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Chapter 1 

Introduction 

This course will be organized around algorithmic issues that arise in machine learn­
ing. The usual paradigm for algorithm design is to give an algorithm that succeeds on 
all possible inputs, but the difficulty is that almost all of the optimization problems 
that arise in modern machine learning are computationally intractable. Nevertheless, 
practitioners use a wide variety of heuristics that are successful in practice. However 
we often do not understand when and why these approaches work (an issue we would 
not have if our algorithms came with provable guarantees). The central questions 
in this course are: 

Question 1 Which models in machine learning lead to tractable algorithmic prob­
lems? 

Worst-case analysis is comfortable because if an algorithm works in this model, 
it certainly works in practice. But the optimization problems that machine learning 
systems “solve” everyday are indeed hard in the worst-case. However these lower 
bounds are not so frightening; many of the hard instances of machine learning 
problems are not ones we would want to solve in practice anyways! We will see a 
number of examples where choosing the right model will lead us to discover new 
algorithms with provable guarantees, where we really can understand when and 
why they work. In some cases, we will even be able to analyze approaches that 
practitioners already use and give new insights into their behavior. 

Question 2 Can new models – that better represent the instances we actually want 
to solve in practice – be the inspiration for developing fundamentally new algorithms 
for machine learning problems? Can we understand when and why widely used 
heuristics work? 

3  



4 CHAPTER 1. INTRODUCTION 

This course will focus on 

(a) nonnegative matrix factorization 

(b) topic modeling 

(c) tensor decompositions 

(d) sparse recovery 

(e) dictionary learning 

(f) learning mixtures models 

(g) matrix completion 

Hopefully more sections will be added to this course over time, since there are a 
vast number of topics at the intersection of algorithms and machine learning left to 
explore. 



Chapter 2 

Nonnegative Matrix Factorization  

In this chapter we will explore the nonnegative matrix factorization problem. We 
will first recap the motivations from this problem. Next, we give new algorithms 
that we apply to the classic problem of learning the parameters of a topic model. 

2.1 Introduction 

In order to understand why nonnegative matrix factorization is useful in applica­
tions, it will be helpful to compare it to the singular value decomposition. We will 
focus on applications of both of these to text analysis in this chapter. 

Singular Value Decomposition 

Given an m × n matrix M , its singular value decomposition is 

M = UΣV T 

where U and V are orthonormal and Σ is diagonal and its entries are nonnegative. 
Alternatively we can write 

rr 
M = uiσivi

T 

i=1 

where ui is the ith column of U , vi is the ith column of V and σi is the ith diagonal 
entry of Σ. 

Every matrix has a singular value decomposition! In fact, this representation 
can be quite useful in understanding the behavior of a linear operator or in general 

5  



6 CHAPTER 2. NONNEGATIVE MATRIX FACTORIZATION 

for extracting significant “features” from a large data matrix. We will focus our 
discussion of the singular value decomposition on the latter. One of the many useful 
properties of this decomposition is that we can immediately read-off the best low 
rank approximation to M from it. 

  
Definition 2.1.1 The Frobenius norm of a matrix M is IMIF = M2 Al-i,j i,j.    
ternately, if M = r

i=1 uiσivi
T , IMIF = σi 

2 . 

Consider the following optimization problem: Let B be the best rank k ap­
proximation to M in the Frobenius norm - i.e. B is the minimizer of IM − BIF 
over all rank at most k matrices. Then we can without loss of generality choose B 
to be the first k terms of the singular value decomposition. 

Theorem 2.1.2 (Eckart-Young) The best rank k approximation to M in Frobe­   k T r σ2nius norm is attained by B = uiσiv , and its error is IM−BIF = i .i=1 i i=k+1 

This is one of the reasons why the singular value decomposition is so widely 
useful: if we are given data in the form of a matrix M but we believe that the data 
is approximately low-rank, a natural approach to making use of this structure is to 
instead work with the best rank k approximation to M . This theorem is quite robust 
and holds even when we change how we measure how good B is as an approximation 
to M : 

Definition 2.1.3 The operator norm of a matrix M is IMI2 = max|v|=1 IMvI2. rThen if M = i=1 uiσivi
T , ||M ||2 = σ1 (the largest singular value). 

The best approximation to M in the operator norm is also attained by B = k T 
i=1 uiσivi , in which case the error is IM − BI2 = σk+1. 

Let us give one more interpretation of the singular value decomposition. We 
can regard an m × n matrix M as a collection of n data points in Rm . We associate 
a distribution Δ with this set of points which chooses a point uniformly at random. 
Further suppose that the expectation of this distribution is zero. Our data is in 
high dimension, and a natural question to ask is: how should we project our data 
onto a one dimensional subspace in a manner that preserves as much information 
as possible? One concrete goal is to find a direction u so that projecting Δ on u 
maximizes the variance (among all one-dimensional projections). The question leads 
to another characterization of the singular vectors: 
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IuT MI2 
u1 = argmax 

IuI2 

and the maximum is σ1. Similarly if we want to project onto a two-dimensional 
subspace so as to maximize the projected variance we should project on span(u1, u2). 
Relatedly 

IuT MI2 
u2 = minu1 argmaxu⊥u1 IuI2 

and the maximum is σ2. This is called the variational characterization of singular 
vectors. (Here we have assumed the singular values are distinct). 

There are efficient algorithms to compute the singular value decomposition. If 
n  m then these algorithms run in time O(mn2).= The basic idea is to reduce M 
to bidiagonal form using Householder reflections, and then to compute the singular 
value decomposition from this representation using the QR algorithm. Next we will 
describe an application to text analysis. 

Applications to Text Analysis 

Latent Semantic Indexing: [49] 

Suppose we are give a large collection of documents, and we would like to 
extract some hidden structure in this collection (either with the goal of performing 
information retrieval, or clustering). The usual first step is to collect the data in a 
very large, very sparse matrix: 

Definition 2.1.4 The term-by-document matrix M is an m × n matrix where each 
row represents a word, each column represents a document and the entry in row i, 
column j is the number of times that word i occurs in document j. 

We have clearly lost some information, since this representation does not take into 
account the order of the words. However matrices are much easier to work with, and 
the underlying assumption is that it should still be possible to cluster the documents 
just knowing what words each one contains but not their order. This is often called 
the bag-of-words assumption. 

The idea behind latent semantic indexing is to compute the singular value 
decomposition of M and use this for information retrieval and clustering. More 
precisely, if we write 

M ≈ U (k)Σ(k)V (k)T 

where U (k) is the first k columns of U , etc. then the columns of U (k) are the k 
directions that maximize the projected variance of a random document. These 
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vectors are interpreted as “topics”. More precisely, suppose we want to compute a 
“similarity” score for document i and document j. We could do this by computing 

�Mi,Mj � 

where Mi is the ith column of M , etc. This function “counts” the number of words 
in common. In particular, given a query we would judge how similar a document is 
to it just be counting how many of its words occur in each document. This is quite 
naive. Instead, we could compute 

U (k)��Mi
T U (k),Mj

T 

Intuitively this maps each document to a vector of length k that measures how 
much of each topic is present in the document, and computes the similarly of the 
documents by taking an inner-product in this low-dimensional space. In practice 
this is a much better way to measure similarity and was introduced by the seminal 
paper of Deerwester et al [49]. 

However it has its own weaknesses. This approach has some rather undesirable 
properties: 

(a) “topics” are orthonormal 

Consider topics like “politics” and “finance”. Are the sets of words that describe 
these topics uncorrelated? No! 

(b) “topics” contain negative values 

This is more subtle, but negative words can be useful to signal that document is 
not about a given topic. But then when we compute similarly, two documents are 
judged to be more similar based on a topic that they are both decidedly not about. 
This is another counter intuitive and undesirable property. 

Nonnegative Matrix Factorization 

The idea due to [73] and [98] is to write 

M ≈ AW 

where A and W are m × k and k × n respectively and are required to be entry-wise 
nonnegative. In fact, let us suppose that the columns of M each sum to one. It is 
not hard to see that if D is a diagonal matrix where the ith entry is the reciprocal 
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of the sum of the entries in the ith column of A then M = AA WW where AA = AD and WW = D−1W normalizes the data so that the columns of AA and of WW each sum to one. 
Hence we are finding a set of topics (the columns of AA which are each distributions 
on words) so that every document can be obtained as a convex combination of the 
topics that we have found. 

This optimization problem plays a crucial role in many machine learning sys­
tems, such as image segmentation, text analysis, recommendation systems, etc. But 
this optimization problem is NP -hard [115]. So what should we do now? Give up? 

In contrast, singular value decomposition is a problem where theory and prac­
tice agree! It can be computed efficiently, and it has many uses. But in spite of this 
intractability result, nonnegative matrix factorization really is used in practice. The 
standard approach is to use alternating minimization: 

Alternating Minimization: This problem is non-convex, but suppose we 
guess A. Then computing the nonnegative W that minimizes IM −AW IF is convex 
and can be solved efficiently. The approach is to guess A, compute the best W then 
set W as fixed and compute the best A, and so on. This process converges, but not 
necessarily to the optimal solution. 

It can and does get stuck in local minima in practice! 

We note that this approach is also called expectation-maximization [50], and is the 
standard approach not just for nonnegative matrix factorization, but for many other 
problems we will study in this course such as dictionary learning and learning mix­
tures models. 

Food for Thought 

But maybe heuristics like this are identifying interesting instances of the problem. 
The goal of this course is to not give up when faced with intractability, and to 
look for new explanations. These explanations could be new models (that avoid the 
aspects of the problem that allow us to embed hard problems) or could be identifying 
conditions under which heuristics that are already used, do work. This is a largely 
unexplored area. 

In the next section, we will ask what happens if we restrict the number of 
topics. The instances generated by [115] have k linear in m and n, but when we 
look for a set of topics that explain 300, 000 New York Times articles, we are looking 
for only a few hundred topics. So one way to reformulate the question is to ask 
what its complexity is as a function of k. We will essentially resolve this using 
algebraic techniques. Nevertheless if we want even better algorithms, we need more 
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assumptions. We will see how a geometric interpretation of this problem implies that 
these hard instances are unstable, and we will examine a condition (separability) 
that enforces stability, and allows us to give much better algorithms - ones that run 
in time polynomial in all of the parameters. 

2.2 Algebraic Algorithms 

In the previous section we introduced the nonnegative matrix factorization problem 
and described its applications to text analysis (it has many other applications). 
Vavasis proved that this problem is NP -hard in the worst-case, but the instances 
he contracted have k – the number of topics – linear in the size of the matrix [115]. 
In most practical applications, k is much smaller than m or n and with this in mind 
we will instead ask: What is the complexity of this problem as a function of k? 
We will make use of tools from algebra to give a polynomial time algorithm for any 
k = O(1). In fact, the algorithm we present here will be nearly optimal in terms of 
its dependence on k. 

Definitions 

Let us define the nonnegative matrix factorization problem formally, since we did 
so only informally in the previous section: Suppose we are given an entry-wise 
nonnegative matrix M of size m × n. 

Definition 2.2.1 The nonnegative rank of M – denoted by rank+(M)– is the small­
est k such that there are nonnegative matrices A and W of size m × k and k × n 
respectively that satisfy M = AW . 

Equivalently, rank+(M) is the smallest k such that there are k nonnegative rank 
one matrices {Mi} that satisfy M = Mi.i 

Both of these equivalent formulations of the problem will be useful throughout 
our discussion. To gain some familiarity with this parameter, it is helpful to compare 
it to a more familiar one: If we omit the requirement that A and W be entry-wise 
nonnegative, then the smallest k is precisely the rank of M . Hence the following 
relation is immediate: 

Fact 2.2.2 rank+(M) ≥ rank(M) 

In fact the rank and the nonnegative rank of a matrix can be quite different: 

∑
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Example. Let M ∈ Mn×n, where Mij = (i − j)2 . It is easy to see that the 
columns of M are spanned by ⎫⎤⎡⎤⎡⎤⎡⎧ 

1 1 12⎪⎪⎪⎨  
⎪⎪⎪⎬ ⎢⎢⎢⎣  

1  
.  .  .  

⎥⎥⎥⎦ 
,  
⎢⎢⎢⎣  
2  
.  .  .  

⎥⎥⎥⎦ 
,  
⎢⎢⎢⎣  

⎥⎥⎥⎦  
22 

.  . ⎪⎪⎪⎩  

. 
2 

⎪⎪⎪⎭ 1 n n 

It is easy to see that rank(M) = 3 However, M has zeros along the diagonal and 
non-zeros off it. Furthermore for any rank one nonnegative matrix Mi, its pattern 
of zeros and non-zeros is a combinatorial rectangle - i.e. the intersection of some set 
of rows and columns - and a standard argument implies that rank+(M) = Ω(log n). 
There are examples with even larger separations too. 

Next we will connect nonnegative matrix factorization to computational prob­
lems involving systems of polynomial inequalities. 

Systems of Polynomial Inequalities 

We can reformulate the problem of finding an A and W that prove rank+(M) ≤ k 
as a problem of finding a feasible solution to a particular system of polynomial 
inequalities. More specifically, the problem we want to solve is: 

(2.1)  

⎧ ⎪⎨ ⎪⎩  

M = AW 
A ≥ 0 
W ≥ 0 

This system consists of quadratic equality constraints (one for each entry of M), 
and linear constraints that A and W be entry-wise nonnegative. Before trying to 
design better algorithms for k = O(1), we should ask a more basic question (whose 
answer is not at all obvious): 

Question 3 Is there any finite time algorithm? 

The difficulty is that even if there is a solution, the entries of A and W could be 
irrational. This is quite different than, say, 3-SAT where there is a simple brute-force 
algorithm. In contrast for nonnegative matrix factorization it is quite challenging 
to design algorithms that run in any finite amount of time. But indeed there are 
algorithms (that run in some fixed amount of time) to decide whether a system 
of polynomial inequalities has a solution or not in the real RAM model. These 
algorithms can also compute an implicit representation of the solution, if there is 
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one. The output is a polynomial and an interval (for each variable) in which there 
is only one root, which is the value of the variable in the true solution. And you can 
find as many bits of the solution as you would like by performing binary search for 
the root. 

The first algorithm follows from the seminal work of Tarski, and there has 
been a long line of improvements based on successively more powerful algebraic 
decompositions. This line of work culminated in algorithms whose running time is 
exponential in the number of variables but is polynomial in all the other parameters 
of the problem (the number of polynomial inequalities, the maximum degree and 
the bit complexity of the coefficients). The running time is (nD)O(r) where n is the 
number of polynomial inequalities, D is the maximum degree and r is the number of 
variables [106]. This running time is essentially optimal under the exponential time 
hypothesis [78]. In particular, if there is an algorithm for this problem that runs in 
time (pD)o(r) then it would yield sub-exponential time algorithms for 3-SAT. 

We can use these algorithms to solve nonnegative matrix factorization. How­
ever the number of variables we would need in the naive representation is nk + mk, 
one for each entry in A or W . So even if k = O(1), we would need a linear number of 
variables and the running time would be exponential. However we could hope that 
even though the naive representation uses many variables, perhaps there is a more 
clever representation that uses many fewer variables. Can we reduce the number of 
variables in the system of polynomial inequalities from O(nk + mk) to f(k)? 

If we could do this, then we could solve nonnegative matrix factorization in 
polynomial time for any k = O(1). Next, we will describe some basic tools in the 
first-order theory of the reals. These results will help formalize our intuition from 
above that the number of variables is the right complexity measure when reasoning 
about how difficult it is to solve a system of polynomial inequalities, but their proof 
is out of scope of this course. 

First-Order Theory of the Reals 

Definition 2.2.3 A set S is semialgebraic if there exist multivariate polynomials 
p1, ..., pn such that 

S = {x1, ..., xr|pi(x1, ..., xr) ≥ 0} 

or if S is a finite union or intersection of such sets. 

Definition 2.2.4 The projection of a semialgebraic set S is defined as 

projS (X1, ..., X�) = {x1, ..., x�|∃ x�+1, ..., xr such that p(x1, ..., xr) ∈ S} 
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Theorem 2.2.5 (Tarski) The projection of a semialgebraic set is semialgebraic. 

This is one of the foundational results in the field, and is often called quantifier 
elimination [110], [107]. To gain some familiarity with this notion, consider the 
case of algebraic sets (defined analogously as above, but with polynomial equality 
constraints instead of inequalities). Indeed, the above theorem implies that the 
projection of an algebraic set is itself semi-algebraic. Is its projection also algebraic? 
No (e.g. think about the projection of a circle)! 

