
A Survey of Communication Complexity for Proving Lower

Bound of Data Structures in Cell-Probe Model

Abstract

Proving lower bounds for computational problem is always a challenging work. In this
survey, we will present some techniques for proving lower bound of data structures in cell-
probe model. There is a natural relationship between cell-probe model and communication
complexity, so many proofs of lower bound in cell-probe model are related to communication
complexity. In communication complexity, there are plenty of techniques for proving commu-
nication lower bounds, which can be used directly for proving data structure lower bounds.

1 Introduction

Cell-probe model is a model for data structures first introduced by Yao [Yao81] in 1981. After

that, many studies have appeared for proving lower bounds in cell probe model. Due to the

essential differences between static and dynamic data structures, the studies can also be classified

into these two categories.

[MNSW95] is one of the earliest paper of techniques for lower bounds of static data structures.

It talks about the richness technique and the round elimination technique. Both techniques lead

to a family of various techniques, and they are still the two major family of techniques today.

[PT06b] introduces direct sum technique, which is a stronger richness technique and can be used

for proving higher lower bounds. [PT06a] uses cell probe elimination technique to prove a strong

lower bound for. Cell probe elimination is quite similar to round elimination technique, but cell

probe elimination is used directly for the data structure problem, while round elimination technique

is used for the corresponding communication problem. [PTW10] introduces a new cell sampling

method, which is used in [Lar12b] for proving lower bound of polynomial evaluation problem. This

lower bound stays as the highest lower bound of static data structures so far.

Chronogram technique introduced in [FS89] is a very influential method for proving lower

bounds for dynamic data structures, which can be used to prove Ω(logn/ log logn) type of lower

bounds. This lower bound remains the highest lower bound until [PD06], which gives the informa-

tion transfer technique that can prove Ω(log n) type of lower bounds. [Lar12a] combines chrono-

gram technique and cell sampling to prove a Ω((logn/ log logn)2) lower bound for 2-d weighted

range counting problem. This type of lower bound remains highest up to date.

In this survey, we will go through most techniques that are related to communication com-

plexity.

1

1.1 Cell Probe Model

In this section, we define cell probe model.

A data structure in the cell probe model has access to a set of S cells, each cell has w-bits

space. This set of cells is the memory storage of the data structure. During one operation (and

the first input), the data structure is assumed to have unlimited space to store any temporary

information. However, if the data structure needs to store any information for further operations,

it has to store it in the cells.

During each operation (and the first input), the data structure can probe cells, and are free

to overwrite the cell after the data structure probes it. The data structure can choose the cells

it probes based on the operation and the information in cells it has probed. If the operation is a

query, the data structure needs to output the answer of the query. The update time and the query

time are defined as the number of cells probed during an update operation or a query operation

respectively.

Since in the cell probe, we only consider the number of memory accesses, this model is stronger

than the word-RAM model, and the lower bound in this model will also hold in many other models.

The lower bound in this model is always related to w and S, because if they are too large, the

data structure can store all the answers during preprocessing, and thus can achieve very small cell

probe complexity.

2 Static Lower bound

Static data structure problem can be defined as follows:

Definition 1. Given a function f : Q×D → {0, 1}, where D = {0, 1}m and Q = {0, 1}n. At first,

the data structure gets the input d ∈ D, and then stores some information in the cells. Then it

receives a query q ∈ Q, and it needs to output f(q × d). After the data structure gets the query q,

it can only know information about d from the cells. The time used by the data structure is defined

as the cells it probes after it receives the query.

Here the definition is only for one round of query. If the data structure needs to have multiple

rounds of query, the data structure must not modify the cells. If so, the time complexity for each

round should be the same.

In this section, we will talk about the techniques used for proving static data structure lower

bounds. Section 2.1 defines some notations and introduces the relation between static data struc-

tures and communication problem. Section 2.2 and 2.3 talk about the round elimanition technique

and the richness technique introduced by [MNSW95]. Section 2.4 talks about the direct sum tech-

nique, which strengthens the idea of the richness technique. Section 2.5 introduces a generalized

idea of the direct sum technique, which can be used to prove lower bounds even for two sided-error

random data structures.

