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Abstract

We examine a recent development in circuit complexity used to speed
up algorithms with circuit representations, and how it can be applied to
the All-Pairs Shortest Path problem specifically. Additionally, we look at
a few other problems on which improvements can be made in this manner.
We also examine other consequences of possible extensions of this work.

1 Introduction

All-Pairs Shortest Paths (APSP) is a very well-known problem in theoretical
computer science, and a staple of introductory algorithms classes. Given a

˜graph with n nodes, the goal is to construct a data structure which can in O(1)
˜time produce the length of a given shortest path or in O(l) time produce a

shortest path of length l.
The canonical solution to APSP is the Floyd-Warshall algorithm, published

in 1962 by Robert Floyd and Stephen Warshall independently; it solves the
problem relatively simply by repeatedly improving estimates of optimal paths
and runs in time O(n3) where n is the number of vertices in the graph. Many
solutions to this problem are based on min-plus matrix multiplication - it was
shown in the 1970s that these two problems are deeply related and an improved
result on one leads to an equal result on the other.

2 The Polynomial Method in Circuit Complex-
ity

Recall that a boolean circuit is a mathematical object represented by a directed
acyclic graph, each of whose nodes is a boolean function. In particular we
are interested in the class ACC of boolean circuits, where the functions are
restricted to be NOT , OR, AND, and MODn for some value of n, where
MOD3(a1, . . . , ak) = 1 iff

∑
i ai ≡ 0 mod n. ACC is reasonably well-studied

and useful; it is known not to contain NEXPTIME.

2.1 The Polynomial Method

The polynomial method in circuit complexity refers to show that circuits are
computable by some simple (low-degree, low-number of terms, etc.) polynomial,
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and then use properties of polynomials to prove things about the circuits. For
example, the polynomial method has been used to show lower bounds on the
complexity of circuits to compute problems such as MAJORITY in the 1980s.
However, it was much more recently that the technique has been applied to
solving algorithmic problems with polynomial methods.

2.2 Polynomial Representations

There are several different kinds of polynomial representations that can be made
of a circuit. The most intuitive and simplest to define are exact representations,
defined as follows:

Definition A polynomial p(x1, x2, . . . , xn) over a ring R is an exact representa-
tion of a boolean function f if for all inputs a1, . . . , an ∈ {0, 1}n, f(a1, . . . , an) =
p(a1, . . . , an).

For example, we might represent the AND function as f(x1, x2) = x1x2, so we
say f is an exact representation of AND.

Exact representations are the most obvious kind of representation but less
useful for our purposes than probabilistic representations and symmetric rep-
resentations due to their being larger and harder to shrink. For dealing with
problems like PARITY , however, variants of them are quite useful.

2.2.1 Probabilistic polynomials

We now define the polynomial analog of a randomized algorithm.

Definition [1] A distribution D of polynomials is a probabilistic polynomial rep-
resenting f with error δ over a ringR if, for all (a1 . . . an) ∈ {0, 1}n, Prp∼D[p(a1, . . . , an) =
f(a1, . . . , an)] > 1− δ.

Probabilistic polynomials were used in some important results in circuit
complexity by Razborov and Smolensky in 1987 to show that various functions
cannot be computed with ACC circuits satisfying certain properties. Here is a
theorem used in order to show these things to be impossible to compute with
ACC circuits.

Theorem 2.1 [2] For every ACC circuit C of depth d, size s, modulus 2, and n
inputs, for every ε > 0, there is a probabilistic polynomial DC over F2 with error
ε, and degree at most (4 log s)d−1 · (log 1/ε), such that to sample a polynomial

d−1

from D takes O(log s)
C n ·(log 1/ε) time.

Note that this is a useful theorem because, if we show that having a polynomial
satisfying these properties compute a certain problem (e.g. MAJORITY ) is
hard, then it is also hard to have an ACC circuit with m = 2 that solves that
same problem. A more general result is found below which allows any value
of the modulus for a not-too-substantial increase in size. We can also use this
result to generate a distribution which can be sampled from in a randomized
algorithm for solving a problem expressible as a circuit.

The proof of Theorem 2.1 is a construction involving replacing each gate
with a low-degree function.
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• NOT gates are exactly represented with a simple polynomial g(h) = 1+h.