Earlier, we stated that there are algorithms to solve systems of polynomial 
inequalities (and find an implicit representation for the solution, if there is one) in 
time (nD)O(r) where n is the number of polynomial inequalities, D is the maximum 
degree and r is the number of variables [106]. In fact, these algorithms work in a more 
general setting where there is additionally a boolean function B that constraints the 
sign pattern of the polynomials. We are interested in deciding whether the set 

S = {x1, ..., xr|B(p1(x1, ..., xr), ..., pn(x1, ..., xr)) = true} 

is non-empty, and we assume that we can evaluate B (but not, say, that it has a 
succinct circuit). A related result is the famous Milnor-Warren bound (see e.g. [7]): 

Theorem 2.2.6 (Milnor-Warren) Given n polynomials p1, ..., pm of degree ≤ D 
on r variables x = x1, ...xr, consider the sign pattern at x:   

x → sgn(p1(x)), sgn(p2(x)), ..., sgn(pm(x))

Then as x ranges over Rr the number of distinct sign patterns is at most (nD)r . 

A priori we could have expected as many as 3n sign patterns. In fact, algorithms 
for solving systems of polynomial inequalities are based on cleverly enumerating the 
set of sign patterns so that the total running time is dominated by the maximum 
number of distinct sign patterns that there could be! In fact, the Milnor-Warren 
bound can be thought of as an analogue of the Sauer-Shelah lemma that is used 
throughout supervised learning where the number of variables plays the role of the 
V C-dimension. 

Next we will give a technique to reduce the number of variables. 

Variable Reduction 

It is clear that the set of points satisfying (2.1) is a semialgebraic set. However even 
for k = 3 this system has a linear (in n and m) number of variables, so directly 
solving (2.1) would require exponential time. 
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Question 4 Can we find an alternate system of polynomial inequalities that ex­
presses the same decision problem but uses many fewer variables? 

We will focus on a special case called simplicial factorization where rank(M) = k. 
In this case, we are asking whether or not rank+(M) = rank(M) = k and this 
simplifies matters because of the following observation: 

Claim 2.2.7 In any solution, A and W must have full column and row rank respec­
tively. 

Proof: The span of the columns of A must contain the columns of M and similarly 
the span of the rows of W must contain the rows of M . Since rank(M) = k and 
A and W have k columns and rows respectively we conclude that the A and W 
must have full column and row rank respectively. Moreover their span must be the 
column space and row space of M respectively. • 

Hence we know that A and W have left and right pseudo-inverses A+ and W + 

respectively. We will make use of these pseudo-inverses to reduce the number of 
variables in our system of polynomial inequalities: We have that A+A = Ir where 
Ik is the k × k identity. Hence 

A+AW = W 
and so we can recover the columns of W from a linear transformation of the columns 
of M . This leads to the following alternative system of polynomial inequalities: 

(2.2)  

⎧ ⎪⎨ ⎪⎩  

MW +A+M = M 
MW + ≥ 0  
A+M ≥ 0 

A priori, it is not clear that we have made progress since this system also has 
nk + mk variables corresponding to the entries of A+ and W + . However consider 
the matrix A+M . If we represent A+ as an k × n matrix then we are describing 
its action on all vectors, but the crucial observation is that we only need to know 
how A+ acts on the columns of M which span a k dimensional space. Hence we can 
apply a change of basis to rewrite M as MR which is an k × m matrix, and there 
is an k × k linear transformation T (obtained from A+ and the change of basis) so 
that TMR = W . A similar approach works for W , and hence we get a new system: ⎧ ⎪⎨ ⎪⎩  

MC ST MR = M 
(2.3)  MC S ≥ 0  

TMR ≥ 0  
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The variables of this system are the entries in S and T . So there are 2k2 

variables. And the properties we need of this system are that 

(a) If the simplicial factorization problem has a solution, then there is a solution 
to this system (completeness) 

(b) If there is any solution to the system, then the simplicial factorization has a 
solution (soundness) 

We have already proven the first property, and the second property follows 
because we can set A = MC S and W = TMR and this is a valid factorization with 
inner-dimension k. Hence if we apply Renegar’s algorithm to this new system, the 
algorithm runs in time (nm)O(k2) and solves the simplicial factorization problem. 

The above approach is based on the paper of Arora et al [13] where the authors 
also give a variable reduction procedure for nonnegative matrix factorization (in the 
general case where A and W need not have full column or row rank respectively). 
The authors reduce the number of variables from (nk + mk) to f(k) = 2k22k and 
this yields a doubly-exponential time algorithm as a function of k. The crucial 
observation is that even if A does not have full column rank, we could write a system 
of polynomial inequalities that has a pseudo-inverse for each set of its columns that 
is full rank (and similarly for W ). However A could have as many as 

k/
k 
2 maximal 

sets of linearly independent columns, and hence the resulting system of polynomial 
inequalities has f(k) variables but f(k) is itself exponential in k. 

In [94] the author further reduces the number of variables to 2k2 for nonneg­
ative matrix factorization, and the main idea is that even though A could have 
exponentially many maximal sets of linearly independent columns, their psueudo­
inverses are algebraically dependent and can be expressed over a common set of k2 

variables using Cramer’s rule. This yields a singly exponential time algorithm for 
nonnegative matrix factorization that runs in (nm)O(k2) time which is essentially op­
timal since any algorithm that runs in time (nm)o(k) would yield a sub-exponential 
time algorithm for 3-SAT [13]. 

2.3 Stability and Separability 

In the previous section we took an algebraic approach and here instead we will work 
with an assumption called separability [54] which will allow us to give an algorithm 
that runs in polynomial time (even for large values of r). Our discussion will revolve 
around the intermediate simplex problem. 

( )
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Intermediate Simplex Problem 

Let us define the intermediate simplex problem: 

We are given two polytopes Q and P with P ⊆ Q and furthermore P is 
encoded by its vertices and Q is encoded by its facets. Is there a simplex 
K with P ⊆ K ⊆ Q? 

We would like to connect this problem to nonnegative matrix factorization, since 
it will help us build up a geometric view of the problem. Consider the following 
problem: 

Given nonnegative matrices M and A, does there exists W ≥ 0 such 
that M = AW ? 

The answer is “Yes”, if and only if each column of M is in the cone spanned 
by nonnegative combinations of the columns of A. Moreover if we normalize the 
columns of M and A so that they sum to one, then the answer is “Yes” if and only if 
the convex hull of the columns of A contains the columns of M . Recall in simplicial 
factorization we are given a nonnegative matrix M with rank(M) = k, and our 
goal is to decide whether or not rank+(M) = k. We will prove that the simplicial 
factorization problem and the intermediate simplex problem are equivalent [115]. 
Consider the following helper problem, which we call (P0): 

Given M = UV , is there an invertible k × k matrix T such that UT −1 , 
and TV are nonnegative? 

In fact, Vavasis [115] proved that (P0), intermediate simplex and the simplicial 
factorization problem are each polynomial time interreducible. It is easy to see 
that (P0) and the simplicial factorization problem are equivalent since in any two 
factorizations M = UV or M = AW (where the inner-dimension equals the rank of 
M), the column spaces of M , U and A are identical. Similarly the rows spaces of 
M , V and W are also identical. 

The more interesting aspect of the proof is the equivalence between (P0) and 
the intermediate simplex problem. The translation is: 

(a) rows of U ⇐⇒ vertices of P 

(b) rows of T ⇐⇒ vertices of K 

(c) columns of V ⇐⇒ facets of Q 
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Figure 2.1: This figure is taken from [115]. The intermediate simplex problem has 
two solutions which will be used to encode the truth assignment of a variable. 

Then the constraint that UT −1 is nonnegative is (roughly) the constraint that P ⊆ K 
and the constraint TV is (roughly) the constraint K ⊆ Q. There are some tedious 
normalization issues that arise since we need to be careful about the distinction 
between the convex hull of a set of vectors and the cone generated by all nonnegative 
combinations. However this equivalence gives us a geometric view that will be 
helpful. 

Vavasis made use of the equivalences in the previous subsection to prove that 
nonnegative matrix factorization is NP -hard. Consider the gadget in Figure 2.1; 
the crucial property is that there are only two possible intermediate triangles, which 
can then be used to represent the truth assignment for a variable xi. The description 
of the complete reduction, and the proof of its soundness are involved (see [115]). 

The trouble is that gadgets like those in Figure ?? are unstable. We can change 
the number of solutions by small perturbations to the problem. Motivated by issues of 
uniqueness and robustness, Donoho and Stodden [54] introduced a condition called 
separability that alleviates many of these problems, which we will discuss in the next 
subsection. 

Separability 

Definition 2.3.1 We call A separable if, for every column of A, there exists a row 
of A whose only non-zero entry is in that column. 
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Furthermore in the separable nonnegative matrix factorization problem we are 
given M and the promise that if there is a nonnegative matrix factorization, there is 
one in which A is separable. Donoho and Stodden used this condition (and others) 
to show that there are somewhat natural conditions under which the nonnegative 
matrix factorization is unique. Arora, Ge, Kannan and Moitra gave an algorithm 
for finding it: 

Theorem 2.3.2 [13] Given a nonnegative matrix M with the promise that there is 
a nonnegative matrix factorization M = AW where A is separable, there is a polyno­
mial time algorithm to compute such a factorization of minimum inner-dimension. 

In fact, separability is quite natural in the context of text analysis. Recall that 
we interpret the columns of A as topics. We can think of separability as the promise 
that these topics come with anchor words; informally, for each topic there is an 
unknown anchor word that if it occurs in a document, the document is (partially) 
about the given topic. For example, 401k could be an anchor word for the topic 
personal finance. 

Why do anchor words help? It is easy to see that if A is separable, then the 
rows of W appear as rows of M (after scaling). Hence we just need to determine 
which rows of M correspond to anchor words. We know from our discussion in 
Section 2.3 that (if we scale M , A and W so that their rows sum to one) the convex 
hull of the rows of W contain the rows of M . But since these rows appear in M as 
well, we can try to find W by iteratively deleting rows of M that do not change its 
convex hull. 

Let M i denote the ith row of M and let M I denote the restriction of M to 
the rows in I for I ⊆ [n]. So now we can find the anchor words using the following 
simple procedure: 

Find Anchors [13] 
Input: matrix M ∈ Rn×m satisfying the conditions in Theorem 2.3.2  
Output: W = M I  

Set I = [n]  
For i = 1, 2, ..., n  

If M i ∈ conv({M j |j ∈ I, j = i}), set I ← I − {i}
End 

It is easy to see that deleting a row of M that is not an anchor word will not 
change the convex hull of the remaining rows, and so the above algorithm terminates 

6=
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with a set I that only contains anchor words. Moreover at termination 

conv({M i|i ∈ I}) = conv({M j }j ) 

Alternatively the convex hull is the same as at the start. Hence the anchor words 
that are deleted are redundant and we could just as well do without them. 

Separable NMF [13] 
Input: matrix M ∈ Rn×m satisfying the conditions in Theorem 2.3.2 
Output: A, W 

Run Find Anchors on M , let W be the output 
Solve for nonnegative A that minimizes IM − AW IF (convex programming) 
End 

The proof of theorem follows immediately from the proof of correctness of 
Find Anchors and the fact that conv({M i}i) ⊆ conv({W i}i) if and only if there 
is a nonnegative A (whose rows sum to one) with M = AW . 

The above algorithm when naively implemented would be prohibitively slow. 
Instead, there have been many improvements to the above algorithm [27], [84] [65], 
and we will describe one in particular that appears in [12]. Suppose we choose a 
row M i at random. Then it is easy to see that the furthest row from M i will be an 
anchor word. 

Similarly, if we have found one anchor word the furthest row from it will be 
another anchor word, and so on. In this way we can greedily find all of the anchor 
rows, and moreover this method only relies on pair-wise distances and projection 
so we can apply dimension reduction before running this greedy algorithm. This 
avoids linear programming altogether in the first step in the above algorithm, and 
the second step can also be implemented quickly because it involves projecting a 
point into an k − 1-dimensional simplex. 

2.4 Topic Models 

Here we will consider a related problem called topic modeling; see [28] for a compre­
hensive introduction. This problem is intimately related to nonnegative matrix fac­
torization, with two crucial differences. Again there is some factorization M = AW 
but now we do not get access to M but rather WM which is a very crude approxi­
mation. Intuitively, each column in M is a document that is itself a distribution on 
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words. But now the words that we observe are samples from this distribution (so 
we do not actually know the columns of M). 

The second difference is that we think of W as stochastically generated. There 
are in fact many popular choices for this distribution: 

(a)	 Pure Documents: Each document is about only one topic, hence each col­
umn of W has exactly one non-zero. 

(b)	 Latent Dirichlet Allocation [30] : The columns of W are generated from 
a Dirichlet distribution. 

(c)	 Correlated Topic Model [29] : Certain pairs of topics are allowed to be 
positively or negatively correlated, and the precise distribution that generates 
the columns of W is log-normal. 

(d)	 Pachinko Allocation Model [89] : This is a multi-level generalization of 
LDA that also allows for certain types of structured correlations. 

WM . 
emphasize the differences, note that even if we knew A we cannot compute W 
There are many more choices. Regardless, our goal is to learn A from To  

exactly. Alternatively, WM and M can be quite different since the former may be 
sparse while the latter is dense. Are there provable algorithms for topic modeling? 

The Gram Matrix 

We will follow an approach of Arora, Ge and Moitra [14]. At first this seems like a 
fundamentally different problem than the ones we have considered because in this 
model we cannot ask for longer documents, we can only ask for more of them. Hence 
we are increasing the number of columns of WM but each column is not that close to 
the corresponding column in M . The basic idea is to work instead with the Gram 
matrix G: 

Definition 2.4.1 Let G denote the word × word matrix whose entry in (a, b) is 
the probability that the first two words in a randomly chosen document are a and b 
respectively. 

Definition 2.4.2 Let R denote the topic × topic matrix whose entry in (i, j) is 
the probability that the first two words (again in a randomly chosen document) are 
generated from the topics i and j respectively. 



� 
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Note that we can approximate G from our samples, however we cannot (di­
rectly) approximate R and it is controlled by the choice of which distribution we 
use to generate the columns of W . More precisely: 

Lemma 2.4.3 G = ARAT 

Proof: Let w1 denote the first word and let t1 denote the topic of w1 (and similarly 
for w2). We can expand P[w1 = a, w2 = b] as: r 

P[w1 = a, w2 = b|t1 = i, t2 = j]P[t1 = i, t2 = j] 
i,j 

and the lemma is now immediate. • 

The key observation is that G has a separable nonnegative matrix factorization 
given by A and RAT since A is separable and the latter matrix is nonnegative. Indeed 
if RAT has full row rank then the algorithm in Theorem 2.3.2 will find the true set 
of anchor words. However since the rows of RAT are no longer normalized to sum to 
one, the above factorization is not necessarily unique. Nevertheless we have made 
some progress, and we can adopt a Bayesian interpretation (see [12]). 

Recovery via Bayes Rule 

In fact, the entries of A are conditional probabilities P(w1|t1) and so we can reason 
about the posterior distribution P(t1|w1). In fact this gives us an alternate charac­
terization of an anchor word: A word is an anchor word if and only if its posterior 
distribution is supported on just one topic. In particular 

1, w is an anchor word for t,
P(t1 = t|w1 = w) = 

0, otherwise, 

Now we can expand: r 
P (w1 = w '|w2 = w) = P(w1 = w '|w2 = w, t2 = t) · P(t2 = t|w2 = w), 

t 

In fact w1 is independent of w2 if we condition on t2 and so: 

P(w1 = w'|w2 = w, t2 = t) = P(word1 = w'|topic2 = t) 
= P(word1 = w'|word2 = anchor(t)), 
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which we can compute from G after having determined the anchor words. Hence: r 
P(w1 = w ' |w2 = w) = P(word1 = w ' |word2 = anchor(t))P(t2 = t|w2 = w) 

t 

which we can think of a linear systems in the variables {P(t2 = t|w2 = w)}. It is 
not hard to see that if R has full rank then it has a unique solution. Finally, we 
compute the probabilities we were originally interested in by Bayes’ rule: 

P(topic t|word w) · P(word w)
P(word w|topic t) = 

P(topic t) 
P(topic t|word w) · P(word w) 

= . 
w' P(topic t|word w ') · P(word w ') 

AWe can now state the algorithm Recover. Let G be the empirical Gram matrix, Awhere Ga,b is the fraction of documents in our sample whose first word is a and 
whose second word is b. 