2

2.1 Preliminary

We define some notations before moving into the techniques. Let f : {0, 1}n×{0, 1}m → {0, 1}
be a communication problem:

1. A [a, b] protocol is a protocol to compute f where the total number of bits that Alice sends

to Bob is at most a, and the total number of bits that Bob sends to Alice is at most b.

2. A [t, a, b]A protocol is a protocol to compute f where there are t rounds, Alice and Bob

alternatively send one message in each round. Each message of Alice contains at most a

bits and each round of Bob contains at most b bits. Additionally, the first message is sent

by Alice. Similarly, we can define [t, a, b]B exactly the same except that Bob sends the first

message.

3. A protocol is random if it outputs the correct answer with probability at least 2 . A random3

protocol is 1-sided error if when f(x, y) = 0, the protocol can output 0 with probability 1.

Static data structure relates to communication complexity in a very natural way, as we can

see from the following lemma

Lemma 1. [Mil94] Let f be a function such that there is a static data structure that can compute

f in t access to the cells, with the total number of cells be S and the size of each cell be w. The

communication problem defined as Alice gets q ∈ Q and Bob gets d ∈ D, and they need to compute

f(d× q), has a [2t, dlogSe, w]A protocol.

Proof. We construct the protocol as follow:

1. Bob gets the input d, and he uses the data structure to construct the cells.

2. In each round, Alice requests the content of a cell by the data structure, and Bob sends the

content back to Alice. Since there are at most S cells, Alice can describe the cell by dlogSe
bits; each cell has length w, so Bob can send back to Alice by w bits.

3. After t requests (2t rounds), the data structure can already compute the answer, so Alice

can output the answer according to the data structure.

Something interesting about the lemma is that it preserves some property of the data structure.

If the data structure is deterministic, then the protocol is deterministic; if the data structure is

randomized, then the protocol is randomized . . . Since it is usually easier to give a lower bound for

the communication complexity of f , and by lemma 1 we can immediately get a lower bound for

the static data structure to compute f . However, we have to note that since in 2n/dlogSe rounds,

Alice can send her entire query to Bob, so the lower bound for the communication problem is at

most O(n/dlogSe). Also, since usually S has to be at least m, this shows that the technique can

only prove lower bound of the type Ω(n/ logm). Section 2.2 and 2.3 will use this transformation

3

directly, so the techniques cannot break the barrier; whereas section 2.4 and 2.5 use the direct sum

idea to prove higher lower bounds.

Miltersen et al also mention a type of converse of Lemma 1 in [MNSW95]

Lemma 2. If there is a [O(1), a, b], protocol for computing f , then there is a static data structure

to compute f with O(1) access to cells, where the total number of cells are 2O(a) and the size of

each cell is b.

Lemma 2 is not focused in this survey, but it is still an interesting result. However, it requires

the protocol to use only O(1) rounds, and it is impossible to generalize this lemma ([MNSW95]).

2.2 The Round Elimination Technique

If f : X×Y → {0, 1} is a problem, then we can define Pm(f) to be the following problem: Alice

gets m inputs x1, . . . , xm ∈ X; Bob gets integer i ∈ [1,m], y ∈ Y and a copy of x1, x2, . . . , xi−1

such that Pm(f) = f(xi, y) (with the inputs described). Similarly, we can define Pm(f) to be the

problem such that Bob gets m inputs y1, . . . , ym ∈ Y ; Alice gets integer i ∈ [1,m], x ∈ X and a

copy of y1, y2, . . . , yi 1 such that Pm(f) = f(x, y− i).

Lemma 3 (Round Elimination). [MNSW95] Suppose there is a randomized [t, a, b]A protocol for

solving P100a(f). Then there is a randomized [t − 1, 120a, 120b]B protocol for solving f . Sim-

ilarly, if is a randomized [t, a, b]B protocol for solving P100b(f). Then there is a randomized

[t− 1, 120a, 120b]A protocol for solving f .

The idea of the round elimination technique is described as follows: Assume there is a [t, a, b]A

protocol for f , then we can use round elimination lemma repeatedly to get a 0 round protocol for

a nontrivial problem. A more clear view of the technique can be seen in the following example.

