
Unambiguous Computation

Suhas Vijaykumar

Spring 2016

Overview

This survey paper is designed to review the literature on unambiguous computation.
Broadly speaking, studying unambiguous computation is an attempt to determine
how much of the power of non-determinism comes from the ability to accept many
di↵erent proofs of the same statement. The literature on this subject is of both
practical and philosophical interest, and the Isolating lemma of Mulmuley, Vazirani
and Vazirani [5] appears beautifully throughout.

In the first first, we will define the notion of unambiguous computation and the
associated complexity classes we will consider. In the second section, we’ll discuss
unambiguous polynomial-time computation. Most of the results in this section
are from the ‘80s—in particular we’ll discuss relationships between the complexity
classes P, UP, and NP, and prove the Isolating lemma as well as the Valiant-
Vazirani theorem.

In the third and final section, we’ll discuss some of the more recent results about
unambiguous log-space computation. In particular, we’ll prove UL/poly = NL/poly
and discuss the latest attempts to prove the conjecture that NL = UL.

Basic Definitions

The notion of “unambiguous” computation, defined below, arose from attempts to
better understand the essential di↵erences between deterministic and non-deterministic
computation. Recall that NP is the set of languages L such that

x 2 L () 9 v P (v, x) (1)

for some predicate P (v, x) that can be evaluated by a deterministic Turing
machine in time polynomial in |x|.

The complexity class UP is defined by imposing the restriction that the advice
string v in (1) is unique. This gives rise to the following definition.

Definition 1. The class UP consists of those languages L such that

x 2 L () 9! v P (v, x) (2)

where P (v, x) can be evaluated by a deterministic Turing machine in time
polynomial in |x|.

It is evident from this definition that UP ✓ NP. It is also very easy to show
that P ✓ UP.

Lemma 2. P ✓ UP.

Proof. Given L 2 P, let M be a polynomial time Turing machine that decides L.
Then a polynomial time machine M0 can check both that v is the empty string and
that x 2 L. It is evident that the predicate

P (x, y) = (x 2 L) ^ (v is the empty string)

1

satisfies (2). ⇤
Thus UP is a natural class of languages which sits between P and NP. To

generalize this construction to other complexity classes, we define an “unambiguous
Turing machine.”

Definition 3. An unambiguous Turing machine that decides L is a non-deterministic
Turing machine M that decides L, such that for each x 2 L, M(x) has exactly one
accepting path.

Deterministic Unambiguous Non-Deterministic

Figure 1: Accepting computation trees for a deterministic (left), unambiguous (mid-
dle), and non-deterministic (right) Turing machine. Accepting configurations are in
blue, while rejecting configurations are in red. Note that the unambiguous Turing
machine’s computation tree has many branches, but only one acepting path.

It is evident from Definition 3 that unambiguous computation is at most as
powerful as non-deterministic computation, and at least as powerful as determinsitic
computation. In particular, we have the following definitions.

Definition 4. Let USPACE[f(n)] (resp. UTIME[f(n)]) denote the set of lan-
guages decidable by unambiguous Turing machines in space (resp. time) O(f(n)).
We define

UP = UTIME[nk
], (3)

k2N

UL = US

[

PACE[log n]. (4)

It is evident from the inclusions SPACE[f(n)] ✓ USPACE[f(n)] ✓ NSPACE[f(n)]
that

L ✓ UL ✓ NL.

Likewise the inclusions TIME[f(n)] ✓ UTIME[f(n)] ✓ NTIME[f(n)] imply

P ✓ UP ✓ NP.

Similarly, we obtain the non-uniform counterparts of these classes. For complete-
ness, we prove the following lemma.

Lemma 5. The two definitions of UP we’ve given, (2) and (3), agree.

Proof. Suppose L 2
S

k UTIME[nk
] as in (3). Let the advice string v be the com-

putation history for the unique accepting path of an unambiguous Turing machine
that decides L in polynomial time. The polynomial time predicate stipulates that
each transition of the history is valid, which can be checked deterministically in
polynomial time.