Suppose each anchor word has probability at least p. Then the main result in 
this subsection is: 

Theorem 2.4.4 [14] For any separable topic model where R is full rank there is Aa polynomial time algorithm to compute A that is ε-close to A and the running 
time and sample complexity (number of documents) is poly(n, 1/p, 1/ε, 1/σmin(R)), 
provided documents have length at least two. 

In the next subsection we describe some experimental results. 

Recover [14], [12] 
Input: term-by-document matrix M ∈ Rn×m 

Output: A, R 

Compute GA, compute P(w1 = w|w2 = w ' ) 
Run Find Anchors 
Solve for P(topic t|word w) and use Bayes’ rule to compute A 
End 

Experiments 

We are faced with a basic scientific question now: Are there really anchor words? 
The following experiment was conducted in [12]: 

∑
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(a) Run MALLET (a popular topic modeling toolkit) on a collection of New York 
Times articles, its output is a topic matrix A. 

(b) Use A to generate data from a topic model, run MALLET on this data. 

The important point is that here the data that we are running on is actually from a 
topic model and we can compare how well one algorithm can recover the true matrix 
compared to how well another algorithm does. Then: 

(c) Run the new algorithm on this data. 

This is a seemingly unfair comparison, since we have restricted ourselves to a 
topic matrix A that MALLET has already found once (so this is our notion of what 
constitutes a realistic topic model). Yet surprisingly the algorithm in the previous 
subsection was able to find the topic matrix A more accurately and orders of mag­
nitude faster! This is an important example where finding conditions under which 
we can give provable algorithms indeed led to much better algorithms in practice. 



Chapter 3 

Tensor Methods 

In this chapter we will study algorithms for tensor decompositions and their appli­
cations to statistical inference. 

3.1 Basics 

Here we will introduce the basics of tensors. A matrix is an order two tensor – it is 
indexed by a pair of numbers. In general a tensor is indexed over k-tuples, and k is 
called the order of a tensor. We can think of a tensor T as a point in Rn1×n2×...×nk . 
We will mostly be interested in order three tensors throughout this chapter. If T is 
an order three tensor of size m × n × p we can regard T as a collection of p matrices 
of size m × n that are stacked on top of each other. 

We can generalize many of the standard definitions from linear algebra to the 
tensor setting, however we caution the reader that while these parameters are easy 
to compute for matrices, most parameters of a tensor are hard to compute (in the 
worst-case). 

Definition 3.1.1 A rank one tensor is a tensor of the form T = u ⊗ v ⊗ w where 
Ti,j,k = uivj wk. And in general the rank of a tensor T is the minimum r such that 
we can write T as the sum of r rank one tensors. 

Question 5 Tensors are computationally more difficult to work with; so why should 
we try to work with them? 

In fact, we will give a motivating example in the next section that illustrates the 
usefulness of tensor methods in statistics and machine learning (and where matrices 
are not sufficient). 

25  
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Case Study: Spearman’s Hypothesis 

Charles Spearman was a famous psychologist who postulated that there are essen­
tially two types of intelligence: mathematical and verbal. In particular, he believed 
that how well a student performs at a variety of tests depends only on their intrinsic 
aptitudes along these two axes. To test his theory, he set up a study where a thou­
sand students each took ten various types of test. He collected these results into a 
matrix M where the entry Mi,j was used to denote how well student i performed on 
test j. Spearman took the best rank two approximation to M . In other words, that 

∈ R1000there exists vectors (not necessarily unit vectors) u1, u2 , v1, v2 ∈ R10, such 
that 

M ≈ u1v	 T + u2v T 
1 2 

This is called factor analysis, and his results somewhat confirmed his hypothesis. 
But there is a fundamental obstacle to this type of approach that is often referred 
to as the “Rotation Problem”. Set U = [u1, u2] and V = [v1, v2] and let O be an 
orthogonal matrix. Then 

UV T = UO OT V T 

is an alternative factorization that approximates M just as well. However the 
columns of UO and the rows of OT V T could be much less interpretable. To summa­
rize, just because there is a good factorization of a given data matrix M does not 
mean that factor analysis will find it. 

Alternatively, suppose we are given a matrix M = r xiy
T .i=1 i 

Question 6 Can we determine {xi}i and {yi}i if we know M? 

Actually, there are only trivial conditions under which we can uniquely determine 
these factors. If r = 1 of if we know for a priori reasons that the vectors {xi}i and 
{yi}i are orthogonal, then we can. But in general we could take the singular value 
decomposition of M = UΣV T and take {σiui}i and {vi}i to be an alternative set 
of factors that explain M (and if {xi}i and {yi}i are not orthogonal, then these are 
clearly two different sets of factors for the same M). 

However if we are given a tensor 
rr 

T = xi ⊗ yi ⊗ wi 
i=1 

then there are general conditions (namely if {xi}i, {yi}i and {wi}i are each linearly 
independent) not only is the true factorization the unique factorization of T with 
rank r but in fact there are simple algorithms to find it! This is precisely the reason 
that tensor methods are ubiquitous in statistics and machine learning: If we are 

∑
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given a tensor whose factors represent the parameters of a statistical model, we can 
find these factors efficiently; yet for matrices the factors are not uniquely determined. 

Complexity of Tensor Problems 

In the previous subsection, we alluded to the fact that tensor methods will offer a 
way around the “Rotation Problem” which is a common obstacle in factor analysis. 
So can we just compute the minimum rank decomposition of a tensor? In fact, not 
only is this problem computationally hard (without further assumptions) but most 
tensor problems are hard [71]! Even worse, many of the standard relations in linear 
algebra do not hold and even the definitions are in some cases not well-defined. 

(a) For	 a matrix A, dim(span({Ai}i)) = dim(span({Aj }j )) (the column rank 
equals the row rank). 

However no such relation holds for tensors. 

(b) For a matrix A, the best rank k approximation to A can be obtained from its 
best rank k + 1 approximation. 

In particular, if we let A(k+1) be the best rank k + 1 approximation to A, then the 
best rank k approximation to A(k+1) is the best rank k approximation to A. But for 
tensors the best rank k and rank k + 1 approximations do not necessarily share any 
common rank one factors. In fact, subtracting the best rank one approximation to 
a tensor T from it can actually increase its rank. 

(c) For a real-valued matrix its rank over R and over C are the same, but this is 
false for tensors. 

There are real-valued tensors whose minimum rank decomposition requires complex 
numbers. 

Perhaps the most worrisome issue is that in some cases the definitions fail too: 

Definition 3.1.2 The border rank of a tensor T is the minimum r such that for 
any ε > 0 there is a rank r tensor that is entry-wise ε close to T . 

We remark that what norm we use in the above definition is not important. In 
fact, for matrices the border rank is equal to the rank. But for tensors these can be 
different. 
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(d) For a tensor, its border rank is not necessarily equal to its rank. 

Consider the following 2 × 2 × 2 tensor T , over R:       
0 1 1 0 

T = , . 
1 0 0 0

We will omit the proof that T has rank 3, but show that T admits an arbitrarily 
close rank 2 approximation. Consider the following matrices             

1 n 1 1 n 0 0 0 
Sn = , n 

1 and Rn = , .1 11 0 0 0 02n n n

1 1 1It is not too hard to see that Sn = n ⊗ ⊗ , and hence is rank 1, and 1/n 1/n 1/n 
Rn is also rank 1. Thus the tensor Sn − Rn is rank 2, but also is an 1/n entry-wise 
approximation of T . 

One last issue is that it is easy to see that a random n × n × n tensor will have 
rank Ω(n2), but it is unknown how to explicitly construct any order three tensor 
whose rank is Ω(n1+ε). And any such construction would give the first super-linear 
circuit lower bounds for any explicit problem [102] which is a long-standing open 
question in circuit complexity. 

Jennrich’s Algorithm 

While we cannot hope for algorithms that find the minimum rank decomposition of 
a tensor in general, in fact there are mild conditions under which we can do it. This 
algorithm has been rediscovered numerous times in a wide range of applications, and 
after an extensive search we discovered that this simple algorithm was first reported 
in a working paper of Harshman [70] where the author credits Dr. Robert Jennrich. 
We will state and prove a version of this result that is more general, following the 
approach of Leurgans, Ross and Abel [87]: 

Theorem 3.1.3 [70], [87] Consider a tensor 

rr 
T = ui ⊗ vi ⊗ wi 

i=1 

where each set of vectors {ui}i and {vi}iare linearly independent, and moreover each 
pair of vectors in {wi}i are linearly independent too. Then the above decomposition 
is unique up to rescaling, and there is an efficient algorithm to find it. 

( ) ( ) ( )
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We will see a wide variety of applications of this basic result (which may ex­
plain why it has been rediscovered so many times) to phylogenetic reconstruction 
[96], topic modeling [8] and community detection [9]. This decomposition also plays 
a crucial role in learning mixtures of spherical Gaussians [75] and independent com­
ponent analysis [36], although we will instead present a local search algorithm for 
the latter problem. 

Tensor Decomposition [70], [87] 
Input: tensor T ∈ Rm×n×p satisfying the conditions in Theorem 3.1.3 
Output: factors {ui}i, {vi}i and {wi}i 

Choose a, b ∈ Sp−1 uniformly at random; set Ta = T (∗, ∗, a) and Tb = T (∗, ∗, b) 

Compute the eigendecomposition of Ta(Tb)+ and Tb(Ta)+ 

Let U and V be the eigenvectors 
Pair up ui and vi iff their eigenvalues are reciprocals 

Solve for wi in T = i
r 
=1 ui ⊗ vi ⊗ wi 

End 

Recall that Ta is just the weighted sum of matrix slices through T , each weighted 
by ai. It is easy to see that: 

r T r TClaim 3.1.4 Ta = wi, a uivi and Tb = wi, b uivii=1 i=1 

Alternatively, let Da = diag({� wi, a �}i) and let Db = diag({� wi, b �}i). Then we can 
write Ta = UDaV T and Tb = UDbV T where the columns of U and V are ui and vi 
respectively. 

Lemma 3.1.5 The eigenvectors of Ta(Tb)+ and Tb(Ta)+ are U and V respectively 
(after rescaling) 

Proof: We can use the above formula for Ta and Tb and compute 

Ta(Tb)
+ = UDaDb 

+U+ 

D+Then almost surely over the choice of a and b we have that the diagonals of Da b 
will be distinct – this is where we use the condition that each pair of vectors in {wi}i 
is linearly independent. 

∑

∑ ∑
〈 〉 〈 〉
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Hence the above formula for Ta(Tb)+ is an eigendecomposition, and moreover 
it is unique because its eigenvalues are distinct. We conclude that the eigenvectors 
of Ta(Tb)+ are indeed the columns of U up to rescaling, and similarly for V . • 

Now to complete the proof of the theorem, notice that ui and vi as eigen­
vectors of Ta(Tb)+ and Tb(Ta)+ respectively, have eigenvalues of (Da)i,i(Db)

−1 andi,i 
)−1 (Again, the diagonals of Da(Db)

+ are distinct almost surely and so 
vi is the only eigenvector that ui could be paired with). Since we only have the 
factors ui × vi up to scaling, we will need to push the rescaling factor in with wi. 
Nevertheless we just need to prove that linear system over the wi’s does not have 
more than one solution (it certainly has one). 

(Db)i,i(Da i,i . 

Definition 3.1.6 The Khatri-Rao product ⊗KR between two matrices U and V 
with the same number of columns is  

U ⊗KR V = ui ⊗ vi 
i 

That is the Khatri-Rao product of U and V of size m × r and n × r is an mn × r 
matrix whose ith column is the tensor product of the ith column of U and the ith 
column of V . The following lemma we leave as an exercise to the reader: 

Lemma 3.1.7 If U and V are size m × r and n × r and have full column rank and 
r ≤ m + n − 1 then U ⊗KR V has full column rank too. 

This immediately implies that the linear system over the wi’s has a unique solution. 
This completes the proof of the theorem. 

Note that if T is size m×n×p then the conditions of the theorem can only hold 
if r ≤ min(m, n). There are extensions of the above algorithm that work for higher 
order tensors even if r is larger than any of the dimensions of its factors [48], [66], 
[26] and there are interesting applications to overcomplete independent component 
analysis [66] and learning mixtures of many Gaussians [26], [11]. 

In the next section, we will show that the above algorithm is stable – in all of 
the applications in learning we will estimate T from our samples and hence we do 
not have T exactly. 

3.2 Perturbation Bounds 

In the last section, we gave an algorithm for tensor decomposition when the fac­
tors are full-rank, and in this setting its decomposition is unique (up to rescaling). 
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However in all of our applications we will not be given T exactly but rather we will 
compute an approximation to it from our samples. Our main goal in this section is 
to show that even in the presence of noise, the algorithm in Theorem 3.1.3 recovers 
factors close to the true factors. In later sections, we will simply assume we are given 
the true tensor T and what we present here is what justifies this simplification. 

This section is somewhat technical, and the reader can feel free to skip it. 

Recall that the main step in Theorem 3.1.3 is to compute an eigendecompo­
sition. Hence our first goal is to establish conditions under which the eigendecom­
position itself is stable. More precisely, let M = UDU−1, where D is a diagonal 
matrix. If we are given W= M + E, when can we recover good estimates to U?M 

Intuitively, if any of the diagonal entries in D are close or if U is ill-conditioned, 
then even a small perturbation E can drastically change the eigendecomposition. We 
will prove that these are the only things that can go wrong. There will be two main 
steps. First we need to prove that WM is diagonalizable, and then we can show that 
the matrix that diagonalizes it must be close to the one that diagonalizes M . 

Condition Number 

Definition 3.2.1 The condition number of a matrix M is defined as 

σmax(M)
κ(M) := ,

σmin(M) 

where σmax(M) and σmin(M) are the maximum and minimum singular values of M , 
respectively. 

Consider the basic problem of solving for x in Mx = b. Suppose that we are 
given M exactly, but we only know an estimate Ab = b + e of b. Here e is an error 
term. By solving the equation Mx = b using Ab instead of b, we obtain an estimate 
xA for x. How close is xA to x? 

We have xA = M−1Ab = x + M−1e = x + M−1(Ab − b). So 

Ix − xAI ≤ 
1 Ib − AbI. 

σmin(M) 

Since Mx = b, we also have IbI ≤ σmax(M)IxI. It follows that 

Ix − xAI σmax(M) Ib − AbI Ib − AbI ≤ = κ(M) . 
IxI σmin(M) IbI IbI 

In other words, the condition number controls the relative error when solving a linear 
system. 
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Gershgorin’s Disk Theorem 

Recall our first intermediate goal is to show that M + E is diagonalizable, and we 
will invoke the following theorem: 

Theorem 3.2.2 The eigenvalues of a matrix M are all contained in the following 
union of disks in the complex plane: 



n
D(Mii, Ri) 

i=1 

where D(a, b) := {x | Ix − aI ≤ b} ⊆ C and Ri = j=i |Mij |.#

Proof: Let (x, λ) be an eigenvector-eigenvalue pair (note that this is valid even 
when M is not diagonalizable). Let i denote the coordinate of x with the maximum 
absolute value. Then Mx = λx gives j Mij xj = λxi. So # Mij xj = λxi −Miixi.j=i 
We conclude:  

|λ − Mii| =

      
      r r xj

Mij ≤ |Mij | = Ri. 
xi

j #=i j≤i 

Thus λ ∈ D(Mii, Ri). • 

Part 1 

Now let us return to the question posed at the beginning of the previous section: is 
M diagonalizable? Consider W

U−1 WMU = D + U−1EU. 

WWM is diagonalizable proceeds as follows: 

Part (a) Since

The proof that 

M and U−1 WMU are similar matrices, they have the same set 
of eigenvalues. 

Part (b) Moreover we can apply Theorem 3.2.2 to U−1MU W = D + U−1EU 
and if U is well-conditioned and E is sufficiently small, the radii will be much 
smaller than the closest pair of diagonal entries in D. Hence we conclude that the 
eigenvalues of U−1 WMU and also those of WM are distinct, and hence the latter can 
be diagonalized. 

Thanks to Santosh Vempala for pointing out an error in the original analysis; 
see also [66] for a more detailed proof along these lines. 