• MOD2 is easy in F2; gates are exactly represented with a simple polyno-
mial g(h1, . . . , hn) = 1 + i hi.

• OR is the interesting and

∑
nontrivial polynomial here. To sample an OR

polynomial with error ε, we repeatedly sample random subsets of the in-
puts and sum them. A sum will only be 1 if the OR is true, and the
probability that will happen is 1 . Thus, if we sample several times and2
multiply the outputs together (rather, multiply the inverses together and
take the inverse), we can, with degree logarithmic in 1 , simulate an ORε
gate.

• Finally, AND can be represented as an OR:
AND(a1, . . . an) = NOT (OR(NOT (a1), . . . , NOT (an)))

By combining the gates described above, we only use logarithmically many gates
at each level in the size of the circuit, so the entire polynomial is reasonably
low-degree. For another (logs)d−1 factor, we can use any field Fp in OR gates
(Aspnes, Beigel, Furst, Rudich 1994), allowing the use of this theorem more
generally.

2.3 Symmetric Representations

A third kind of representation, and one that is useful for making deterministic
algorithms for problems like APSP is called a symmetric representation.

Definition A polynomial h(x1, . . . , xn) over a ring R and an arbitrary function
g over the image of h that maps to {0, 1} are a symmetric representation of a
boolean function f if for all (a1, . . . , an) ∈ {0, 1}n,

f(a1, . . . , an) = g(h(a1, . . . , an))

holds.

Symmetric representations are so-named because the output function g does
not depend on any one input but can be used for a more general symmetric
purpose like checking whether there are at least a certain number of the inputs
are true. Recall that MAJORITY is hard for polynomials to compute, so we
gain a reasonable amount of power by adding this extra output function.

3 All-Pairs Shortest Paths

Papers before Williams 2014[3] came up with only bounds of n3/ logk n for k < 3
on APSP runtime for dense graphs. APSP has more solutions that work much
better on sparse graphs, but little progress has been made on a truly subcubic
algorithm for dense APSP.

3.1 OR-AND-COMP

Define the boolean function OR−AND−COMP on 2d2 log n inputs as the or
over all rows of the and over all columns of a table of comparisons between the
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2 tables of input. That is, is there any i for which every entry in row i in the
left half of the input is larger than the corresponding element in the right half?
More formally,

d d

OR−AND−COMP (a1,1, a1,2, . . . , ad,d, b1,1, b1,2, . . . , bd,d) =
i

∨
=1 j

∧
[ai,j

=1

≤ bi,j ]

Theorem 3.1 [3] Given two sets A = {a1, . . . , an} and B = {b1, . . . , bn} of
n vectors of length d2, if the function OR − AND − COMP can be computed

˜in O(n2) time for all n2 pairs (ai, bj) simultaneously, then APSP is solvable in

Õ(n3/d) time.

This works basically because we are doing a part of the min-plus matrix
multiplication, and by combining a lot of these, we cover a whole matrix. Or it
can be thought of as APSP on a smaller tripartite graph whose partitions have
size n, d, and n, many of which compose together the whole general graph.

Now we show that if Theorem 3.1 is true, we can solve APSP quickly. We
˜need to choose a small value of d in order for this to take O(n2) time instead

of O(n2d2
√

log n). Choose d = 2c logn. Now we need to compute OR−AND−
COMP in a short amount of time with this value of d. We are trying to simulate
2 ˜d comparisons n2 times in O(n2) time, so we approximate the comparisons with

low-depth circuits.
Before we begin making a small polynomial for an AND − OR − COMP

circuit, we write the following claim.

3.2 Circuit shrinking

Consider the entries of the matrices A and B to be bit strings of length 1+logn.
Then consider the following construction of a comparison circuit:∧t 

i−

b


t 1

LEQ(a, b) =  (1 + ai + i)⊕∨ (1 + ai) ∧ bi ∧ a
j=1 i j

∧
( + aj + bj)

=1 =1


(1)

∧t i

⊕

⊕t 1


=  (1 + ai + bi)

j=1


i=1

 −

(1 + ai) ∧ bi ∧
j

∧
(a+ aj + bj)

=1


(2)

The first part of the circuit activates if a = b, the second if b > a, by chec


king

each bit whether it’s the bit at which they differ. The OR can be replaced by
an XOR since only one clause can be true at most. Crucially, this form can be
further reduced to get something that looks like