Conversely, if L satisfies (2) then an unambiguous Turing machine can guess a
string v0 and then evaluate P (v0, x) deterministically. The unique accepting path
corresponds to the guess v0 = v.

2

Unambiguous Polynomial-Time Computation

In this section, we’ll spend some time discussing the complexity class UP. In partic-
ular, we will introduce the Valiant-Vazirani Theorem, a major result in complexity
theory related to the power of UP. We will also introduce the Isolating lemma
of Mulmuley, Vazirani and Vazirani. It turns out that the Valiant-Vazirani The-
orem is a straightforward consequence of the Isolating lemma, and many famous
open problems in theoretical computer science are related to derandomizing special
cases of the Isolating lemma. We will go on to see that determining whether the
containment UL ✓ NL is strict is one such problem.

We will also discuss an application of the Valiant-Vazirani theorem to cryptogra-
phy. In particular, it has implications for the existence of one-way functions, which
are an important cryptographic primitive.

The Isolating Lemma (cf. [5])

As depicted in Figure 1, making a non-deterministic Turing machine unambiguous
amounts to choosing a single accepting branch of the computation tree, when there
might be exponentially many of them.

A major obstacle to doing this is that no single branch of the computation tree
has any information about the state of any other branch. Thus, while it might
initially seem easy to choose a single accepting branch, say, lexicographically, we do
not know how to do this.

This very same problem arises often in the context of distributed computing. In
that context, it is often the case that many separate parties must make a common
decision—for example, elect a leader—but have limited capability to communicate
with each other.

The problem of selecting one preferred choice from a set of many equally good
choices is often called “symmetry breaking.” The Isolating lemma uses randomness
to solve the symmetry breaking problem in a very general setting—both for accepting
branches of an NP decider and for many applications in parralel and distributed
computing.

Proposition 6. Let I be a set of size n and let 2I denote the set of subsets of I.
For each k 2 I, let ak be chosen uniformly at random from the set {1, 2, . . . , m}.
Let ! : 2

I ! N be defined by

!(S) =
k

X

ak.
2S

Then for any collection C ✓ 2

I , with probability 1 � n/m there is a unique S 2 C
such that

!(S) = min !(S0
).

S02C

Proof. (cf. [10]). For k 2 I, put Ck = {S 2 C | k 2 S} and C¯k = {S 2 C | k 62 S}.
Write

f(k) = min !(S0
)� min !(S k

S02C̄k S2Ck

\ { }).

Since f(k) does not depend on ak, and since ak is chosen independently and uni-
formly at random from {1, 2, . . . , m}, the probability that ak = f(k) is 1/m. By
the union bound, the probability that ak = f(k) for any k is at most n/m.

Suppose that two sets, S and T , both minimize ! in C. Choose some k 2 S \T ,
and note that we must have

!(T) = min !(S0
),

S02C̄k

!(S \ {k}) = min !(S0
S02Ck

\ {k}).

3

Thus we have

f(k) = !(T)� (!(S)� ak) = ak.

We conclude that this occurs with probability at most n/m.

It is tempting to ask whether the Isolating lemma can be derandomized. The
answer, in general, is no. To make the statement precise, let k be given, and write
[n] = {1, 2, . . . , n}. In most applications of the Isolating lemma, the parameter m
is bounded by some polynomial in n. A “derandomization” of the Isolating lemma
should therefore consist of a family of functions fn : [n] ! [nk

] such that for any
S, T 2 2

[n] we have !n(S) 6= !n(T), where

!n(S) =
s

X

fn(S).
2S

Lemma 7. Let {fn} be a family of functions fn : [n] ! [nk
]. For su�ciently large

n there exist S, T 2 2

[n] such that !n(S) = !n(T).

Proof. For large enough n we have #2

[n]
= 2

n > nk+1
= #[nk+1

]. Since the
range of !n is contained in [nk+1

] and the domain is 2[n], the pigeonhole principle
tells us !n is not injective.