∑
6

∑ ∑
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Part 2 

M U ALet W = ADUA−1 . Now we can turn to our second intermediate goal, namely how 
does this compare to the actual diagonalization M = UDU−1? AMore specifically, if (uAi, λi) and (ui, λi) are corresponding eigenvector-eigenvalue 
pairs for W ui, λAi) to (ui, λi)? Using the argument M and M respectively, how close is (A
in Part 1 we know that λAi ≈ λi for each i. Furthermore, we assume that when 
i = j, the eigenvalues of M have sufficient separation. It remains to check that 
uAi ≈ ui. Let r 

cj uj = uAi. 
j 

Recall that W = M + E. M ,M Left-multiplying both sides of the equation above by W
we get r r 

cj λj uj + EuAi = λAiuAi. =⇒ cj (λj − λAi)uj = −EuAi. 
j j 

Let wj
T be the jth row of U−1 . Left-multiplying both sides of the above equation by 

wj
T , we get 

cj (λj − Aλi) = −wj
T EuAi. 

Recall we have assumed that the eigenvalues of M are separated. Hence if E is 
sufficiently small we have that λj − Aλi is bounded away from zero. Then we can 
bound the cj’s and this implies that uAi and ui are close. 

We can qualitatively restate this as follows: Let δ be the separation be­
tween the closest pair of eigenvalues of M and let κ be the condition number of 
U . Then if IEI ≤ poly(1/n, 1/κ, δ) the norm of the error satisfies IUA − UI ≤ 
poly(1/n, 1/κ, δ, IEI). 

Back to Tensor Decompositions 

We will introduce some notation to explain the application to tensor decompositions. 
Let “→” signify that one matrix converges to another at an inverse polynomial rate 
(as a function of the number of samples). For example, TA → T when TA represents 
the empirical moments of a distribution (with bounded moments) and T represents 
its true moments. Also TAa = TA(∗, ∗, a) → Ta and similarly for b. 

We leave it as an exercise to the reader to check that TAb 
+ → Tb 

+ under natural A TA+ T +conditions. It follows that → Ta b . We have already established that if Ta b 
E → 0, then the eigendecompositions of M and M + E converge. Finally we A Aconclude that the algorithm in Theorem 3.1.3 computes factors U and V which 

6  =
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converge to the true factors U and V at an inverse polynomial rate, and a similar 
proof works for WW and W as well. 

Open Problem: Kruskal rank 

We conclude this section with an open problem. 

Definition 3.2.3 The Kruskal rank of a set of vectors {ui}i is the maximum r such 
that all subset of r vectors are linearly independent. 

We will see later that it is NP -hard to compute the Kruskal rank. Nevertheless, there 
are strong uniqueness theorems for tensor decompositions (based on this parameter) 
for which there is no known algorithmic proof: 

Theorem 3.2.4 (Kruskal) Let T = r
i=1 ui ⊗ vi ⊗ wi and let ku, kv and kw be the 

Kruskal ranks of {ui}i, {vi}i, and {wi}i respectively. If ku + kv + kw ≥ 2r + 2 then 
T has rank r and this decomposition of T is unique up to rescaling. 

Open Question 1 Is there an efficient algorithm for tensor decompositions under 
any natural conditions, for r = (1 + ε)n for any ε > 0? 

For example, it is natural to consider a smoothed analysis model for tensor decompo­
sition [26] where the factors of T are perturbed and hence not adversarially chosen. 
The above uniqueness theorem would apply up to r = 3/2n − O(1) but there are no 
known algorithms for tensor decomposition in this model for r = (1+ t)n (although 
there are much better algorithms for higher-order tensors). 

3.3 Phylogenetic Trees and HMMs 

Here we describe an application of tensor decompositions to phylogenetic recon­
struction and HMMs. 

The Model 

A phylogenetic model has the following components: 

(a) A rooted binary tree with root r, where the leaves do not necessarily have the 
same depth. 

∑
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The biological interpretation is that the leaves represent extant species (ones that 
are still living), and the internal nodes represent speciation events. 

(b) A set Σ of states, for example Σ = {A, C, G, T }. Let k = |Σ|. 

(c) A Markov model on the tree; i.e. a distribution πr on the state of the root and 
a transition P uv matrix for each edge (u, v). 

We can generate a sample from the model as follows: We choose a state for the 
root according to πr and for each node v with parent u we choose the state of v 
according to the distribution defined by the ith row of P uv, where i is the state of 
u. Alternatively, we can think of s(·) : V → Σ as a random function that assigns 
states to vertices where the marginal distribution on s(r) is πr and 

P uv = P(s(v) = j|s(u) = i),ij 

Note that s(v) is independent of s(t) conditioned on s(u) whenever the (unique) 
shortest path from v to t in the tree passes through u. 

Our goal is to learn the above model - both the tree and the transition ma­
trices - from a polynomial number of random samples. We will assume that the 
transition matrices are full rank, in which case it is easy to see that we could root 
the tree arbitrarily. To connect this back with biology, here we are assuming we 
have sequenced each of the extant species and that moreover these sequences have 
already been properly aligned. We think of the ith symbol in each of these sequences 
as being an independent sample from the above model, and we want to reconstruct 
the evolutionary tree that led to the species we have today as well as get some un­
derstanding of how long these evolutionary branches were. We mention as a caveat 
that one of the most interesting and challenging problems in computational biology 
is to perform multiple sequence alignment, and here we have assumed that a fully 
aligned set of sequences is our starting point. Moreover our model for evolution is 
simplistic in that we only only point mutations instead of insertions, deletions and 
cross-over. 

This is really two separate learning goals: Our approach for finding the topol­
ogy will follow the foundational work of Steel [109] and Erdos, Steel, Szekely, and 
Warnow [57]. And from this, we can apply tensor methods to find the transition 
matrices following the approach of Chang [36] and later Mossel and Roch [96]. 

Finding the Topology 

The basic idea here is to define an appropriate distance function [109] on the edges 
of the tree, so that we can approximately compute the distance between leaves from 
our samples and then construct the tree. 



� � 

36 CHAPTER 3. TENSOR METHODS 

Defining a Tree Metric 

Suppose first that, for leaves a and b, we have access to the true values of F ab, where 

F ab 
ij = P(s(a) = i, s(b) = j). 

In [109], Steel defined a distance metric on the tree in a way that allows us to 
compute the distances between leaves a and b, given F ab . In particular, let 

ψab := − ln |det(F ab)|. 

Steel showed that r 
ψab = νuv, 

(u,v)∈pab 

where pab is the unique path in the tree from a to b, and ⎛ ⎞ ⎛ ⎞ 
1 1 

νuv = − ln |det(P uv)| + ln ⎝ πu(i)⎠ − ln ⎝ πv(i)⎠ . 
2 2 

i∈[k] i∈[k] 

He then showed that νuv is always non-negative (which is not obvious), and hence 
ψ is indeed a metric. 

The important point is that we can estimate F ab from our samples, and hence 
we can (approximately) compute ψab on the leaves. 

Reconstructing Quartets 

Here we will use ψ to compute the topology. Fix four leaves a, b, c, and d, and 
there are exactly three possible induced topologies between these leaves, given in 
Figure 3.1. (Here by induced topology, we mean delete edges not on any shortest 
path between any pair of the four leaves, and contract paths to a single edge if possi­
ble). Our goal is to determine which of these induced topologies is the true topology, 
given the pairwise distances. Consider topology (a) on the left of Figure 3.1; in this 
case, we have 

ψ(a, b) + ψ(c, d) < min {ψ(a, c) + ψ(b, c), ψ(a, d) + ψ(b, d)} , 

Thus we can determine which is the true induced topology by computing three 
values ψ(a, b) + ψ(c, d), ψ(a, c) + ψ(b, c), and ψ(a, d) + ψ(b, d). Whichever is the 
smallest determines the induced topology because whichever nodes are paired up 
are the ones with a common parent (again in the induced topology). 
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(a) (b) (c) 

Figure 3.1: Possible quartet topologies 

Indeed from just these quartet tests we can recover the topology of the tree. 
For example, a pair of leaves a, b have the same parent if and only if these nodes 
always have a common parent in the induced topology for each quartet test. Hence 
we can pair up all of the leaves so that they have the same parent, and it is not hard 
to extend this approach to recover the topology of the tree. 

Handling Noise 

Note that we can only approximate F ab from our samples. This translates into a 
good approximation of ψab when a and b are close, but is noisy when a and b are 
far away. The approach in [57] of Erdos, Steel, Szekely, and Warnow is to only use 
quartets where all of the distances are short. 

Finding the Transition Matrices 

Here we will assume that we know the topology of the tree and T abc for all triplets 
a, b, c of leaves, where 

T abc 
ijk = P(s(a) = i, s(b) = j, s(c) = k). 

(which we can approximate from random samples). Then consider the unique node 
that lies on all of the shortest paths among a, b, and c; since we can reroot the tree 
arbitrarily let this node be r. Then r 
T abc = P(s(r) = f)P(s(a) = ·|s(r) = f) ⊗ P(s(b) = ·|s(r) = f) ⊗ P(s(c) = ·|s(r) = f) r 

= P(s(r) = f)P ra ⊗ P rb ⊗ P rc 

where we have used P rx to denote the fth row of the transition matrix P rx . 

`

`

` ` `

`
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We can now apply the algorithm in Section 3.1 to compute a tensor decom­
position of T whose factors are unique up to rescaling. Furthermore the factors are 
probability distributions and hence we can compute their proper normalization. We 
will call this procedure a star test. (Indeed, the algorithm for tensor decompositions 
in Section 3.1 has been re-discovered many times and it is also called Chang’s lemma 
[36]). 

In [96], Mossel and Roch use this approach to find the transition matrices of 
a phylogenetic tree, given the tree topology, as follows. Let us assume that u and 
v are internal nodes and that w is a leaf. Furthermore suppose that v lies on the 
shortest path between u and w. The basic idea is to write 

P uw = P uvP vw 

and if we can find P uw and P vw (using the star tests above) then we can compute 
P uv = P uw(P vw)−1 since we have assumed that the transition matrices are invertible. 

However there are two serious complications: 

(a) As in the case of finding the topology, long paths are very noisy. 

Mossel and Roch showed that one can recover the transition matrices also using 
only queries to short paths. 

(b) We can only recover the tensor decomposition up to relabeling. 

In the above star test, we could apply any permutation to the states of r and permute 
the rows of the transition matrices P ra , P rb and P rc accordingly so that the resulting 
joint distribution on a, b and c is unchanged. 

However the approach of Mossel and Roch is to work instead in the framework 
of PAC learning [114] where the goal is to learn a generative model that produces 
almost the same joint distribution on the leaves. (In particular, if there are multiple 
ways to label the internal nodes to produce the same joint distribution on the leaves, 
we are indifferent to them). 

Remark 3.3.1 HMMs are a special case of phylogenetic trees where the underlying 
topology is a caterpillar. But note that for the above algorithm, we need that the 
transition matrices and the observation matrices are full-rank. 

More precisely, we require that the transition matrices are invertible and that 
the observation matrices whose row space correspond to a hidden node and whose 
column space correspond to the output symbols each have full row rank. 
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Beyond Full Rank? 

The algorithm above assumed that all transition matrices are full rank. In fact if 
we remove this assumption, then it is easy to embed an instance of the noisy parity 
problem [31] which is a classic hard learning problem. Let us first define this problem 
without noise: 

Let S ⊂ [n], and choose Xj ∈ {0, 1}n independently and uniformly at random, 
for j = 1, . . . ,m. Given Xj and bj = χS (Xj ) := i∈S Xj (i) mod 2 for each j, the 
goal is to recover S. 

This is quite easy: Let A be the matrix whose jth row is Xj and let b be a 
column vector whose jth entry is bj . It is straightforward to see that 1S is a solution 
to the linear system Ax = b where 1S is the indicator function for S. Furthermore if 
we choose Ω(n log n) samples then A is w.h.p. full column rank and so this solution 
is unique. We can then find S by solving a linear system over GF (2). 

Yet a slight change in the above problem does not change the sample com­
plexity but makes the problem drastically harder. The noisy parity problem is the 
same as above but for each j we are independently given the value bj = χS (Xj ) with 
probably 2/3 and otherwise bj = 1 − χS (Xj ). The challenge is that we do not know 
which labels have been flipped. 

Claim 3.3.2 There is a brute-force algorithm that solves the noisy parity problem 
using O(n log n) samples 

Proof: For each T , calculate χT (Xj )bj over the samples. Indeed χT (Xj ) and bj are 
correlated if and only if S = T . • 

This algorithm runs in time 2n (roughly). The state-of-the-art due to Blum, 
Kalai, and Wasserman [31] has running time and sample complexity 2n/ log n . It is 
widely believed that there is no polynomial time algorithm for noisy parity even 
given any polynomial number of samples. This is an excellent example of a problem 
whose sample complexity and computational complexity are (conjectured) to be wildly 
different. 

Next we show how to embed samples from a noisy parity problem into an 
HMM, however to do so we will make use of transition matrices that are not full 
rank. Consider an HMM that has n hidden nodes, where the ith hidden node 
encodes is used to represent the ith coordinate of X and the running parity r 

χSi (X) := X(i ' ) mod 2. 
i '≤i,i '∈S 

∑
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Hence each node has four possible states. We can define the following transition 
matrices. Let s(i) = (xi, si) be the state of the ith internal node where si = χSi (X). 

We can define the following transition matrices: 

1 
2 (0, si) 

P i+1,iif i + 1 ∈ S = 1 

⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩  

2 (1, si + 1 mod 2) 
0 otherwise 
1 
2 (0, si) 

P i+1,iif i + 1 ∈/ S = 1 
2 (1, si) .  
0 otherwise  

At each internal node we observe xi and at the last node we also observe χS (X) 
with probability 2/3 and otherwise 1 − χS (X). Each sample from the noisy parity 
problem is a set of observations from this HMM, and if we could learn the transition 
matrices of it we would necessarily learn S and solve the noisy parity problem. 

Note that here the observation matrices are certainly not full rank because 
we only observe two possible emissions even though each internal node has four 
possible states! Hence these problems become much harder when the transition (or 
observation) matrices are not full rank! 

3.4 Community Detection 

Here we give applications of tensor methods to community detection. There are 
many settings in which we would like to discover communities - that is, groups of 
people with strong ties. Here we will focus on graph theoretic approaches, where 
we will think of a community as a set of nodes that are better connected to each 
other than to nodes outside of the set. There are many ways we could formalize this 
notion, each of which would lead to a different optimization problem e.g. sparsest 
cut or k-densest subgaph. 

However each of these optimization problems is NP -hard, and even worse are 
hard to approximate. Instead, we will formulate our problem in an average-case 
model where there is an underlying community structure that is used to generate a 
random graph, and our goal is to recover the true communities from the graph with 
high probability. 
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Block Stochastic Model 

Here we introduce the block stochastic model, which is used to generate a random 
graph on V with |V | = n. Additionally, the model is specified by parameters p and 
q and a partitioning specified by a function π: 

•	 π : V → [k] partitions the vertices V into k disjoint groups (we will relax this 
condition later); 

•	 Each possible edge (u, v) is chosen independently with: 

q π(u) = π(v)
Pr[(u, v) ∈ E] =	 . 

p otherwise 

In our setting we will set q > p, but this model has been studied in cases where 
q < p too. (In particular, when q = 0 we could ask to find a k-coloring of this 
random graph). Regardless, we observe a random graph generated from the above 
model and our goal is to recover the partition described by π. 

When is this information theoretically possible? In fact even for k = 2 where 
π is a bisection, we need  

log n 
q − p > Ω

n 
in order for the true bisection to be the uniquely smallest cut that bisects the 
random graph G with high probability. If q − p is smaller, then it is not even 
information theoretically possible to find π. Indeed, we should also require that 
each part of the partition is large, and for simplicity we will assume that k = O(1) 
and |{u|π(u) = i}| = Ω(n). 

There has been a long line of work on partitioning random graphs in the block 
stochastic model, culminating in the work of McSherry [91]: 

Theorem 3.4.1 [91] There is an efficient algorithm that recovers π (up to relabel­
ing) if  

q − p log n/δ
> c

q qn 

and succeeds with probability at least 1 − δ. 

