a graph has an edge.

2. Determining whether a graph has a triangle.

Proof. These proofs all proceed similarly.

1. We reduce from SAT. Consider a circuit C. Then, make the circuit C ′ with C ′(x, y) = 1
iff x = 0n+1 and C(y2y3...yn+1) = 1. This graph has an edge iff C ′ is satisfiable, and this
reduction runs in polynomial time.

2. This follows similarly to 1. This time, we make C ′ such that C ′(x, y) = 1 iff x = 0n+1 or
x = 0n1 and C(y2y3...yn+1) = 1. Then this graph has a triangle iff C ′ is satisfiable.

We can generalize this structure as follows. The key point is that adding an edge in the right
place makes the graph have the property we are checking for, and thus we can make it so that these
edges exist iff the circuit is satisfiable, and then use the NP-hardness of SAT to prove NP-hardness
of checking whether the graph has the property.

Definition 11 ([3]). A t-critical graph with respect to a property Q is a graph with O(t) vertices
such that there are no edges between the first t−1 vertices and the tth vertex and adding any subset
of those edges makes the graph go from not having property Q to having property Q.

Theorem 2 ([3]). For any property Q, if there exist t-critical graphs with respect to Q that can be
represented succinctly for all positive integers t, then determining whether a succinct representation
of a graph has property Q is NP-hard.

We use the same idea as above to reduce from SAT. If the circuit is satisfiable, we can construct
a circuit representing a t-critical graph which has the property that an edge making the graph have
property Q is present iff the circuit has a satisfying assignment. Thus if we could determine whether
the graph given by a succinct representation has property Q, we could solve SAT and then all of
NP. This implies a large class of problems that are easy for ordinary representations of graphs are
at least NP-hard for succinct representations. One can ask if the exponential relationship between
the succinct circuit representation and the instance it represents shows up in the complexity of
problems; [4] shows that for NP-complete problems it does by showing that succinct versions of
NP-complete problems are complete for NEXP.

5

Theorem 3 ([4]). SUCCINCT 3-SAT is complete for NEXP under polynomial-time many-one
reductions.

Clearly SUCCINCT 3-SAT is in NEXP, as we can write out the exponential-sized instance and
guess an exponential-sized solution. To show that SUCCINCT 3-SAT is hard for NEXP, note that
we can run the Cook-Levin reduction on a Turing machine running in exponential time to get an
exponential-sized formula. It suffices to show that this formula has a succinct circuit representation
and that this representation can be computed efficiently. Note that the formula produced is highly
structured; it contains clauses which force a satisfying assignment to encode the input, clauses
which force variables to encode the transition function of the nondeterministic Turing machine,
and clauses which check that we have an accepting computation. In particular, given a clause,
we can compute in polynomial time what variables this clause should have, and from this we can
represent the formula as a succinct circuit.

Combining the previous theorem and 2, we get that the succinct version of every NP-complete
problem that has a projection from 3-SAT is NEXP-complete under polynomial-time many-one
reductions. We will show that there is a projection from 3-SAT to INDEPENDENT SET below to
demonstrate what these projections look like.

Theorem 4. There is a projection from 3-SAT to INDEPENDENT SET which runs in polyloga-
rithmic time.

Proof. The projection proceeds as follows. The vertices will be labeled with clauses and an index
from 1 to 3. On input z = xy, the projection machine needs to return whether x and y have an edge,
or return a bit in the representation of the size of the independent set, which will be the number
of clauses (this can be found in logarithmic time using binary search). To check for an edge, we
neet to check if either x and y are in the same clause or if x and y are in different clauses but their
variables are negations of each other. This can easily be done in polylogarithmic time. To see that
this is a reduction, note that there will be an independent set of size equal to the number of clauses
iff we can pick a variable from each clause without picking two variables which are negations of
each other iff there exists a satisfying assignment. Thus 3-SAT reduces to INDEPENDENT SET
under projections.

Corollary 1. SUCCINCT INDEPENDENT SET is complete for NEXP under polynomial-time
many-one reductions.

3.2 Comparison between Succinct Circuits, Integer Expressions, and GHIL-
expressions

Here we will prove that the two types of input representations are incompatible assuming P 6=
NP; that is, we will show that there is a problem that is P-complete in one representation but
NP-complete in the other, and vice versa.