The Valiant-Vazirani Theorem

It turns out that the Valiant-Vazirani theorem is a fairly easy consequence of the
Isolating lemma. The theorem says that if there existed an RP Turing machine M
which could correctly decide instances of CLIQUE that had zero or one clique of the
desired size, and whose behavior was otherwise arbitrary, then NP = RP. Thus,
under the widely-held assumption that NP 6= RP, finding a k-clique in a graph that
is known to contain at most one k-clique is hard.

As we’ll see, the role of randomness in the proof is in using the Isolating lemma
to form a predicate that is satisfied by only one clique of the desired size. Thus
derandomizing the Isolating lemma for the special case where C is the set of cliques
in a graph would yield a proof that UP = NP.

Before stating the theorem, we a Promise-UP oracle. This helps us get around
the issue that UP is not known (or expected) to contain languages such as USAT or
UCLIQUE—the set of boolean formulas (resp. graphs) with exactly one satisfying
assignment (resp. k-clique). Even though these languages have unique proofs, a
UP decider has no obvious way of checking, say, that a given boolean formula '
does not have more than one satisfying assignment.

Definition 8. An Promise-UP oracle is defined as follows. Let L be a language in
NP and D a decider for L. Given D and some string x, the oracle outputs 1 if D has
a single acceping path on input x, 0 if no accepting paths, and P (x) if D has two
or more accepting paths, and its output is chosen arbitrarily from {0, 1} otherwise.

The Valiant-Vazirani theorem states that NP ✓ RPPromise-UP. In fact it’s very
easy to see that USAT and UCLIQUE are hard for co-NP, hence the analogous
statement that NP ✓ RPUSAT, which is also a consequence of the theorem, is
probably weaker.

Theorem 9 (Valiant-Vazirani, cf. [11]).

Proof. The heart of the proof is a randomized procedure that, given hG, ki, con-
structs hG0, k0i with the following properties.

(1) If there is no clique of size k in G, there is no clique of size k0 in G0.

(2) If there is a clique of size k in G, then with probability 1/4n2 there is exactly
one clique of size k0 in G0.

4

If we perform this procedure 4n2 times, and pass hG0, k0i to M each time, then if G
contains no k-clique, M will always reject. If G contains a k-clique, however, then G0

will contain exactly one k0 clique with probability 1� (1� 1/ 2
)

4n2

4n � 1� 1/e � 1/2,
and M will accept. Thus we have constructed an RP decider for CLIQUE.

To construct hG0, k0i we assign each vertex v in G a number a(v) 2 [2n],
uniformly at random. Then G0 is constructed by replacing each vertex v in G with
a clique of size 2nk+ a(v). Additionally, for each edge (u, v) in G and each pair of
vertices u0 and v0 in the cliques that correspond to u and v, G0 contains an edge
(u0, v0).

This construction has two important properties. The first is that a k-clique in
G corresponds to a clique in G0 of size

2nk2 + k k0 2nk2 + 2nk

< 2n(k + 1)

2
+ (k + 1).

Thus if there is no k-clique in G, there will be no k0-clique in G0 for k0 in this range.
The second is that if C is the set of k-cliques in G, then by the Isolating lemma

the smallest corresponding clique in G0 has unique size, ↵, with probability 1/2. Let
r be selected uniformly at random from the range k, . . . , 2nk and fix k0 = 2nk2+r.
Then, with probability greater than 1/2n2 we will have k0 = ↵, hence G0 will have
exactly one k0-clique with probability at least 1/4n2.

Corollary 10. PPromise-UP/poly = NP/poly.

Proof. Suppose L 2 NP/poly and let n 2 N be given. Then, there exists an advice
string sn such that for all x of length n,

x 2 L () 9 v P (sn, v, x)

where P is a polynomial-time predicate in x.
Since CLIQUE is NP-complete, there exists a polynomial time computable map-

ping reduction that produces a string hG, ki(sn, x) such that

9 v P (sn, v, x) () hG, ki(sn, x) 2 CLIQUE.