Consider the following prefix parity problem: Let U = {0, . . . , 2n − 1}. Alice gets x ∈ U and

Bob gets S ∈ U with |S| ≤ l. They want to determine the parity of |{y ∈ S : y ≤ x}|. Let the

problem be fn,l.

2

Theorem 1. [MNSW95] Let c > 1 be a constant. Let l = 2log n, a = (logn)3, b = nc and

t =
√

log n/10. Then fn,l does not have a [t, a, b]A protocol for sufficiently large n.

Proof. A protocol for fn,l can be used for Pm(fn/m,l) where m can be any value less than n (ignore

the rounding). Alice gets x1, x2, . . . , xm and she can concatenation them to get x′ = x1 ·x2 · · ·xm.

Bob gets S and x1, x2, . . . , xi−1, so he can construct

S′ = {x · ni/m
1 · x2 · · ·xi 1 u · 0n− : u− ∈ S}

Then they can use the protocol for fn,l on the input (x′, S′) to compute Pm(fn/m,l). The correctness

is not hard to see.

The protocol for f can also be used for Pmn,l (fn logm 1, l/m− 1). Alice is given x and i (she− −

does not need to use S1 through Si 1), she can compute x′ = [i− 1] · 0 · x where [i] represents the−

binary representation of i. Bob is given S1, . . . , Sm. First, he append a prefix 0 to each strings in

4

each set, so that each set is given in length n− logm. For each set Si, if the number of elements

in it is odd, we add an element 1n−logm to this set. Finally, compute

Si
′ = {[i− 1] · u : u ∈ Si}

and S′ =
⋃
i Si
′. Then they can use the protocol for fn,l on the input (x′, S′) to compute

Pm(fn logm 1, l/m − 1). Although we add some elements to S′, the total number of elements− −

is at most m(l/m− 1 + 1) = l. The correctness is not hard to see.

Now, given any [t, a, b]A protocol for fn,l, we can construct a [t, a, b]A protocol for P100a(fn/100a,l).

By round elimination lemma, we have a [t−1, 120a, 120b]B protocol for fn/100a,l. Then use the sec-

ond construction, we have a [t−1, 120a, 120b]B protocol for P 12000b(fn/100a−log(12000b)−1,l/12000b−1).

Use the round elimination lemma again, we have a [t− 2, 1202a, 1202b]A protocol for

fn/100a−log(12000b)−1,l/12000b−1

By repeating the same reduction for t/2 times, we can get a [0, a′, b′] protocol for asymptotic non

constant n, l, which is clearly impossible.

Corollary 1. For any static data structure to solve prefix parity problem, if (nl)O(1) cells are used,

and each cell contains nO(1) bits, then the query time is at least Ω(
√

log n).

Proof. If the data structure probes t cells, then by lemma 1, there is a [2t, O(log nl), nO(1)]A

2

protocol to compute prefix parity problem. When l = 2log n, O(log nl) = O(log3 n) and nO(1) = nc

for some c, so according to theorem 1, t ≥ Ω(
√

log n).

We can notice that prefix parity is an easier problem than the predecessor query problem, so

the lower bound for prefix parity is also a lower bound for predecessor query problem. However, the

lower bound here is not the strongest. Pătraşcu and Thorup proved a tight lower bound Ω(logn)

for predecessor query problem in [PT06a] via cell probe elimination. Cell probe elimination uses

a quite similar idea to round elimination, but it does reduction in the original data structure

problem rather than in the communication problem. It is not included in this survey, but it is a

good technique for interested readers to check.

2.3 The Richness Technique

Given a function f , we can consider f as the communication matrix M , where Ma,b = f(a, b).

Lemma 4 (Richness). [MNSW95] We say f is (u, v)-rich if at least v columns of it contain at least

u 1-entries. If f is a (u, v)-rich function and it has a randomized one-sided error [a, b]-protocol,

then f contains a submatrix of dimensions at least u/2a+2 × v/2a+b+2 containing only 1-entries.

Richness lemma can be used to prove lower bound of a variety of problems, here we only give

one example.

5

Definition 2 (Disjointness Problem). Let k < l < n/2. Let q ⊂ {0, . . . , n − 1} with |q| = k and

d ⊂ {0, . . . , n− 1} with |d| = l. f(q, d) = 1 if and only if q ∩ d = ∅.