⊕
t+1

[∧
[2

e′

⊕
gates]

]
(3)

for some parameter e′ that we will still need to tune, as follows: we started
out with an expression which was an XOR of t + 1 ANDs of fan-in ≤ t of
XORs of fan-in at most 3. We then apply the transformation we would apply
to convert an AND gate into polynomial form, but we skip the final step for
now. This gives us (3) but with an extra XOR of fan-in ≤ t in the middle. We
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can rearrange this XOR into an XOR of random bits from each of a and b and
a constant. We can precompute the t(e′+1) XORs for each of the nd2 entries in

˜each of A and B yields the necessary comparisons in O(nd2 · (t+2)e′)time. Now
we have the circuit in the form of (3). Now set e′ = 3+2 log d+log t so that the
error probability over all the calculations this circuit does is, int total, constant
and < 1/4. We now apply the technique described above to convert the rest
of the circuit into a polynomial, and we end up with a size whose dominant
term is (log d)2

√
. Thus we can set d to 2c logn for sufficiently small c and fit our

polynomial size within n.1.
Now, we apply Coppersmith’s rectangular matrix multiplication to evaluate

the polynomial on alll n2 pairs in n2poly(log n) time. Each entry in the resulting
table is correct with constant probability, so we can apply a ”majority amplifi-
cation” trick for high probability success, doing all of this logarithmically many
times in d2 and taking the majority for each entry.

Now that we can compute OR − AND − COMP efficiently, we can apply√
theorem Theorem 3.1 to solve APSP in O(n3/2c logn) time.

3.3 Strong Exponential Time Hypothesis

APSP is not the only problem we can apply the math behind Theorem 3.1
to. One plausible avenue of further exploration of these techniques is trying to
resolve the open problem of whether APSP is possible on a dense graph in truly
subcubic time ( O(n3−ε), for ε > 0). If we can satisfy the conditions for theorem
3.1 with d = nε for some positive ε, then we could apply theorem 3.1 and be
done. However, there are other consequences of such a result. In particular, we
can show the Strong Exponential Time Hypothesis to be false in such a situation
(that is, we could solve SAT in less than 2n time.

Consider a simpler version of OR − AND − COMP , OR − AND − OR2.
It’s the same except the last item is an OR instead of a comparison. Note
that any fast solution to OR − AND − COMP is an equally fast solution to
OR−AND−OR2. We can use fast evaluation of this function to solve things
other than APSP .

We examine a problem called Orthogonal Vectors (OV ). In OV , we
have a set of vectors in {0, 1}d and we want to tell if there are any pairs which
are orthogonal to one another. There is an obvious algorithm which runs in
time O(n2d) and another which runs in time O(2dn). However, this begs the
question, can we do any better when these algorithms are about as good as one
another, namely when d > log n. First, note that this problem is equivalent to
the case where the vectors come from different sets A and B.

Theorem 3.2 Let A and B be sets of vectors with n vectors, where each vector
has d1d2 bits. If we can compute OR − AND − OR2 on all pairs of vectors
(a ∈ A, b ∈ ˜B) in time O(n2 ˜) then OV can be solved in time O(n2/d1).

Proof.[4] Partition both A and B into subsets of size
√
d1. We will check d1

pairs of vectors at a time for overlap by running OR−AND−OR2 on subsets
we generated - if OR−AND−OR2(a, 1n

By our assumption this is doable in (n/
√−b) = 1, then a and b are orthogonal.
d1)2 = n2/d1 time.

Now we show that such a situation would disprove SETH. Given a SAT
formula on n variables and m clauses, divide the variables into two sets and
enumerate the possible assignments to each half independently in 2n/2 time.
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For each assignment, generate a vector of length m where the jth entry is 1
if and only if the partial assignment does not satisfy the CNF. Put all these
vectors into our OV solver. The OV solver runs in O(m2−ε) time, or (if we
choose m and n appropriately) o(2n) time, which violates SETH.

4 Open Problems

It is not known whether any method can produce a truly subcubic result for
APSP - before Williams 2014 [3] it was conjectured by some that no better than
O(n3/ logc n). The question of whether these methods can do that is a slightly
less interesting one because it requires SETH to be false.
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