This algorithm is based on spectral clustering, where we think of the observed adja­
cency matrix as the sum of a rank k matrix which encodes π and an error term. If 
the error is small, then we can recover something close to the true rank k matrix by 

{
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finding the best rank k approximation to the adjacency matrix. For the full details, 
see [91]. 

We will instead follow the approach in Anandkumar et al [9] that makes use 
of tensor decompositions instead. In fact, the algorithm of [9] also works in the 
mixed membership model where we allow each node to be a distribution over [k]. 
Then if πu and πv are the probability distributions for u and v, the probability of 
an edge (u, v) is πuπi

vq + i=j π
uπj

vp. We can interpret this probability as: ui i # i 
and v choose a community according to πu and πv respectively, and if they choose 
the same community there is an edge with probability q and otherwise there is an 
edge with probability p. 

Recall that in order to apply tensor decomposition methods what we really 
need are conditionally independent random variables! In fact we will get such ran­
dom variables based on counting three stars. 

Counting Three Stars 

We will partition V into four sets (arbitrarily) X, A, B, and C. Let Π ∈ {0, 1}V ×k 

represent the (unknown) assignment of vertices to communities, such that each 
row of Π contains exactly one 1. Also let R ∈ Rk×k be the matrix describing the 
probability of each pair of communities having an edge. In particular, 

q i = j
(R)ij = . 

p i = j 

Consider the product ΠR. The ith column of ΠR encodes the probability that 
an edge occurs from a vertex in community i to a given other vertex: 

(ΠR)xi = Pr[(x, a) ∈ E|π(a) = i]. 

We will use (ΠR)Ai to denote the matrix ΠR restricted to the ith column and 
the rows in A, and similarly for B and C. Moreover let pi be the fraction of nodes 
in X that are in community i. Then consider the following tensor r r 

T := piTx = pi(ΠR)
A ⊗ (ΠR)B ⊗ (ΠR)C .i i i 

i i 

The key claim is: 

Claim 3.4.2 Let a ∈ A, b ∈ B and c ∈ C; then Ta,b,c is exactly the probability that 
a random node x ∈ X is connected to a, b and c. 

∑ ∑
6

{
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This is immediate from the definitions above. In particular if we look at whether 
(x, a), (x, b) and (x, c) are edges in G, these are conditionally independent random 
variables. Then we need to prove: 

A(a) If |X| = Ω(|A||B||C|/t2), then we can estimate T accurately 

(b) The factors {(ΠR)A}i, {(ΠR)B }i, and {(ΠR)B}i are linearly independent, and i i i 
hence the tensor decomposition of T is unique by Theorem 3.1.3 

More precisely, we need these factors to be well-conditioned so that we can approx­
imate them from an approximation TA to T . See Section 3.2. 

(c) We can recover π from {(ΠR)A}i up to relabeling. i 

Part (a) Let {Xa,b,c}a,b,c be a partition of X into almost equal sized sets, one for 
each a ∈ A, b ∈ B and c ∈ C. Then 

|{x ∈ Xa,b,c|(x, a), (x, b), (x, c) ∈ E}|ATa,b,c = 
|Xa,b,c| 

will be close to Ta,b,c with high probability. We can then use a union bound. 

Part (b) It is easy to see that R is full rank and moreover if we choose A, B and 
C at random then if each community is large enough, with high probability each 
community will be well-represented in A, B and C and hence the factors {(ΠR)A}i,i 
{(ΠR)B }i, and {(ΠR)B }i will be non-negligibly far from linearly dependent. i i 

Part (c) Note that if we have a good approximation to {(ΠR)A}i then we can i 
partition A into communities. In turn, if A is large enough then we can extend this 
partitioning to the whole graph: We add a node x /∈ A to community i if and only if 
the fraction of nodes a ∈ A with π(a) = i that x is connected to is close to q. With 
high probability, this will recover the true communities. 

However for a full proof of the algorithm see [9]. Anandkumar et al also give an 
algorithm for mixed membership models where each πu is chosen from a Dirichlet. 
We will not cover this latter extension because we will instead explain those types 
of techniques in the setting of topic models next. 

We note that there are powerful extensions to the block-stochastic model that 
are called semi-random models. Roughly, these models allow an “adversary” to add 
edges between nodes in the same cluster and delete edges between clusters after G 
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is generated. If π is the best partitioning of G, then this is only more true after the 
changes. Interestingly, many spectral algorithms breakdown in this more flexible 
model, but there are elegant techniques for recovering π even in this more general 
setting (see [60], [59]). 

3.5 Extensions to Mixed Models 

Here we will extend tensor spectral models to work with (some) mixed models. 

Pure Topic Model 

First we describe an easy application of tensor methods to pure topic models (see 
[10]). Recall that there is an unknown topic matrix A and we obtain samples from 
the following model: 

(a) Choose topic i for document j with probability pi 

(b) Choose Nj words according to the distribution Ai 

If each document has at least three words, we can define the tensor TA where TAa,b,c 
counts the fraction of documents in our sample whose first word, second word and 
third word are a, b and c respectively. Then it is easy to see that if the number of 
documents is large enough then TA converges to: 

rr 
T = piAi ⊗ Ai ⊗ Ai 

i=1 

In order to apply the algorithm in Section 3.1, we just need that A has full column 
rank. In this case the factors in the decomposition are unique up to rescaling, and 
the algorithm will find them. Finally, each column in A is a distribution and so 
we can properly normalize these columns and compute the values pi too. Recall in 
Section 3.2 we analyzed the noise tolerance of our tensor decomposition algorithm. AIt is easy to see that this algorithm recovers a topic matrix A and a distribution 
{pAi}i that is t-close to A and {pi}i respectively with high probability if we are given 
at least poly(n, 1/t, 1/σr) documents of length at least three, where n is the size of 
the vocabulary and σr is the smallest singular value of A. 

We will refer to this as an application of tensor methods to pure models, since 
each document is described by one and only one topic. Similarly, in our applica­
tion to community detection, each node belonged to one and only one community. 
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Finally, in our application to phylogenetic reconstruction, each hidden node was in 
one and only one state. Note however that in the context of topic models, it is much 
more realistic to assume that each document is itself a mixture of topics and we will 
refer to these as mixed models. 

Latent Dirichlet Allocation 

Here we will give a tensor spectral algorithm for learning a very popular mixed 
model, called Latent Dirichlet Allocation [30]. Let Δ := {x ∈ Rr : x ≥ 0, xi = 1}i 
denotes the r-dimensional simplex. Then we obtain samples from the following 
model: 

(a) Choose a mixture over topics wj ∈ Δ for document j according to the Dirichlet 
distribution Dir({αi}i) 

(b) Repeat Nj times: choose a topic i from wj , and choose a word according to 
the distribution Ai. 

The Dirichlet distribution is defined as 

p(x) ∝ xi
αi−1 for x ∈ Δ 

i 

Note that if documents are long (say Nj > n log n) then in a pure topic model, pairs 
of documents often have nearly identical empirical distributions on words. But this 
is no longer the case in mixed models like the one above. 

The basic issue in extending our tensor spectral approach to mixed models is 
that the tensor TA that counts triples of words converges to r 

T = DijkAi ⊗ Aj ⊗ Ak 
ijk 

where Di,j,k is the probability that the first three words in a random document are 
generated from topics i, j and k respectively. In a pure topic model, Di,j,k was 
diagonal but for a mixed model it is not! 

Definition 3.5.1 A Tucker decomposition of T is r 
T = Di,j,kai ⊗ bj ⊗ ck 

i,j,k 

where D is r1 × r2 × r3. We call D the core tensor. 

∑
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This is different than the standard definition for a tensor decomposition where we 
only summed over i = j = k. The good news is that computing a Tucker decom­
position of a tensor is easy. Indeed we can always set r1 equal to the dimension of 
span({Ti,∗,∗}i), and similarly for r2 and r3. However the bad news is that a Tucker 
decomposition is in general not unique, so even if we are given T we cannot nec­
essarily compute the above decomposition whose factors are the topics in the topic 
model. 

How can we extend the tensor spectral approach to work with mixed models? 
The elegant approach of Anandkumar et al [8] is based on the following idea: 

Lemma 3.5.2 r 
T = DijkAi ⊗ Aj ⊗ Ak 

ijk r 
S = DAijkAi ⊗ Aj ⊗ Ak 

ijk r 
=⇒ T − S = (Dijk − DAijk)Ai ⊗ Aj ⊗ Ak 

ijk 

Proof: The proof is a simple exercise in multilinear algebra. • 

Hence if we have access to other tensors S which can be written using the same 
factors {Ai}i in its Tucker decomposition, we can subtract T and S and hope to 
make the core tensor diagonal. We can think of D as being the third order moments 
of a Dirichlet distribution in our setting. What other tensors do we have access to? 

Other Tensors 

We described the tensor T based on the following experiment: Let Ta,b,c be the prob­
ability that the first three words in a random document are a, b and c respectively. 
But we could just as well consider alternative experiments. The three experiments 
we will need in order to given a tensor spectral algorithm for LDA are: 

(a) Choose three documents at random, and look at the first word of each docu­
ment 

(b) Choose two documents at random, and look at the first two words of the first 
document and the first word of the second document 

(c) Choose a document at random, and look at its first three words 
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These experiments result in tensors whose factors are the same, but whose cores 
differ in their natural Tucker decomposition. 

Definition 3.5.3 Let µ, M and D be the first, second and third order moments of 
the Dirichlet distribution. 

More precisely, let µi be the probability that the first word in a random document 
was generated from topic i. Let Mi,j be the probability that the first and second 
words in a random document are generated from topics i and j respectively. And as 
before, let Di,j,k be the probability that the first three words in a random document 
are generated from topics i, j and k respectively. Then letT 1 , T 2 and T 3 be the 
expectation of the first, second and third experiments respectively. 

Lemma 3.5.4 (a) T 1 = [µ ⊗ µ ⊗ µ]i,j,kAi ⊗ Aj ⊗ Aki,j,k

(b) T 2 = [M ⊗ µ]i,j,kAi ⊗ Aj ⊗ Aki,j,k

(c) T 3 = i,j,k Di,j,kAi ⊗ Aj ⊗ Ak 

Proof: Let w1 denote the first word and let t1 denote the topic of w1 (and similarly 
for the other words). We can expand P[w1 = a, w2 = b, w3 = c] as: r 

P[w1 = a, w2 = b, w3 = c|t1 = i, t2 = j, t3 = k]P[t1 = i, t2 = j, t3 = k] 
i,j,k 

and the lemma is now immediate. • 

Note that T 2 = T 2 because two of the words come from the same document. a,b,c a,c,b 
Nevertheless, we can symmetrize T 2 in the natural way: Set Sa,b,c 

2 
a,b,c + T 2= T 2 

b,c,a + 
T 2 Hence S2 = S2 for any permutation π : {a, b, c} → {a, b, c}.c,a,b. a,b,c π(a),π(b),π(c) 

Our main goal is to prove the following identity: 

α2D + 2(α0 + 1)(α0 + 2)µ ⊗3 − α0(α0 + 2)M ⊗ µ(all three ways) = diag({pi}i)0

where α0 = i αi. Hence we have that r 
α0
2T 3 + 2(α0 + 1)(α0 + 2)T 1 − α0(α0 + 2)S2 = piAi ⊗ Ai ⊗ Ai 

i 

The important point is that we can estimate the terms on the left hand side from our 
sample (if we assume we know α0) and we can apply the algorithm from Section 3.1 
to the tensor on the right hand side to recover the topic model, provided that A has 
full column rank. In fact, we can compute α0 from our samples (see [8]) but we will 
focus instead on proving the above identity. 

∑
∑
∑
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Moments of the Dirichlet 

The main identity that we would like to establish is just a statement about the 
moments of a Dirichlet distribution. In fact, we can think about the Dirichlet as 
instead being defined by the following combinatorial process: 

(a) Initially, there are αi balls of each color i 

(b) Repeat C times: choose a ball at random, place it back with one more of its 
own color 

This process gives an alternative characterization of the Dirichlet distribution, from 
which it is straightforward to calculate: 

α2 αr(a) µ = [α1 , , ..., ]
α0 α0 α0 

αi(αi+1) i = j
α0(α0+1)(b) Mi,j = .αiαj otherwise
α0(α0+1) 

(c) Ti,j,k =  

⎧ ⎪⎨ ⎪⎩  

αi(αi+1)(αi+2) i = j = k
α0(α0+1)(α0+2) 

αi(αi+1)αk i = j = k  . 
α0(α0+1)(α0+2) 

αiαj αk i, j, k distinct 
α0(α0+1)(α0+2) 

For example for Ti,i,k this is the probability that the first two balls are color i and 
the third ball is color k. The probably that the first ball is color i is 

α
α

0 
i and since 

we place it back with one more of its own color, the probability that the second ball 
αi+1 αkis color i as well is . And the probability that the third ball is color k is .
α0+1 α0+2 

It is easy to check the above formulas in the other cases too. 

Note that it is much easier to think about only the numerators in the above 
formulas. If we can prove that following relation for just the numerators 

D + 2µ ⊗3 − M ⊗ µ(all three ways) = diag({2αi}i) 

it is easy to check that we would obtain our desired formula by multiplying through 
by α3

0(α0 + 1)(α0 + 2). 

Definition 3.5.5 Let R = num(D) + num(2µ⊗3) − num(M ⊗ µ)(all three ways) 

Then the main lemma is: 

{
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Lemma 3.5.6 R = diag({2αi}i) 

We will establish this by a case analysis: 

Claim 3.5.7 If i, j, k are distinct then Ri,j,k = 0 

This is immediate since the i, j, k numerator of D, µ⊗3 and M ⊗ µ are all αiαj αk. 

Claim 3.5.8 Ri,i,i = 2αi 

This is also immediate since the i, i, i numerator of D is αi(αi + 1)(αi + 2) and 
similarly the numerator of µ⊗3 is αi 

3 . Finally, the i, i, i numerator of M ⊗ µ is 
αi 
2(αi + 1). The case that requires some care is: 

Claim 3.5.9 If i = k, Ri,i,k = 0 

The reason this case is tricky is because the terms M ⊗ µ(all three ways) do not 
all count the same. If we think of µ along the third dimension of the tensor then 
the ith topic occurs twice in the same document, but if instead we think of µ as 
along either the first or second dimension of the tensor, even though the ith topic 
occurs twice it does not occur twice in the same document. Hence the numerator 
of M ⊗ µ(all three ways) is αi(αi + 1)αk + 2αi 

2αk. Also, the numerator of D is 
αi(αi + 1)αk and the numerator of µ⊗3 is again αi 

2αk. 

These three claims together establish the above lemma. Even though the 
tensor T 3 that we could immediately decompose in a pure topic model no longer 
has a diagonal core tensor in a mixed model, at least in the case of LDA we can 
still find a formula (each of whose terms we can estimate from our samples) that 
diagonalizes the core tensor. This yields: 

Theorem 3.5.10 [8] There is a polynomial time algorithm to learn a topic matrix AA that is t close to the true A in a Latent Dirichlet Allocation model, provided we 
are given at least poly(n, 1/t, 1/σr, 1/αmin) documents of length at least thee, where 
n is the size of the vocabulary and σr is the smallest singular value of A and αmin 
is the smallest αi. 

Similarly, there are algorithms for community detection in mixed models too, where 
for each node u we choose a distribution πu over clusters from a Dirichlet distribution 
[9]. However these algorithms seem to be quite dependent on the assumption that 
we use a Dirichlet distribution, and it seems hard to generalize these algorithms to 
any other natural distributions. 

6=
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3.6 Independent Component Analysis 

We can think about the tensor methods we have developed as a way to use higher 
order moments to learn the parameters of a distribution (e.g. for phylogenetic 
trees, HMMs, LDA, community detection) through tensor decomposition. Here we 
will give another style of using the method of moments through an application to 
independent component analysis which was introduced by Comon [42]. 

This problem is simple to define: Suppose we are given samples of the form 

y = Ax + b 

where we know that the variables xi are independent and the linear transformation 
(A, b) is unknown. The goal is to learn A, b efficiently from a polynomial number 
of samples. This problem has a long history, and the typical motivation for it is to 
consider a hypothetical situation called the cocktail party problem 

We have N microphones and N conversations going on in an room. 
Each microphone hears a superposition of the conversations given by the 
corresponding rows of A. If we think of the conversations as independent 
and memoryless, can we disentangle them? 

Such problems are also often referred to as blind source separation. We will follow 
an approach of Frieze, Jerrum and Kannan [62]. 