Theorem 2. [MNSW95] If the disjointness problem has a randomized one-sided error [a, b]-

protocol, then either a = Ω(k) or b = Ω(l).

Pr(oof.) For any input d, we can cho(ose q) from() the set that excludes d, so for any column, there are
n−l rows that are 1. Thus, f is (n−l , n())-rich.k k l

By the richness lemma, there is a n−l /2ak
a/k

× n /2a+b submatrix Sl × T of f which contains

all 1. Let t = (n− l)/2 . Since

()
(
t

k

)
/

(
n− l
k

)
≤
(

t

n− l

)k
=

(
1

k

2a/k

= 1/2a

)

we have (
n− l

)
t

/2a
k

≥
(
k

)
This means |{i ∈ q : q ∈ S}| ≥ t, because otherwise, we cannot have n−l /2a distinct rows. Also,k

(because
n
) {i ∈ q :) ∈ S

a+b
(q
n t

} ∩ {i ∈ d : d ∈ S} = ∅, we have |{i ∈ d : d

(
∈ S}|

)
≤ n − t, which means

/2l ≤ − . Therefore,l

a n
2 +b ≥

(
n

l

)
n

/

(
− t
l

)
≥
(
n− t

)l
⇒ a+ b ≥ l · log

n

n− t

Assume a < k/4. We have t > 1
2 (n− l) > 1

4n and thus n
n−t >

4 . Therefore,3

n
b ≥ l · log

n− t
− a ≥ l · log

4

3
− l

4
≥ Ω(l)

Corollary 2. For any randomized one-sided error static data structure for disjointness problem,

if the number of cells used is poly(n), and the size of each cell is O(log n), then the data structure

probes Ω(k/ log n) cells per query.

Proof. If the data structure probes t cells, then by lemma 1, there is a [2t, O(log n), O(log n)]

randomized one-sided error protocol to compute the disjointness problem. The number of bits

that Alice send is at most O(t log n) and the number of bits that Bob sends is also O(t log n).

Then according to theorem 2, O(t log n) = min(Ω(k),Ω(l)) = Ω(k), so t = Ω(k/ log n).

2.4 The Direct Sum Technique

As mentioned above, if we directly transform a static data structure problem f into the same

communication problem f , the best lower bound we can prove is in the form Ω(n/ logS), where n

6

is the size of the query and S is the number of cells. However, it is still possible to use richness

technique for proving stronger lower bound in the form Ω(n/ log Sn) (where m is the size of them

input), as we will discuss in this subsection.

Define
⊕k

f : ([k] × X) × Y k → {0, 1} as a new problem such that the input of the data

structure is (y1, y2, . . . , yk), and the query consists of x ∈ X and an index i ∈ [k], and the data
k

structure should∧ output⋂f(x, yi). We also consider another problem f : Xk × Y k → {0, 1
k

}
defined as f(x, y) = i f∈[k] (xi, yi).

∧
Lemma 5. [PT06b] If

⊕k
f∧can be solved deterministically by a data structure in T probes, with

k
S cells, each has w bits, then f has a communication protocol in which Alice sends O(Tk log S)k
bits and Bob sends Tkw bits.

Proof. This protocol works in a way that computes the values of f(xi, yi) for each i. Given the

input (x1, x2, . . . , xk), Alice can simulate the

cells together, which can be encoded in log
(
S
k

)k subproblems in parallel. Each time she asks for k

= O(k log S
k) bits. Bob sends back the contents in

all of the k cells by kw bits. After T rounds, Alice can figure out each f(xi, yi), and thus she can

output
∧k

f(x, y).

Theorem | k
3. [PT06b] Let f : X × Y → {0, 1} be [ρ X|, v]-rich and if f has a communication

protocol in which Alice sends ka bits and Bob sends kb bits, then f

∧
has a 1-rectangle of size

ρO(1)|X|/2O(a) × v/2O(a+b).

k
This theorem with lemma 5 can be used to show the lower bound of f in a way that is

much similar to the way we use Richness Lemma 4 and lemma 1 to prove l

⊕
⊕ ower bound of f . One

k
extra work is to use the lower bound of f to prove the lower bound of f . One good thing

about this technique is that it only concerns the communication matrix of f , and thus we can use

richness and the 1-rectangle property of f as a black box. Next we will use this technique to prove

the lower bound of ANNγ,d
n .