Theorem 5 ([6]). The problem of determining whether x is in the set described by a succinct
representation is

1. P-complete for succinct circuits.

2. NP-complete for integer expressions and GHIL-expressions.

6

Proof. P-completeness of the membership problem for succinct ciruits follows from P-completeness
of the circuit value problem, as determining whether x is in the set is the same as determining
whether C(x) = 1. For integer expressions and GHIL-expressions, every element is the sum of a
polynomial number of elements, and it is easy to see that membership can be decided in NP as a
result. To show NP-hardness, we can reduce from SUBSET SUM; given a SUBSET SUM instance
(a1, ..., an, B), and asked whether there is some subset of {a1, ..., an} which sums to B, we see that
asking whether B is in the set {0, a1} + {0, a2} + {0, a3} + ... + {0, an} is an equivalent problem.
Thus the membership problem for integer expressions is NP-hard.

Theorem 6. The problem of determining whether a set described by a succinct representation is
nonempty is

1. NP-complete for succinct circuits.

2. in P for integer expressions and GHIL-expressions.

Proof. Any integer expression and GHIL-expression describes a nonempty set, so determining
whether an integer expression is nonempty is the same as determining whether an integer ex-
pression is valid, which can clearly be done in polynomial time. The nonemptiness problem for
succinct circuits is exactly the same as SAT; finding if there exists an element x in the set is the
same as finding if there exists x such that C(x) = 1.

Theorem 7. The problem of determining whether a set has at least m elements is

1. PP-complete for succinct circuits.

2. CNP-complete for integer expressions and GHIL-expressions.

The first part is simple to prove: we note that counting the number of elements in a set
represented by a succinct circuit is the same as counting the number of 1 outputs of this circuit,
which is complete for PP. To show that this problem is CNP-complete for integer expressions,
we note that there is a reduction from formulas to integer expressions which makes the number
of elements the same as the number of assignments and which clauses the assignment satisfies
determines the value of the elements. Then, the number of elements in this set is going to correspond
to the number of strings that give a satisfying formula, and this problem is complete for CNP. More
broadly, the membership problem for integer expressions and GHIL-expressions is NP-complete,
so counting the number of elements in an integer expression or GHIL-expression should be CNP-
complete.

The table below states many of the results in [6] for integer expressions, GHIL-expressions, and
succinct circuits, the proofs of which of which are omitted for brevity.

Problem Integer Expression/GHIL complexity Succinct Circuit complexity

Membership NP-complete P-complete
Non-emptiness in L NP-complete
Critical element NP-complete coNP-complete
Intersection NP-complete NP-complete

pSubset, equality Π2-complete coNP-complete
Cardinality CNP-complete PP-complete

7

3.3 Hardness for CNF and DNF representations

For CNF and DNF representations, sometimes an exponential gap is not found. The reason that
this is the case is that CNFs and DNFs are very restricted classes of circuits, and are not able to
encode as much structure. Also, CNFs and DNFs are very structured themselves, which means
that sometimes the only instances which can be encoded using small CNFs and DNFs are easy.
One example of a smaller gap in complexity is the Dominating Set problem, which asks for a set
of vertices for which every vertex is either in the set or has an edge to an element in the set. This
problem is NEXP-complete when the input is the truth-table to a succinct circuit but PP-complete
when the input is the truth-table to a DNF.

Theorem 8 ([2]). Dominating Set is complete for PP when the graph is succinctly represented as
a DNF.

To see that Dominating Set is in PP when the graph is encoded as a DNF, note that for every
edge in the graph, the two endpoints satisfy one of the terms of the DNF. Also, each term defines
a biclique, or complete bipartite graph, as each term takes two vertices as input and outputs 1 iff
the two vertices match some predetermined pattern, which means that every vertex which matches
the first pattern is connected to every vertex which matches the second pattern. This means that
every non-isolated vertex is in one of these bicliques, so if we pick two vertices on opposide sides of
the biclique we dominate every non-isolated vertex (Note that this means that if the graph has no
isolated vertices, the problem of finding a dominating set in a graph in succinct DNF form is in NP).
Then what remains is to count the number of isolated vertices, which can be done in PP, and this
implies that we can use nonadaptive queries to PP to compute whether there is a small dominating
set. Since PP is closed under truth-table reductions, this implies that Dominating Set is in PP. To
show completeness, reduce from determining whether a DNF has at least k satisfying assignments.
Each assignment will correspond to a vertex in the graph, and the vertex will be connected to a
central vertex iff the assignment is satisfying. This can be done by making each term of the original
DNF correspond to the first vertex and making the central vertex the second vertex in the term
defining an edge. Then, there are a small number of isolated vertices, and thus a small dominating
set, iff there are at least k satisfying assignments to the DNF. Note that [4] implies that Dominating
Set for succinct circuit representations is complete for NEXP, giving a substantial gap between the
two input representations. On the other hand, for Graph Isomorphism, no such gap exists.

Theorem 9. There are polynomial-time reductions between succinct CNF, DNF, and circuit rep-
resentations of Graph Isomorphism.