Step 1 

We can always transform the problem y = Ax + b into y = AAxA+Ab so that E[xAi] = 0 
2and E[xAi ] = 1 for all i by setting Ab = b + A E[x] and AAi = Aistd(xi) where std(xi) is 

the standard deviation of xi. 

Note that the distribution on y has not changed, but we have put (A, x) into a 
canonical form since we anyways cannot distinguish between a pair of linear trans­
formations that have the same canonical form. So without loss of generality we have 
reduced to the problem of learning 

y = Ax + b 

where for all i, E[xi] = 0, E[xi 2] = 1. Also we can set b = 0 since we can easily learn 
b. The crucial assumption that we will make is that A is non-singular. 
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Step 2 

E[yyT ] = E[AxxT AT ] = AAT 

The last equality follows from the condition that E[xi] = 0, E[x2 
i ] = 1 and each xi is 

independent. Hence we have access to M = AAT which we can learn up to arbitrary 
precision by taking sufficiently many random samples. But what does this tell us 
about A? We have encountered this problem before: M does not uniquely define A, 
and our approach was to consider higher order tensors. This time we will proceed 
in a different manner. 

Since M > 0 we can find B such that M = BBT . How are B and A related? 

In fact, we can write 

BBT = AAT ⇒ B−1AAT (B−1)T = I 

and this implies that B−1A is orthogonal since a square matrix times its own trans­
pose is the identity if and only if it is orthogonal. So we have learned A up to an 
unknown rotation. Can we hope to learn the rotation R = B−1A? Hint: what if 
each xi is a standard Gaussian? 

In this case, Rx is also a spherical Gaussian and hence we cannot hope to 
learn R without an additional assumption. In fact, this is the only case that can go 
wrong: Provided the xi’s are not Gaussian, we will be able to learn R and hence A. 
For simplicity let us assume that each xi is ±1 hence E[xi 4] = 1 and yet the fourth 
moment of a Gaussian is three. Note that we can apply B−1 to our samples and 
hence we can imagine that we are getting samples from y = Rx. The key to our 
analysis is the following functional 

F (u) := E[(u T Rx)4] 

As u ranges over the unit sphere, so does vT = uT R and so instead of minimiz­
ing F (u) over unit vectors u we can instead work with the following equivalent 
optimization problem: 

min E[(v T x)4] 
�v�2=1 

What are its local minima? 

  r r 
E (v T x)4 = E (vixi)

4 + 6 (vixi)
2(vj xj )

2 = 
i ij r r r r r 

= v 4 
i E(x 4 

i ) + 6 v 2 
i v 2 

j + 3 v 4 
i − 3 v 4 

i + 3( v 2 
i ) 

i ij i i i 

= 
r 

v 4 
i E

 
x 4 
i

 
− 3 + 3 

i 

( )
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Hence the local minima of F (v) correspond exactly to setting vi = ±1 for some i. 
Recall that vT = uT R and so this characterization implies that the local minima of 
F (u) correspond to setting u to be a column of ±R. 

The algorithm proceeds by using gradient descent (and a lower bound on the 
Hessian) to show that you can find a local optima of F (u) quickly, and we can 
then recurse on the orthogonal complement to the vector we have found to find the 
other columns of R. This idea requires some care to show that the errors do not 
accumulate too badly, see [62], [116], [16]. 

In fact what we just computed are the cumulants that are an alternative basis 
for the moments of a distribution. Often these are much easier to work with since 
they satisfy the appealing property that the cumulants of the sum of independent 
variables Xi and Xj are the themselves the sum of the cumulants of Xi and Xj . 
This is precisely the property we exploited here. 



Chapter 4 

Sparse Recovery 

In this chapter we will study algorithms for sparse recovery: given a matrix A and 
a vector b that is a sparse linear combination of its columns – i.e. Ax = b and x is 
sparse – when can solve for x? 

4.1 Basics 

Throughout this section, we will consider only linear systems Ax = b where A has 
more columns than rows. Hence there is more than one solution for x (if there is 
any solution at all), and we will be interested in finding the solution that has the 
smallest number of non-zeros: 

Definition 4.1.1 Let IxI0 be the number of non-zero entries of x. 

Unfortunately finding the sparsest solution to a system of linear equations in full 
generality is computationally hard, but there will be a number of important examples 
where we can solve for x efficiently. 

Question 7 When can we find for the sparsest solution to Ax = b? 

A trivial observation is that we can recover x when A has full column rank. In 
this case we can set x = A+b, where A+ is the left-pseudo inverse of A. Note that 
this procedure works regardless of whether or not x is sparse. In contrast, when A 
has more columns than rows we will need to take advantage of the sparsity of x. We 
will show that under certain conditions on A, if x is sparse enough then indeed it is 
the uniquely sparsest solution to Ax = b. 
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Our first goal is to prove that finding the sparsest solution to a linear system 
is hard. We will begin with the related problem: 

Problem 1 (P) Find the sparsest non-zero vector x in a given subspace S 

Khachiyan [81] proved that this problem is NP -hard, and this result has many 
interesting applications that we will discuss later. 

Reduction from Subset Sum 

We reduce from the following variant of subset sum: 

Problem 2 (S) Given distinct values α1, . . . , αm ∈ R, does there exist a set I ⊆ [m] 
such that |I| = n and αi = 0?i∈I 

We will embed an instance of this problem into the problem of finding the 
sparsest non-zero vector in a given subspace. We will make use of the following 
mapping which is called the weird moment curve: ⎤ ⎡  

Γw(αi) ⇒ 

⎢⎢⎢⎢⎢⎢⎣  

1 
αi 
α2 
i 

. . . 
αn−2 
i 
αn 
i 

⎥⎥⎥⎥⎥⎥⎦  
∈ Rn 

Note that this differs from the standard moment curve since the weird moment curve 
has αi

n instead of αi
n−1 . 

Claim 4.1.2 A set I with |I| = n has αi = 0 if and only if the set of vectors i∈I 
{Γw(αi)}i∈I is linearly dependent. 

Proof: Consider the determinant of the matrix whose columns are {Γw(αi)}i∈I . 
Then the proof is based on the following observations: 

(a) The determinant is a polynomial in the variables αi with total degree n 
2 + 1, 

which can be seen by writing the determinant in terms of its Laplace expansion 
(see e.g. [74]).   

(b) Moreover the determinant is divisible by i<j αi − αj , since the determinant 
is zero if any αi = αj . 

∑

∑
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Hence we can write the determinant as r 
(αi − αj ) αi 

i<j i∈I 
i,j∈I 

We have assumed that the αi’s are distinct, and consequently the determinant is 
zero if and only if the sum of αi = 0. • 

We can now complete the proof that finding the sparsest non-zero vector in a 
subspace is hard: We can set A to be the n × m matrix whose columns are Γw(αi), 
and let S = ker(A). Then there is a vector x ∈ S with IxI0 = n if and only if there 
is a subset I with |I| = n whose corresponding submatrix is singular. If there is 
no such set I then any x ∈ S has IxI0 > n. Hence if we could find the sparsest 
non-zero vector in S we could solve the above variant of subset sum. 

In fact, this same proof immediately yields an interesting result in computa­
tional geometry (that was “open” several years after Khachiyan’s paper). 

Definition 4.1.3 A set of m vectors in Rn is in general position if every set of at 
most n vectors is linearly independent. 

From the above reduction we get that it is hard to decide whether a set of m 
vectors in Rn is in general position or not (since there is an I with |I| = n whose 
submatrix is singular if and only if the vectors Γw(αi) are not in general position). 

Now we return to our original problem: 

Problem 3 (Q) Find the sparsest solution x to Ax = b 

There is a subtle difference between (P) and (Q) since in (P) we restrict to non-zero 
vectors x but in (Q) there is no such restriction on x. However there is a simple 
many-to-one reduction from (Q) to (P). 

Lemma 4.1.4 Finding the sparsest solution x to Ax = b is NP -hard. 

Proof: Suppose we are given a linear system Ax = 0 and we would like to find the 
sparsest non-zero solution x. Let A−i be equal to the matrix A with he ith column 

−i −ideleted. Then for each i, let x be the sparsest solution to A−ix = Ai. Let i∗ 
be the index where x−i is the sparsest, and suppose Ix−iI0 = k. We can build a 
solution x to Ax = 0 with IxI0 = k + 1 by setting the i∗th coordinate of x to be 
−1. Indeed, it is not hard to see that x is the sparsest solution to Ax = 0. • 

( )( )∏
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4.2 Uniqueness and Uncertainty Principles 

Incoherence 

Here we will define the notion of an incoherent matrix A, and prove that if x is 
sparse enough then it is the uniquely sparsest solution to Ax = b. 

Definition 4.2.1 The columns of A ∈ Rn×m are µ-incoherent if for all i = j: 

|� Ai, Aj �| ≤ µIAiI · IAj I 

While the results we derive here can be extended to general A, we will restrict our 
attention to the case where IAiI = 1, and hence a matrix is µ-incoherent if for all 
i = j, |� Ai, Aj �| ≤ µ. 

In fact, incoherent matrices are quite common. Suppose we choose m unit 
vetors at random in Rn; then it is not hard to show that these vectors will be 

log m 100incoherent with µ = O( 
n ). Hence even if m = n , these vectors will be 

OA(1/ 
√ 
n) incoherent. In fact, there are even better constructions of incoherent 

vectors that remove the logarithmic factors; this is almost optimal since for any 
m > n, any set of m vectors in Rn has incoherence at least √1

n . 

We will return to the following example several times: Consider the matrix 
A = [I,D], where I ∈ Rn×n is the identity matrix and D ∈ Rn×n is the DFT matrix. 

(i−1)(j−1) i 2π 
nIn particular, Dij = w √ 

n where w = e . This is often referred to as the 
spikes-and-sines matrix. It is not hard to see that µ = √1

n here. 

Uncertainty Principles 

The important point is that if A is incoherent, then if x is sparse enough it will be the 
uniquely sparsest solution to Ax = b. These types of results were first established 
by the pioneering work of Donoho and Stark [53], and are based on establishing an 
uncertainty principle. 

Lemma 4.2.2 Suppose we have A = [U, V ], where U and V are orthogonal. If 
b = Uα = V β, then IαI0 + IβI0 ≥ 

µ 
2 . 

The interpretation of this result for the spikes-and-sines matrix is that any signal √ 
must have at least n non-zeros in the standard basis, or in the Fourier basis. 

6=
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Informally, a signal cannot be too localized in both the time and frequency domains 
simultaneously! 

Proof: Since U and V are orthonormal we have that IbI2 = IαI2 = IβI2. We 
can rewrite b as either Uα or V β and hence IbI2 = |βT (V T U)α|. Because A is2 
incoherent, we can conclude that each entry of V T U has absolute value at most 
µ(A) and so |βT (V T U)α| ≤ µ(A)IαI1IβI1. Using Cauchy-Schwarz it follows that 
IαI1 ≤ IαI0IαI2 and thus 

IbI22 ≤ µ(A) IαI0IβI0IαI2IβI2 

Rearranging, we have 
µ(
1 
A) ≤ IαI0IβI0. Finally, applying the AM-GM inequality 

we get 
µ 
2 ≤ IαI0 + IβI0 and this completes the proof. • 

Is this result tight? Indeed, returning to the spikes-and-sines example if choose 
b to be the comb function, where the signal has equally spaced spikes at distance√ √ 
n, then b has n non-zeros in the standard basis. Moreover the comb function √ 

is its own discrete Fourier transform so it also has n non-zeros when represented 
using the Fourier basis. 

Next, we apply the above uncertainty principle to prove a uniqueness result: 

Claim 4.2.3 Suppose A = [U, V ] where U and V are orthonormal and A is µ­
incoherent. If Ax = b and IxI0 < 

µ 
1 , then x is the uniquely sparsest solution. 

Proof: Consider any alternative solution AxA = b. Set y = x − xA in which case y ∈ 
ker(A). Write y as y = [αy, βy]

T and since Ay = 0, we have that Uαy = −V βy. We 
can now apply the uncertainty principle and conclude that IyI0 = IαyI0+IβyI0 ≥ 

µ 
2 . 

It is easy to see that IxAI0 ≥ IyI0 − IxI0 > 
µ 
1 and so xA has strictly more non-zeros 

than x does, and this completes the proof. • 

Indeed, a similar statement is true even if A is an arbitrary incoherent matrix (in­
stead of a union of two orthonormal bases). We will discuss this extension further 
in the next section. 

Kruskal Rank 

We can also work with a more general condition that is more powerful when proving 
uniqueness; however this condition is computationally hard to verify, unlike inco­
herence. 

√
√

√
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Definition 4.2.4 The Kruskal rank of a set of vectors {Ai}i is the maximum r such 
that all subsets of r vectors are linearly independent. 

In fact, we have already proven that it is NP -hard to compute the Kruskal 
rank of a given set of points, since deciding whether or not the Kruskal rank is 
n is precisely the problem of deciding whether the points are in general position. 
Nevertheless, the Kruskal rank of A is the right parameter for analyzing how sparse 
x must be in order for it to be the uniquely sparest solution to Ax = b. Suppose 
the Kruskal rank of A is r. 

Claim 4.2.5 If IxI0 ≤ r/2 then x is the unique sparsest solution to Ax = b. 

Proof: Consider any alternative solution AxA = b. Again, we can write y = x − xA in 
which case y ∈ ker(A). However IyI0 ≥ r + 1 because every set of r columns of A 
is linearly independent, by assumption. Then IxAI0 ≥ IyI0 − IxI0 ≥ r/2 + 1 and so 
xA has strictly more non-zeros than x does, and this completes the proof. • 

In fact, if A is incoherent we can lower bound its Kruskal rank (and so the 
proof in the previous section can be thought of as a special case of the one in this). 

Claim 4.2.6 If A is µ-incoherent then the Kruskal rank of the columns of A is at 
least 1/µ. 

Proof: First we note that if there is a set I of r columns of A that are linearly 
dependent, then the I × I submatrix of AT A must be singular. Hence it suffices to 
prove that every set I of size r, the I × I submatrix of AT A is full rank for r = 1/µ. 

So consider any such a submatrix. The diagonals are one, and the off-diagonals 
have absolute value at most µ by assumption. We can now apply Gershgorin’s disk 
theorem and conclude that the eigenvalues of the submatrix are strictly greater than 
zero provided that r ≤ 1/µ (which implies that the sum of the absolute values of 
the off-diagonals in any row is strictly less than one). This completes the proof. • 

Hence we can extend the uniqueness result in the previous section to arbitrary 
incoherent matrices (instead of just ones that are the union of two orthonormal 
bases). Note that this bound differs from our earlier bound by a factor of two. 

Corollary 4.2.7 Suppose A is µ-incoherent. If Ax = b and IxI0 < 
2
1 
µ , then x is 

the uniquely sparsest solution. 

There are a number of algorithms that recover x up to the uniqueness threshold in 
the above corollary, and we will cover one such algorithm next. 
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4.3 Pursuit Algorithms 

Here we will cover algorithms for solving sparse recovery when A is incoherent. The 
first such algorithm is matching pursuit and was introduced by Mallat and Zhang 
[93]; we will instead analyze orthogonal matching pursuit [99]: 

Orthogonal Matching Pursuit 
Input: matrix A ∈ Rn×m, vector b ∈ Rn, desired number of nonzero entries k ∈ N. 
Output: solution x with at most k nonzero entries. 

Initialize: x0 = 0, r0 = Ax0 − b, S = ∅. 
For f = 1, 2, . . . , k 

|(Aj ,r
�−1)|

Choose column j that maximizes .
Aj	 

2 
2 

Add j to S. 
Set r = projU⊥ (b), where U = span(AS ). 
If r = 0, break. 

End  
Solve for xS : AS xS = b. Set xS̄ = 0.  

Let A be µ-incoherent and suppose that there is a solution x with k < 1/(2µ) 
nonzero entries, and hence x is the uniquely sparsest solution to the linear system. 
Let T = supp(x). We will prove that orthogonal matching pursuit recovers the true 
solution x. Our analysis is based on establishing the following two invariants for our 
algorithm: 

(a) Each index j the algorithm selects is in T . 

(b) Each index j gets chosen at most once. 

These two properties immediately imply that orthogonal matching pursuit 
recovers the true solution x, because the residual error r will be non-zero until S = 
T , and moreover the linear system AT xT = b has a unique solution (since otherwise 
x would not be the uniquely sparsest solution, which contradicts the uniqueness 
property that we proved in the previous section). 