Let λ be a constant. ANNγ,d
n (γ ≥ 1) is a problem such that the input is n points in the space

{0, 1}d. The query is a point q in {0, 1}d. If there exists a point in the input that has Hamming

distant at most λ from q, then the output should be 1; if all the points in the input has Hamming

distant at least λγ, then the output should be 0; Otherwise, the output can be either 0 or 1. Thus,

ANNγ,d
n is not actually a function, but a family of functions. In the following, we use ANNγ,d

n to

denote any function that is in the family ANNγ,d
n .

Theorem 4. [PT06b] There exists a λ such that for any deterministic data structure that solves

ANNγ,d
n in the cell-probe model with S cells of size dO(1) bits. When d ≥ (1 + 5γ) log n, a query

requires Ω(dγ3 log Sd) cell probes.n

Proof. If we ha γ,d⊕ve a data structure for ANNn using T cell probes, then we can construct a data
k γ,Dstructure for ANNN for some D = d/(1 + 5γ) ≥ log n and k = n/N for N = w with the

same complexity T .

We want to construct a set of binary codes of size 5γD bits, and any two of them have

Hamming distance at least γD. By Gilbert-Varshamov bound, the set of codes can have at least

7

γ2(1−H(1/5)−0.01)5γD > 2D ≥ ,Dn elements. Given k sub problems ANNN , we can append one

element in the set of codes to each sub problems. Therefore, the distance of points in two different

sets is at least γD. Thus, we can store all these appended points in the data structure ANNγ,d
n .

If we query some point q in a sub problem and also append the code to this point, then the closest

point can only be in the same sub problem; or there is no point in the same sub problem, so the

closest distance is at least γD, and the answer will always be 0, as it should be when there is no

point.
γBy 5,

∧k ,Dlemma ANNN has a communication protocol in which Alice sends O(Tk logS/k)

bits and Bob sends Tkw bits.

Then we use some result in [Liu04] as black box: there exists a λ such that the following holds,

• γ,DFor any f ∈ ANNN , f is [2D−1, 2ND]-rich, which is equivalent to [|X|/2, 2ND]-rich

• ∈ γ,D D−D/(169γ2 2

For any f ANNN , f does not contain any 1-rectangle of size 2)×2ND−ND/(32γ)

By theorem 3, either |X|/2O(T logS/k) < 2D−D/(169γ
2), or 2ND/2O(T logS/k+Tw) < 2ND−ND/(32γ

2).

Thus,
D

T = Ω(min(
γ2
/ log

S

k
,
ND

))
wγ2

Recall N = w, and the first term becomes smaller, so

D
T = Ω(

γ2
log

S

k
) = Ω(

d/(1 + 5γ)

γ2
/ log

S

n/dO(1)
) = Ω(

d

γ3
/ log

Sd

n
)

2.5 Randomized Data Structure

All the techniques above can only be used to get lower bound for deterministic data structures

or one sided error data structures. The following theorem stands as a technique for two sided error

data structures:

k
Theorem 5. [PT06b] Let α, ε > 0 be any constants, and Ex∈X,y Y [f(x, y)]∈ ≥ α. Assume f

can be solved in the cell probe model with S cells of size w in T cell probes, and error 1

⊕
, then f3

has a rectangle of dimensions |X|/2O(T log(S/k)) × |Y |/2O(Tw) in which the density of 0 is at most

ε.

Let NNd 1,d
n be ANNn . The following theorem is a direct application of theorem 5.

Theorem 6. [PT06b] There exists a constant C such that: For any data structure that solves

NNd
n (d ≥ C log n) with S (S > n) cells of size dO(1) bits, and error 1/3, a query must have

T = Ω(d/ log Sd) cell probes.n

Proof. First, we can use⊕ the same method as in the proof of Theorem 4 to convert a solution to

NNd k
to a solution to NND

n N for N = n/k to be determined later, and D = d/6.

let f be the complement problem of NND
N . We use following results due to [BR00] as a black

box:

8

• Ex∈X,y∈Y [f(x, y)] ≥ Ω(1)

• There exists constants ε, δ > 0 such that any rectangle of f of size at least |X|/O(2εD/N δ)×
|Y | δ

/2O(N), the density of 0 is at least 1/80.