A sketch of the proof follows. Since two graphs are isomorphic iff their complements are, this
gives a reduction between the CNF respresentation and the DNF representation. Also, a CNF is
a type of circuit, so that leaves the reduction from circuit representations to CNF representations.
First we turn the circuit into a CNF where every satisfying assignment to the circuit corresponds to
a single satisfying assignment of the formula (c.f. [5]). We can think of the formula as representing
a hypergraph with only 3-edges, where each 3-edge is two vertices from the original graph along
with a vertex which encodes the correct values that the wires of the original circuit take when given
the two vertices as input. Then, the two hypergraphs are isomorphic iff the original graphs are
isomorphic. The CNF encoding the hypergraphs can then be turned into a CNF encoding regular
graphs which are isomorphic iff the hypergraphs are.

8

Thus, to prove completeness results for succinct Graph Isomorphism, it suffices to show results
under any one of these encodings. Note that since Graph Isomorphism can be done in quasipoly-
nomial time [1], this implies that solving Graph Isomorphism on an instance of size 2n can be done
in exponential time. However, it has not been shown that succinct graph isomorphism is hard for
EXP; the best lower bound we have is PSPACE.

Theorem 10. Graph Isomorphism for succinctly represented graphs is PSPACE-hard.

This theorem is proved by showing that there is a polylogarithmic-time projection from undi-
rected s-t connectivity to graph non-isomorphism. Since undirected s-t connectivity is complete
for L, and this reduction can be made succinct because checking whether there is an edge between
two vertices is the same as checking whether one configuration follows from another which can be
done locally, we can see that finding a path in a graph described by a succinct circuit is PSPACE-
complete. To do the reduction, let each graph be two copies of the original graph. We describe the
graph with colors, which can be constructed easily by adding large numbers of vertices connected
differently. In the first graph, color s in the first copy with color 1, color t in the first copy with
color 2, and color s in the second copy with color 3. In the second graph, color s in the first copy
with color 1, color t in the second copy with color 2, and color s in the second copy with color 3.
If these two graphs are isomorphic, then the part of the graph containing s and the part of the
graph containing t are not connected, and if the two graphs are not isomorphic, the two parts are
connected. Determining whether two vertices have an edge in this graph can be done in polyloga-
rithmic time; we just check whether the edge is in the original graph or whether the edge is used in
the coloring procedure. Thus succinct s-t connectivity reduces to succinct graph isomorphism and
succinct Graph Isomorphism is hard for PSPACE.

4 Discussion

Succinct circuit representations of problems have many uses in theoretical computer science. Most
of the NEXP-complete problems we know are succinct versions of NP-complete problems. In fact,
in the proof that NEXP is not contained in ACC0 from [7], the fact that the complete problem
used is SUCCINCT SAT plays a large part in the proof, as the proof depends on the existence of
succinct circuits encoding a witness to the instance of SUCCINCT SAT. In addition, the existence
of succinct circuit representations means that hard instances of SAT are very easy to construct, to
the point where instances can be described with only a logarithmic number of bits.

Some questions about succinct representations remain unsolved. A significant question is de-
termining the complexity of NP-complete problems represented as integer-expressions or GHIL-
expressions. Are these problems also complete for NEXP? In addition, an explicit problem that
is NP-complete but is not NEXP-complete for succinct inputs has not been found, and similar
questions are open for other complexity classes. In general, this requires finding a problem which
is hard, but with hard instances that are not described easily; the reduction proving hardness has
to be very non-local, because computation in the Turing machine model is local.

References

[1] L. Babai. Graph isomorphism in quasipolynomial time. In Proc. 48th Annual Symposium on
the Theory of Computing (STOC), 2016.

9

[2] B. Das, P. Scharpfenecker, and J. Torán. Succinct encodings of graph isomorphism. In Language
and Automata Theory and Applications, pages 285–296. Springer, 2014.

[3] H. Galperin and A. Wigderson. Succinct representations of graphs. Information and Control,
56(3):183–198, 1983.

[4] C. H. Papadimitriou and M. Yannakakis. A note on succinct representations of graphs. Infor-
mation and Control, 71(3):181–185, 1986.

[5] U. Schöning and J. Torán. The Satisfiability Problem: Algorithms and Analyses, volume 3.
Lehmanns Media, 2013.

[6] K. W. Wagner. The complexity of combinatorial problems with succinct input representation.
Acta Informatica, 23(3):325–356, 1986.

[7] R. Williams. Nonuniform acc circuit lower bounds. Journal of the ACM (JACM), 61(1):2, 2014.

10

MIT OpenCourseWare
https://ocw.mit.edu

18.405J / 6.841J Advanced Complexity Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