Given such a pair hG, ki, the randomized reduction from the proof of the Valiant-
Vazirani theorem produces, with probability 1/4n2, a pair G0, k0 such that G0 has
a unique clique of size k0. If we run the reduction 4n3

h i
times, the probability none

0 3

of the resulting graphs G has a unique clique of size k0 is at most (1� 1/4n2 4n
)

(

1/e)n < 1/2n. By the union bound, the probability that this occurs for any x 2
{0, 1}n is strictly less than 1.

By the probabilistic method, there eixists a string rn such that simulating
the reduction 4n3 times using rn instead of randomness produces a sequence
hG0, k0i1, hG0, k0i2, . . . , hG0, k0i4n3 such that at for least one hG0, k0i`, G0 has
a unique clique of size k0 with certainty. Thus, a PPromise-UP decider, given rn, sn
and x, can deterministically produce strings hG0, k0i1, hG0, k0i2, . . . , hG0, k0i4n3 .
If it calls the Promise-UP oracle for each string, it can determine that x 2 L if and
only if the oracle accepts at least one string.

Relativizations

Although not discussed extensively here here, there are many interesting results
about what happens to the hierarchy P ✓ UP ✓ NP in various relativized worlds.
Most prominently, Charles Racko↵ in [7] constructed languages A and B such that

PA

= UPA 6= NPA

PB 6= UPB

= NPB.

5

Thus any proof that separates or collapses the hierarchy will not not reativize. In
general, collapsing the hierarchy L ✓ UL ✓ NL is thought to be much more likely to
be within the reach of current techniques. So, without further ado, we will consider
that problem.

Unambiguous Log-Space Computation

In this section, we will consider unambiguous log-space computation. In particular,
we will use the fact that the computation graph of an NL decider is a polynomially-
sized directed acyclic graph to relate the hardness of UP to certain graph problems.
This has been the subject of much recent study.

In particular, we will show that the problem of finding deciding (s, t) connectivity
in a certain class of graphs, namely min-unique graphs, is contained in UP. Using
this fact, we will go on to prove that UL/poly = NL/poly, and that the conjeture
UL = NL can be proved by derandomizing the Isolating lemma for paths in a
directed acyclic graph.

Inductive Counting and Min-Unique Graphs

In this section, we’ll prove that the problem of deciding (s, t) connectivity on min-
unique graphs is in UL. This result will form the foundation for what is to follow.

The theorem, proved by Reinhardt and Allender, builds upon the inductive count-
ing algorithms of Savich’s proof that NSPACE[f(n)] ✓ DSPACE[f(n)2], as well as
Immerman and Szelepcsényi’s proof that NL = co-NL; both are extremely impor-
tant results in complexity theory [4, 9]. These algorithms all exploit the fact that
a space bounded Turing machine can simulate many non-deterministic branches
sequentially and store their results on its tape.

A key aspect of this theorem is that the UL decider rejects not only those graphs
that have no (s, t) path but also those that have more than one (s, t) paths. This
di↵ers from the results we discussed for UP as the Turing machines we describe do
not assume anything about their input.

Definition 11. A min-unique graph is a weighted, directed graph G such that there
is a unique shortest path between each pair of vertices.

Theorem 12 (cf. [8]).

n

hs, t, Gi G is a min-unique graph with an (s, t) path 2 UL.

Proof. First, we intr

�

�

�

oduce some notation that we use throughout

o

the proof. For a
vertex v of G, let d(v) denote the length of the shortest path from s to v, or else
|G| + 1 (if there is no such path). Moreover let Dk be the set of vertices v such
that d(v) k, and write Sk = v D d(v)

k
. First, we introduce a useful lemma,2

which we will prove at the end.

P

Lemma 13. If provided the correct values #Dk and Sk, and if Gk, the subgraph
induced by Dk, is min-unique, then a non-deterministic log-space Turing machine
can decide if d(v) k unambiguously—in other words, all branches reject except
for one branch which has the value of the predicate d(v) k written on its tape.