If we use Theorem 5 here, we can obtain that f has a rectangle of dimensions |X|/2O(T log(S/k))

O

×
|Y |/2 (Tw) that has at most 1/81 density of 0. Thus, we have

S
T log = Ω(εD

k
− δ logN) or Tw = Ω(Nδ)

When d ≥ C log n for a large enough C, we can have

εC
εD = εd/6 ≥ log n

6
≥ 2δ log n ≥ 2δ logN

Thus the first lower bound becomes T log S
k ≥ Ω(logN) ≥ Ω(D) = Ω(d). If we set N to be

(dw)1/δ = dO(1), we have Tw = Ω(dw). Note that log S
k = log Sd > 1, so the first bound isn

stronger and thus T = Ω(d/ log Sd
n).

3 Conclusion

Although there have been various techniques, the limits of these techniques are still easy to see.

For example, round elimination technique and the richniess technique have logorithmic dependence

on the number of cells used, so it cannot give different lower bounds for a data structure that uses

linear space or a data structure that uses polynomial space. The direct sum technique improves

this dependence from logS to log(S/n), but can still be improved.

Also, we can see the limit of cell probe model itself. If we consider a static data structure

problem, which has no input, but the query asks to compute a very hard function f . Since

computing f need not to query for any cells, it has a constant cell probe complexity. However, it

does not have a constant lower bound in word RAM model. It will be interesting to see a natrual

data structure problem, whose upper bound in the cell probe model is lower than the lower bound

in other models. Also, how large could this gap be? For such problem, it will be impossible to

prove interesting lower bounds in the cell probe model.

References

[BR00] Omer Barkol and Yuval Rabani. Tighter bounds for nearest neighbor search and

related problems in the cell probe model. In Proceedings of the thirty-second annual

ACM symposium on Theory of computing, pages 388–396. ACM, 2000.

[FS89] Michael Fredman and Michael Saks. The cell probe complexity of dynamic data struc-

tures. In Proceedings of the twenty-first annual ACM symposium on Theory of com-

puting, pages 345–354. ACM, 1989.

9

[Lar12a] Kasper Green Larsen. The cell probe complexity of dynamic range counting. In

Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages

85–94. ACM, 2012.

[Lar12b] Kasper Green Larsen. Higher cell probe lower bounds for evaluating polynomials. In

Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on,

pages 293–301. IEEE, 2012.

[Liu04] Ding Liu. A strong lower bound for approximate nearest neighbor searching. Infor-

mation Processing Letters, 92(1):23–29, 2004.

[Mil94] Peter Bro Miltersen. Lower bounds for union-split-find related problems on random

access machines. In Proceedings of the twenty-sixth annual ACM symposium on Theory

of computing, pages 625–634. ACM, 1994.

[MNSW95] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data struc-

tures and asymmetric communication complexity. In Proceedings of the twenty-seventh

annual ACM symposium on Theory of computing, pages 103–111. ACM, 1995.

[PD06] Mihai Patrascu and Erik D Demaine. Logarithmic lower bounds in the cell-probe

model. SIAM Journal on Computing, 35(4):932–963, 2006.

[PT06a] Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search.

In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,

pages 232–240. ACM, 2006.

[PT06b] Monica Patrascu and Mikkel Thorup. Higher lower bounds for near-neighbor and

further rich problems. In Foundations of Computer Science, 2006. FOCS’06. 47th

Annual IEEE Symposium on, pages 646–654. IEEE, 2006.

[PTW10] Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower bounds on near neighbor

search via metric expansion. In Foundations of Computer Science (FOCS), 2010 51st

Annual IEEE Symposium on, pages 805–814. IEEE, 2010.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM (JACM),

28(3):615–628, 1981.

10

MIT OpenCourseWare
https://ocw.mit.edu

18.405J / 6.841J Advanced Complexity Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