Property (b) is straightforward, because once j ∈ S at every subsequent step 
in the algorithm we will have that r ⊥ U , where U = span(AS ), so r , Aj = 0 if 
j ∈ S. Our main goal is to establish property (a), which we will prove inductively. 
The main lemma is: 

Lemma 4.3.1 If S ⊆ T at the start of a stage, then the algorithm selects j ∈ T .  

‖ ‖

`

`

`

` `〈 〉



�

�
 

� �

�

    
�

� �

    
�

� �

�

    
�

� �

    
�

�

�

�

60 CHAPTER 4. SPARSE RECOVERY 

We will first prove a helper lemma: 

Lemma 4.3.2 If r −1 is supported in T at the start of a stage, then the algorithm 
selects j ∈ T . 

Proof: Let r −1 = i∈T yiAi. Then we can reorder the columns of A so that the 
first k ' columns correspond to the k ' nonzero entries of y, in decreasing order of 
magnitude: 

|y1| ≥ |y2| ≥ · · · ≥ |yk ' | > 0, |yk ' +1| = 0, |yk ' +2| = 0, . . . , |ym| = 0.     
corresponds to first k ' columns of A 

where k ' ≤ k. Hence supp(y) = {1, 2, . . . , k ' } ⊆ T . Then to ensure that we pick 
j ∈ T , a sufficient condition is that 

−1 −1(4.1) |� A1, r �| > |� Ai, r �| for all i ≥ k ' + 1. 

We can lower-bound the left-hand side of (4.1): 

k ' k ' r  r 
|� r −1, A1 �| = y A , A1 ≥ |y1|− |y ||� A , A1 �| ≥ |y1|−|y1|(k ' −1)µ ≥ |y1|(1−k ' µ+µ), 

=1 =2 

which, under the assumption that k ' ≤ k < 1/(2µ), is strictly lower-bounded by 
|y1|(1/2 + µ). 

We can then upper-bound the right-hand side of (4.1): 

k ' k ' r  r 
|� r −1, Ai �| = y A , Ai ≤ |y1| |� A , Ai �| ≤ |y1|k ' µ, 

=1 =1 

which, under the assumption that k ' ≤ k < 1/(2µ), is strictly upper-bounded by 
|y1|/2. Since |y1|(1/2+ µ) > |y1|/2, we conclude that condition (4.1) holds, guaran­
teeing that the algorithm selects j ∈ T and this completes the proof of the lemma. 
• 

Now we can prove the main lemma: 

Proof: Suppose that S ⊆ T at the start of a stage. Then the residual r −1 is 
supported in T because we can write it as r 

r −1 = b − ziAi, where z = arg min Ib − AS zS I2 
i∈S 
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61 4.4. PRONY’S METHOD 

Applying the above lemma, we conclude that the algorithm selects j ∈ T . • 

This establishes property (a) inductively, and completes the proof of correctness 
for orthogonal matching pursuit. Note that this algorithm works up to exactly the 
threshold where we established uniqueness. However in the case where A = [U, V ] 
and U and V are orthogonal, we proved a uniqueness result that is better by a factor 
of two. There is no known algorithm that matches the best known uniqueness bound 
there, although there are better algorithms than the one above (see e.g. [55]). 

Matching Pursuit 

We note that matching pursuit differs from orthogonal matching pursuit in a crucial 
way: In the latter, we recompute the coefficients xi for i ∈ S at the end of each 
stage because we project b perpendicular to U . However we could hope that these 
coefficients do not need to be adjusted much when we add a new index j to S. 
Indeed, matching pursuit does not recompute these coefficients and hence is faster 
in practice, however the analysis is more involved because we need to keep track of 
how the error accumulates. 

4.4 Prony’s Method 

The main result in this section is that any k-sparse signal can be recovered from 
just the first 2k values of its discrete Fourier transform, which has the added benefit 
that we can compute Ax quickly using the FFT. This is algorithm is called Prony’s 
method, and dates back to 1795. This is optimal optimal relationship between the 
number of rows in A and the bound on the sparsity of x; however this method is 
very unstable since it involves inverting a Vandermonde matrix. 

Properties of the DFT 

In Prony’s method, we will make crucial use of some of the properties of the DFT. 
Recall that DFT matrix has entries: 

We can write ω = ei2π/n, and then the first row is √ [1, 1, . . . , 1]; the second row is 

Fa,b = 
1 √ 
n 

exp 
i2π(a − 1)(b − 1) 

n 
1
n 

√1
n [1, ω, ω

2 , . . .], etc. 

We will make use of following basic properties of F : 

( ) ( )
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(a) F is orthonormal: F H F = FF H , where F H is the Hermitian transpose of F 

(b) F diagonalizes the convolution operator 

In particular, we will define the convolution operation through its corresponding 
linear transformation: 

Definition 4.4.1 (Circulant matrix) For a vector c = [c1, c2, . . . , cn], let ⎤⎡ 

M c = 
⎢⎢⎢⎣  

cn cn−1 cn−2 . . . c1 
c1 cn cn−1 . . . c2 
. . . . . . 

cn−1 . . . . . . . . . cn 

⎥⎥⎥⎦  
.  

Then we can define M cx as the result of convolving c and x, denoted by c ∗ x. It is 
easy to check that this coincides with the standard definition of convolution. 

In fact, we can diagonalize M c using F . We will use the following fact, without 
proof: 

Claim 4.4.2 M c = F H diag(Ac)F , where Ac = Fc. 

Hence we can think about convolution as coordinate-wise multiplication in the 
Fourier representation: 

Corollary 4.4.3 Let z = c ∗ x; then zA = Ac 8 xA, where 8 indicates coordinate-wise 
multiplication. 

Proof: We can write z = M cx = F H diag(Ac)Fx = F H diag(Ac)xA = F H (Ac 8 xA), and 
this completes the proof. • 

We introduce the following helper polynomial, in order to describe Prony’s method: 

Definition 4.4.4 (Helper polynomial) 

p(z) = ω−b(ωb − z) 
b∈supp(x) 

= 1 + λ1z + . . . + λkz k . 

Claim 4.4.5 If we know p(z), we can find supp(x). 

∏
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Proof: In fact, an index b is in the support of x if and only if p(ωb) = 0. So we can 
evaluate p at powers of ω, and the exponents where p evaluates to a non-zero are 
exactly the support of x. • 

The basic idea of Prony’s method is to use the first 2k values of the discrete Fourier 
transform to find p, and hence the support of x. We can then solve a linear system 
to actually find the values of x. 

Finding the Helper Polynomial 

Our first goal is to find the Helper polynomial. Let 

v = [1, λ1, λ2, . . . , λk, 0, . . . , 0], and Av = Fv 

It is easy to see that the value of Av at index b + 1 is exactly p(ωb). 

Claim 4.4.6 supp(Av) = supp(x) 

That is, the zeros of vA correspond roots of p, and hence non-zeros of x. Conversely, 
the non-zeros of vA correspond to zeros of x. We conclude that x 8 vA= 0, and so: 

xCorollary 4.4.7 M xv = 0 

Proof: We can apply Claim 4.4.2 to rewrite x 8 vA = 0 as xA ∗ v = A0 = 0, and this 
implies the corollary. • 

Let us write out this linear system explicitly: ⎤ AAAA⎡ 
xn xn−1 xn−k x1. . . . . . ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣  

A
AA

AA
A 

A 

A
x1 xn xn−k+1 x2 
. . . . . . . . . . . . . . . . . . 

xk+1 xk x1 xk+2 

. . . . . . ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦  

xM x =  . . . . . . 
. . . . . . . . . . . . . . . . . . AAAAx2k x2k−1 xk x2k+1 
. . . . . . . . . . . . . . . . . . 

. . . . . . 

Recall, we do not have access to all of the entries of this matrix since we are only  
given the first 2k values of the DFT of x. However consider the k × k + 1 submatrix  
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whose top left value is xAk+1 and whose bottom right value is xAk. This matrix only 
involves the values that we do know! 

Consider 

xk+1 
⎤ A⎡⎤⎡ 

xk−1 x1 
⎤ AA⎡ λ1 xk

. 
A ⎢⎢⎢⎣  

⎥⎥⎥⎦  
= −  

⎢⎢⎢⎣  

⎥⎥⎥⎦  

. . . .  . . 
.  .  

λ2 
.  .  .  

⎢⎣  ⎥⎦ .  .  
.  Ax2k−1 x2k−1 xk 
x2k 

It turns out that this linear system is full rank, so λ is the unique solution to the 
linear system (the proof is left to the reader1). The entries in λ are the coefficients 
of p, so once we have solved for λ we can evaluate the helper polynomial on ωb to 
find the support of x. All that remains is to find the values of x. Indeed, let M be 
the restriction of F to the columns in S and its first 2k rows. M is a Vandermonde 

A

matrix, so again MxS = xA1,2,...2k has a unique solution, and we can solve this linear 
system to find the non-zero values of x. 

A

4.5 Compressed Sensing 

A

Here we will give stable algorithms for recovering a signal that has an almost linear x 
(in the number of rows of the sensing matrix) number of non-zeros. Recall that the 
Kruskal rank of the columns of A is what determines how many non-zeros we can 
allow in x and yet have x be the uniquely sparsest solution to Ax = b. A random 
matrix has large Kruskal rank, and what we will need for compressed sensing is a 
robust analogue of Kruskal rank: 

Definition 4.5.1 A matrix A is RIP with constant δk if for all k-sparse vectors x 
we have: 

(1 − δk)IxI2 ≤ IAxI2 ≤ (1 + δk)IxI2 
2 2 2 

If A is a random m×n matrix where each entry is an independent Gaussian (N(0, 1)) 
then we can choose m ≈ k log n/k and δk = 1/3. Next we formalize the goals of 
sparse recovery: 

Definition 4.5.2 σk(x) = min Ix − wI1w s.t. w 0≤k 

i.e. σk(x) is the f1 sum of all but the k largest entries of x. In particular, if IxI0 ≤ k 
then σk(x) = 0. 

. . . 
λk 

‖ ‖
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Our goal is to find a w where Ix − wI1 ≤ Cσk(x) from a few ( Õ(k)) measure­
ments. Note that we will note require that w is k sparse. However if x is exactly 
k sparse, then any w satisfying the above condition must be exactly equal to x 
and hence this new recovery goal subsumes our exact recovery goals from previous 
lectures (and is indeed much stronger). 

The natural (but intractable) approach is: 

(P 0) min IwI0 s.t. Aw = b 

Since this is computationally hard to solve (for all A) we will work with the f1 
relaxation: 

(P 1) min IwI1 s.t. Aw = b 

and we will prove conditions under which the solution w to this optimization problem 
satisfies w = x (or Ix − wI1 ≤ Cσk(x)). 

Theorem 4.5.3 [35] If δ2k + δ3k < 1 then if IxI0 ≤ k we have w = x. 

Theorem 4.5.4 [34] If δ3k + 3δ4k < 2 then 

C Ix − wI2 ≤ √ σk(x) 
k 

Note that this bounds the f2 norm of the error x − w in terms of the f1 error of the 
best approximation. 

Theorem 4.5.5 [40] If δ2k < 1/3 then 

2 + 2δ2kIx − wI1 ≤ σk(x)
1 − 3δ2k 

We will follow the proof of [80] that greatly stream-lined the types of analysis 
and made the connection between compressed sensing and almost Euclidean subsec­
tions explicit. From this viewpoint it will be much easier to draw an analogy with 
error correcting codes. 

Almost Euclidean Subsections 

Set Γ = ker(A). We will make use of certain geometric properties of Γ (that hold 
almost surely) in order to prove that basis pursuit works: 
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Definition 4.5.6 Γ ⊆ Rn is an almost Euclidean subsection if for all v ∈ Γ, 

1 C √ IvI1 ≤ IvI2 ≤ √ IvI1 
n n 

Note that the inequality √1
n IvI1 ≤ IvI2 holds for all vectors, hence the second 

inequality is the important part. What we are requiring is that the f1 and f2 norms 
are almost equivalent after rescaling. 

Question 8 If a vector v has IvI0 = o(n) then can v be in Γ? 

√ 
No! Any such vector v would have IvI1 = o( n)IvI2 using Cauchy-Schwartz. 

Let us think about these subsections geometrically. Consider the unit ball for 
the f1 norm: 

B1 = {v|IvI1 ≤ 1} 

This is called the cross polytope and is the convex hull of the vectors {±ei}i where 
ei are the standard basis vectors. Then Γ is a subspace which when intersected with 
B1 results in a convex body that is close to the sphere B2 after rescaling. 

In fact it has been known since the work of [63] that choosing Γ uniformly at 
random with dim(Γ) ≥ n − m we can choose C = O( log n/m) almost surely (in 
which case it is the kernel of an m × n matrix A, which will be our sensing matrix). 
In the remainder of the lecture, we will establish various geometric properties of Γ 
that will set the stage for compressed sensing. 

Properties of Γ 

Throughout this section, let S = n/C2 . 

Claim 4.5.7 Let v ∈ Γ, then either v = 0 or |supp(v)| ≥ S. 

Proof: r C IvI1 = 
j∈supp(v) 

|vj | ≤ |supp(v)| · IvI2 ≤ |supp(v)|√ 
n 
IvI1 

where the last inequality uses the property that Γ is almost Euclidean. The last 
inequality implies the claim. • 

√

√ √
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Now we can draw an analogy with error correcting codes. Recall that here we want 
C ⊆ {0, 1}n . And the rate R is R = log |C|/n and the relative distance δ is 

minx=# y∈C dH (x, y)
δ = 

n 

where dH is the Hamming distance. The goal is to find a code where R, δ = Ω(1) 
and that are easy to encode and decode. In the special case of linear codes, e.g. 
C = {y|y = Ax} where A is an n × Rn {0, 1}-valued matrix and x ∈ {0, 1}Rn . Then 

minx#=0∈C IxI0
δ = 

n 

So for error correcting codes we want to find large (linear) dimensional subspaces 
where each vector has a linear number of non-zeros. In compressed sensing we want 
Γ to have this property too, but moreover we want that its f1 norm is also equally 
spread out (e.g. most of the non-zero coordinates are large). 

Definition 4.5.8 For Λ ⊆ [n], let vΛ denote the restriction of v to coordinates in 
¯Λ. Similarly let vΛ denote the restriction of v to Λ. 

Claim 4.5.9 Suppose v ∈ Γ and Λ ⊆ [n] and |Λ| < S/16. Then 

IvI1IvΛI1 < 
4 

Proof: 
C IvΛI1 ≤ |Λ|IvΛI2 ≤ |Λ|√ 
n 
IvI1 

• 

Hence not only do vectors in Γ have a linear number of non-zeros, but in fact their 
f1 norm is spread out. Now we are ready to prove that (P 1) exactly recovers x when 
IxI0 is sufficiently small (but nearly linear). Next lecture we will prove that it is 
also stable (using the properties we have established for Γ above). 

Lemma 4.5.10 Let w = x + v and v ∈ Γ where IxI0 ≤ S/16. Then IwI1 > IxI1. 

Proof: Set Λ = supp(x). 