The important detail about the lemma is that computation can continue as
though no branching occured. In light of the lemma, we have the following algo-
rithm. Given #Dk 1 and Sk 1, the algorithm iterates through all vertices in G and� �
checks whether d(v) k � 1. It does so using the procedure from Lemma 13.

The Turing machine writes d = #Dk 1 and s = Sk 1 on it’s work tape. For� �
each vertex such that d(v) 6 k�1, it iterates through vertices such that (v, x) and
d(x) k � 1, again using Lemma 13. These vertices must have d(v) = k. If it

6

finds just one such vertex, it increments d by one, increments s by k, and proceeds
as normal. If it finds a two or more such vertices, it rejects—there are two shortest
paths to v, hence graph is not min-unique.

Having successfully completed the iteration, there is a single branch of the
computation that hasn’t rejected, and this branch has processed all vertices such
that d(v) = k. Thus d = #Dk and s = Sk, and it has been verified that Gk is
min-unique. Thus, the process can be repeated for k + 1 up to n, at which point
the entire connected component of s has been processed. If the computation hasn’t
rejected at this point, the graph is min-unique and we an use Lemma 13 to check
if d(t) n, which is true i↵ there’s an (s, t) path in G.

Proof of Lemma 13. Suppose that Sk, Dk are as defined, and Gk is min-unique.
Given v, the Turing machine keeps two running totals, s and d. For each vertex u,
the Turing machine guesses if d(u) k and guesses a path of length ` k from s
to u checks if it is valid. If not, it rejects. Otherwise, it increments s by ` and c by
1. If u = v, it writes this down on the tape. At the end of the iteration, it checks
that d = Dk and s = Sk and rejects otherwise.

First, note that all branches that guess ` < d(u) reject. If the algorithm in-
correctly guesses d(u) k it will necessarily guess ` < d(u) and reject. Thus we
must have d Dk, and if any branch incorrectly guesses d(u) > k for any u it will
terminate with d < Dk.

Thus any branches that do not reject must guess d = Dk and ` � d(u) for each
u 2 Dk. It follows that an accepting branch has s � Sk, and since Gk is min-unique
exactly one branch will have s = Sk. This branch checks if it ever guessed u = v.
This happend if and only if d(v) k, and so the machine writes this down on its
tape and the procedure is complete.

The Isolating Lemma: Reprise

In this section, we’ll apply the Isolating lemma to show that UL/poly = NL/poly.
We’ll also see that derandomizing the Isolating lemma for paths in a directed acyclic
graph would let us prove the conjecture that UL = NL.

Theorem 14 (cf. [8]). UL/poly = NL/poly.

Proof. Let Gn be the directed acyclic graph with vertex set [n] and an edge (i, j)
for each i < j, and note that each directed acyclic graph G with n vertices is a
subgraph of Gn. If we assign each edge (i, j) a weight uniformly at random in
[3n3

(n+1)

3
] then the probably that the set of (s, t) paths does not have a unique

lowest-weight path, for any choice of (s, t), is at most 1 1
3n

�
(n+1)

�1. This follows
from the Isolating lemma, since the set of paths contains at most n(n+ 1) edges.
Thus the probability that the graph isn’t min-unique is at most 1/3 by the union
bound. This holds for any G ✓ Gn.

Now suppose we repeat this procedure n(n + 1) times to produce weighted
graphs G

�

1, G2, . . . , Gn(n+1). The probability that none of these graphs is min-

unique is 1
3

�

(

n
2). By the union bound, the probability that this event occurs for any

of the 2

(

n
2) subgraphs of Gn is at most

�

2 (

n
2)

3 . Thus, by the probabilistic method,
there exists a sequence of weight functions f1 . . . fn(n+1) such that for all directed
acyclic graphs on n vertices at least one

�

of the resulting weighted graphs has a
unique shortest path. If we replace each edge of weight ` with a path of length `,
we obtain n(n+ 1) graphs such that at least one must be min-unique.

If we give all of the resulting graphs to the UL decider we constructed in Theorem
12, we can successfully decide PATH.

Now we can complete the proof. Take some L 2 NL/poly. Then if if |x| = n
there exists an an such that

x 2 L () 9y P (an, x, y)

7

for some log-space predicate P . We construct a PATH instance hs, t, Gi(an, x)
and then use the string f1 . . . fn(n+1) to decide if hs, t, Gi(an, x) 2 PATH. Thus
given the advice string an||f1 . . . fn(n+1), a UL Turing machine can decide L, and
hence NL/poly = UL/poly.

Note that the importance of non-uniform computation in the previous proof was
that it allowed us to turn any directed acyclic graph into a min-unique directed
acyclic graph such that (s, t) connectivity is preserved. This tempts one to ask if
it is possible to introduce a uniformly computable weighting scheme such that an
arbitrary directed acyclic graph can be turned made min-unique. The motivation
for this question is made explicit below.

Proposition 15. Suppose that, for some fixed k, there exists a family of log-space
computible functions fn : [n]⇥ [n] ! [nk

] with the property that for every weighted
directed acyclic graph G on n vertices and s, t 2 G with edge weights given by fn,
there was a unique lowest-weight (s, t) path. Then NL = UL.

Proof. Compute the weights and replace each edge of weight k with an unweighted
path of length k. Then, run the UL decider from Theorem 12.

Results in this direction have been meager, although it was recently shown that
deciding reachability on planar graphs and 2D rectangular grid graphs is in UL [2].
Interestingly, reachability on 3-page graphs and 3D cubic grid graphs is known to
be complete for NL [6], suggesting an interesting geometric boundary between the
two classes.

Acknowledgements

I want to thank Prof. Moshkovitz and the T.A.s Govind and Mohammad for a great
semester.

8

References

[1] Allender, Eric, et al. “Grid graph reachability problems.” Computational Com-
plexity (2006)

[2] Bourke, Chris, Raghunath Tewari, and N. V. Vinodchandran. “Directed planar
reachability is in unambiguous log-space.” ACM Transactions on Computation
Theory (TOCT) 1.1 (2009): 4.

[3] Buntrock, Gerhard, Lane A. Hemachandra, and Dirk Siefkes. “Using inductive
counting to simulate nondeterministic computation.” Information and Compu-
tation 102.1 (1993): 102-117.

[4] Immerman, Neil. “Nondeterministic Space Is Closed under Complementation.”
SIAM Journal on Computing 17.5 (1988): 935-38.

[5] Mulmuley, Ketan, Umesh V. Vazirani, and Vijay V. Vazirani. “Matching Is as
Easy as Matrix Inversion.” Proceedings of the Nineteenth Annual ACM Confer-
ence on Theory of Computing: STOC ’87 (1987).

[6] Pavan, Aduri, Raghunath Tewari, and N. V. Vinodchandran. “On the power of
unambiguity in log-space.” Computational Complexity (2012): 1-28.

[7] Racko↵, Charles. 1982. “Relativized Questions Involving Probabilistic Algo-
rithms.” J. ACM 29, 1 (January 1982), 261-268.

[8] Reinhardt, Klaus, and Eric Allender. “Making nondeterminism unambiguous.”
SIAM Journal on Computing 29.4 (2000): 1118-1131.

[9] Savitch, Walter J. “Relationships between nondeterministic and deterministic
tape complexities.” Journal of computer and system sciences 4.2 (1970): 177-
192.

[10] Spencer, Joel. “Ten lectures on the probabilistic method,” SIAM Regional
Conference Series in Applied Mathematics, Vol. 52.

[11] Valiant, Leslie G., and Vijay V. Vazirani. “NP is as easy as detecting unique
solutions.” Proceedings of the seventeenth annual ACM symposium on Theory
of computing. ACM, 1985.

9

MIT OpenCourseWare
https://ocw.mit.edu

18.405J / 6.841J Advanced Complexity Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