IwI1 = I(x + v)ΛI1 + I(x + v)ΛI1 = I(x + v)ΛI1 + Iv ΛI1 

6

6

√ √
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Now we can invoke triangle inequality: 

IwI1 ≥ IxΛI1 − IvΛI1 + Iv ΛI1 = IxI1 − IvΛI1 + Iv ΛI1 = xΛI1 − 2IvΛI1 + IvI1 

However IvI1 − 2IvΛI1 ≥ IvI1/2 > 0 using the above claim. This implies the 
lemma. • 

Hence we can use almost Euclidean subsections to get exact sparse recovery up to 

n IxI0 = S/16 = Ω(n/C2) = Ω 
log n/m 

Next we will consider stable recovery. Our main theorem is: 

Theorem 4.5.11 Let Γ = ker(A) be an almost Euclidean subspace with parameter 
C. Let S = 

C
n 
2 . If Ax = Aw = b and IwI1 ≤ IxI1 we have 

Ix − wI1 ≤ 4 σ S (x) . 
16 

Proof: Let Λ ⊆ [n] be the set of S/16 coordinates maximizing IxΛI1. We want 
to upper bound Ix − wI1. By the repeated application of the triangle inequality, 
IwI1 = IwΛI1 + IwΛI1 ≤ IxI1 and the definition of σt(·), it follows that 

Ix − wI1 = I(x − w)ΛI1 + I(x − w)ΛI1 

≤ I(x − w)ΛI1 + Ix ΛI1 + Iw ΛI1 

≤ I(x − w)ΛI1 + Ix ΛI1 + IxI1 − IwΛI1 

≤ 2I(x − w)ΛI1 + 2Ix ΛI1 

≤ 2I(x − w)ΛI1 + 2 σ S (x) . 
16 

Since (x − w) ∈ Γ, we can apply Claim 4.5.9 to conclude that I(x − w)ΛI1 ≤ 
1 
4 Ix − wI1. Hence 

1 Ix − wI1 ≤ Ix − wI1 + 2σ S (x) . 
2 16 

This completes the proof. • 

Notice that in the above argument, it was the geometric properties of Γ which 
played the main role. There are a number of proofs that basis pursuit works, but the 
advantage of the one we presented here is that it clarifies the connection between 
the classical theory of error correction over the finite fields, and the sparse recovery. 
The matrix A here plays the role parity check matrix of error correcting code, and 

( )
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hence its kernel corresponds to the codewords. There is more subtlety in the real 
case though: as opposed to the finite field setting where the Hamming distance is 
essentially the only reasonable way of measuring the magnitude of errors, in the 
real case there is an interplay among many different norms, giving rise to some 
phenomenon not present in the finite field case. 

In fact, one of the central open question of the field is to give a deterministic 
construction of RIP matrices: 

Question 9 (Open) Is there an explicit construction of RIP matrices, or equiva­
lently an almost Euclidean subsection Γ? 

In contrast, there are many explicit constructions of asymptotically good codes. The 
best known deterministic construction is due to Guruswami, Lee and Razborov: 

Theorem 4.5.12 [69] There is a polynomial time deterministic algorithm for con­
structing an almost Euclidean subspace Γ with parameter C ∼ (log n)log log log n 

We note that it is easy to achieve weaker guarantees, such as ∀0 = v ∈ Γ, supp(v) = 
Ω(n), but these do not suffice for compressed sensing since we also require that the 
f1 weight is spread out too. 

6=



Chapter 5 

Dictionary Learning 

In this chapter we will study dictionary learning, where we are given many examples 
b1, b2, ..., bp and we would like to find a dictionary A so that every example can be 
written as a sparse linear combination of the columns in A. 

5.1 Background 

In the previous chapter, we studied algorithms for sparse recovery. However in many 
applications, the dictionary A is unknown and has to be learned from examples. An 
alternative motivation is that often one hand designs families of features to serve as 
an appropriate dictionary, e.g. sinusoids, wavelets, ridgelets, curvelets, etc. [94] and 
each one is useful in different settings: wavelets for impulsive events, ridgelets for 
discontinuities in edges, curvelets for smooth curves, etc. But given a new collection 
of data, can we learn the right families to represent the signal automatically? 

Recall that it is NP -hard to find the sparsest solution to an arbitrary linear 
system. However there are important classes of problems for which the problem 
can be solved efficiently. Similarly, we cannot hope to solve the dictionary learning 
problem for an arbitrary dictionary. We will instead focus on designing algorithms 
for dictionary learning in the settings where we already know that we can solve the 
corresponding sparse recovery problem too. After all, finding a dictionary is only 
useful if you can use it. The three most important cases where we can do sparse 
recovery are: 

(a) A has full column rank 

(b) A is incoherent 
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(c) A is RIP 

We will present an algorithm of Spielman, Wang and Wright [108] that succeeds 
(under reasonable distributional assumptions) if A is full rank, and if each bi is a 
linear combination of at most OA( √ 

n) columns in A. Next, we will give an algorithm 
of Arora, Ge and Moitra [15] for the incoherent and overcomplete case that also √Asucceeds up to O( n) sparsity. We note that Agarwal et al [2], [3] recently and 
independently gave alternative algorithms for dictionary learning that work up to a 
weaker sparsity bound of OA(n1/4). 

History 

The dictionary learning problem was introduced by Olshausen and Field [97], who 
were interested in understanding various properties of the mammalian visual cor­
tex. Neuroscientists often measure the receptive field of neurons – namely, how the 
neurons respond to various types of stimuli. Indeed, their response is well-known 
to be localized, bandpass and oriented and Olshausen and Field observed that if one 
learns a dictionary for a collection of natural images, the elements of the dictionary 
often have many of these same properties. Their work suggested that an important 
step in understanding the visual system could be in identifying the basis it uses to 
represent natural images. 

Dictionary learning, or as it is often called sparse coding, is a basic building 
block of many machine learning systems. This algorithmic primitive arises in appli­
cations ranging from denoising, edge-detection, super-resolution and compression. 
Dictionary learning is also used in the design of some deep learning architectures. 
Popular approaches to solving this problem in practice are variants of the standard 
alternating minimization approach. Suppose the pairs (xi, bi) are collected into the 
columns of matrices X and B respectively. Then our goal is to compute A and X 
from B in such a way that the columns of X are sparse. 

Method of Optimal Directions [56] : Start with an initial guess for A, and 
then alternately update either A or X: 

• Given A, compute a sparse X so that AX ≈ B (using e.g. matching pursuit 
[93] or basis pursuit [39]) 

• Given X, compute the A that minimizes IAX − BIF 

This algorithm converges to a local optimum, because in each step the error IAX − 
Y IF will only decrease. 
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K-SVD [5] Start with an initial guess for A. Then repeat the following procedure: 

•	 Given A, compute a sparse X so that AX ≈ B (again, using a pursuit method) 

•	 Group all data points B(1) where the corresponding X vector has a non-zero 
at index i. Subtract off components in the other directions r 

B(1) − (1)
Aj Xj 

j #=i 

•	 Compute the first singular vector v1 of the residual matrix, and update the 
column Ai to v1 

In practice, these algorithms are highly sensitive to their starting conditions. In 
the next sections, we will present alternative approaches to dictionary learning with 
provable guarantees. Recall that some dictionaries are easy to solve sparse recovery 
problems for, and some are hard. Then an important rationale for preferring prov­
able algorithms here is that if the examples are generated from an easy dictionary, 
our algorithms will really learn an easy dictionary (but for the above heuristics this 
need not be the case). 

5.2 Full Rank Dictionaries 

Here we present a recent algorithm of Spielman, Wang and Wright [108] that works √Awhen A has full column rank and X has O( n) non-zeros, under certain distribu­
tional conditions. First we define the model: 

The Model 

The distributional model in [108] is in fact more general than the one we will work 
with here; we do this merely to simplify the analysis and notation but the proof will 
be nearly identical. Let θ ∈ [ 1 , √ 1 ] be the sparsity parameter. Then the vectors 

n	 n log n 
xi are generated according to the following procedure: 

(a) Each coordinate of xi is chosen (independently) to be nonzero with probability 
θ 

(b) If the	 jth coordinate is non-zero, then its value is sampled (independently) 
from a standard Gaussian N (0, 1). 
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We observe samples bi = Axi. The dictionary A is an unknown invertible n × n 
matrix, and we are asked to recover A exactly from a polynomial number of samples 
of the form bi. 

Theorem 5.2.1 [108] There is a polynomial time algorithm to learn a full-rank 
dictionary A exactly given a polynomial number of samples from the above model. 

Strictly speaking, if the coordinates of xi are perfectly independent then we 
could recover A alternatively using provable algorithms for independent component 
analysis [62], but the dictionary learning algorithms work more generally even when 
the coordinates are not independent. 

Outline 

The basic idea is to consider the row space of B which we will denote by R = {wT B}. 
Note that A−1B = X and hence the rows of X are contained in R. The crucial 
observation is: 

Observation 5.2.2 The rows of X are the sparsest non-zero vectors in R. 

Of course finding the sparsest non-zero vector in a subspace is hard, so we 
will instead consider an f1-relaxation similar to what we did for sparse recovery. 
Consider the following four optimization problems: 

(P 0) min Iw T BI0 s.t. w = 0 

This optimization problem asks for the sparsest (non-zero) vector in R. However it 
is NP -hard. We instead consider: 

(P 1) min Iw T BI1 s.t. r T w = 1 

The constraint rT w fixes a normalization, and we will explain how to choose r 
later. The above optimization problem can be solve efficiently because it is a linear 
program. We would like to show that its optimal solution wT B is a (scaled) row of 
X. In fact we can transform the above linear program into a simpler one that will 
be easier to analyze: 

(Q1) min Iz T XI1 s.t. c T z = 1 

There is a bijection between the solutions of this linear program and those of (P 1) 
given by z = AT w and c = A−1r. Let us set r to be a column of B and hence c is 
the corresponding column of X and is sparse. Now we can explain the intuition: 

6=
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•	 We will prove that the solution to (Q1) is sparse, in particular supp(z) ⊆ 
supp(c). 

•	 And for sparse z we will have that IzT XI1 ≈ IzI1 (after an appropriate 
scaling). Hence we can instead analyze the linear program: 

(Q1 ' )	 Tmin IzI1 s.t. c z = 1 

Note that |supp(z)| = 1 if c has a coordinate that is strictly the largest in 
absolute value. Recall that we chose c to be a column of X, and in our distributional 
model the non zeros in X are Gaussian. Hence almost surely c will have a strictly 
largest coordinate ci in absolute value, and if we solve (P 1) the vector in the objective 
function (namely wT B) will be the ith row of X up to rescaling. 

•	 Lastly we can repeatedly solve (P 1) and find all of the rows of X and after 
correcting their scaling we can solve for A by computing A = BX+ . 

Step 1 

Suppose that z∗ is an optimal solution to (Q1), where c = xi is a column of X. 
Set J = supp(c), we can write z∗ = z0 + z1 where z0 is supported in J and z1 is 
supported in J . Note that cT z0 = cT z∗. We would like to show that z0 is at least as 
good of a solution to (Q1) as z∗ is. In particular we want to prove that 

Iz0 
T XI1 < Iz∗ T XI1 

Definition 5.2.3 If R is a set of rows and C is a set of columns, let XC
R be the 

submatrix of X that is the intersection of those rows and columns. 

Let S be the set of columns of X that have a non-zero entry in J . That is 
S = {j|XJ = 00}. We now compute: j 

T T TIz∗ XI1 = Iz∗ XS I1 + Iz∗ XS I1 
T T T≥ Iz XS I1 − Iz XS I1 + Iz XS I10 1 1 
T T T≥ Iz XI1 − 2Iz XS I1 + Iz XI10 1 1 

It remains to show that 

(5.1)	 Iz1 
T XI1 − 2Iz1 

T XS I1 > 0 

6=
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Let us suppose that z1 is fixed (we can apply a union bound over an ε-net of this 
space to complete the argument). Then S is a random set and we can compute: 

|S|
E[Iz1 

T XSI1] = E[Iz1 
T XI1] 

p 

The expected size of S is p × E[|supp(xi)|] × θ = θ2np = o(p). Together, these imply 
that 

2 E[|S|]T T TE[Iz1 XI1 − 2Iz1 XSI1] = 1 − E[Iz1 XI1] p 

is bounded away from zero, and thus (5.1) holds with high probability for any fixed 
z1. We can take a union bound over an ε-net of all possible z1’s and conclude that 
(5.1) holds for all z1’s. This in turn implies that if z1 is non-zero then Iz0 

T XI1 < 
Iz∗ T XI1 but this is a contradiction since we assumed that z∗ is an optimal solution 
to (Q1). We conclude that z1 is zero and so supp(z∗) ⊆ supp(c), as desired. 

Step 2 

We wish to show that: 
Iz T XI1 ≈ Iz T I1 

up to some scaling factor provided that supp(z) is small enough. Recall from the 
previous step we know that supp(z) ⊆ supp(c) = J and |J | ≤ OA(θn). Note that the 
typical column of XJ has θ|J | = θ2n = o(1) nonzero entries in expectation. That 
means that, with high probability, the vast majority of the columns in XJ have at 
most one non-zero entry. It is easy to see that: 

Claim 5.2.4 If each column of XJ has at most one non-zero entry, then 

E[IzJT XJ I1] = C
p IzJ I1|J | 

where C is the expected absolute value of a non-zero in X. 

So we can establish Step 2 by bounding the contribution of columns of XJ 

with two or more non-zeros. Hence this completes the proof. (The more concise √ √ 
description of this step is that since |J | is n and each column of X has n non-
zeros, the matrix XJ acts like a scaled identity matrix). 

( )
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Step 3 

We can now put everything together. Since c = xi, when we solve (P 1) we will get 
the ith row of X up to scaling. If we solve (P 1) repeatedly, we will find all rows of 
X (and can delete duplicates since now two rows of X will be scaled copies of each 
other). 

Finally we can compute the correct scaling (up to sign) e.g. by using the 
assumption that non-zero entries are distributed as N (0, 1). Hence we can solve for 
X up to flipping the sign of its rows, and if p is large enough (i.e. if we take enough 
samples) then X will have a left pseudo-inverse and we can compute A = BX+ 

which will recover A up to a permutation and flipping the signs of its columns 
(which is the best we could hope for). 

5.3 Overcomplete Dictionaries 

Here we will present a recent algorithm of Arora, Ge and Moitra [15] that works for 
incoherent and overcomplete dictionaries. The crucial idea behind the algorithm is 
a connection to an overlapping clustering problem. We will consider a model that 
is similar to that in [108]. Let k be the sparsity parameter: 

(a) The support of xi is chosen uniformly at random from all size k subsets of [m] 

(b) If the jth coordinate is non-zero, then its value is independently chosen to be 
+1 or −1 (with equal probability) 

The main result in [15] is: 

Theorem 5.3.1 [15] There is a polynomial time algorithm to learn A exactly if A√ 
is µ-incoherent and k ≤ c min( n/µ log n, m1/2−η) if we are given samples from the 
above model. The running time and sample complexity are poly(n, m). 

Recall that methods like K-SVD rely on the intuition that if we have the true 
dictionary A, we can find X and if we have X we can find a good approximation 
to A. However the trouble in analyzing these approaches is that they start from a 
dictionary that is very far from the true one, so how do these algorithms still make 
progress? The basic idea of the algorithm in [15] is to break the cycle by first finding 
the support of X without knowing the dictionary A. 

Our first step is to build a graph which we will call the intersection graph: 
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Definition 5.3.2 Given p samples b1, b2, ..., bp the intersection graph G is a graph 
on V = {b1, b2, ..., bp} where (bi, bj ) is an edge if and only if |� bi, bj �| > τ 

How should we choose τ? We want the following properties to hold. Through­
out this section we will let Si denote the support of xi. 

(a) If (i, j) is an edge then Si ∩ Sj = ∅ 

(b) If Si ∩ Sj = ∅ then the probability that (i, j) is an edge is at least 1
2 

Given some row in X we can think of all of the examples where this row is non-zero 
as belonging to the same community. Then the interpretation of the above graph 
is that if there is an edge between (i, j) we want that i and j necessarily belong to 
the same community. Moreover if (i, j) do indeed belong to the same community, it 
should be reasonably likely that there is also an edge. 

We can directly compute the above graph given our examples and the basic 
idea is that we can hope to learn the support of X by finding the communities. The 
key point is that this departs from standard clustering problems precisely because 
each sample xi has k non-zeros and so each node belongs to polynomially many 
communities so what we are looking for is an overlapping clustering. 

Intersection Graph 

Here we choose how to set τ so that the properties above hold with high probability. 
We can bound 

|� bi, bj − xi, xj �| ≤ |Si||Sj|µ = k2 µ 

and hence if k2µ < 1
2 and we choose τ = 1

2 we certainly satisfy condition (a) above. 
Moreover it is not hard to see that if Si and Sj intersect then the probability that 
xi, xj is non-zero is at least 1 as well and this yields condition (b). However since √ 2 
µ is roughly 1/ n for random dictionaries (ignoring poly-logarithmic factors), we 
would need k < n1/4 which is a much more stringent condition than we would need 
to solve the sparse recovery problem. 

The above analysis is wasteful in that it does not make use of the random 
signs of the non-zeros in X. We will instead appeal to the following concentration 
inequality: 

Lemma 5.3.3 (Hanson-Wright) Let x be a vector whose components are inde­
pendent sub-Gaussian random variables, which satisfy E[Xi] = 0 and V ar[Xi] = 1. 
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Let M be a symmetric n × n matrix. Then, for every t ≥ 0 we have:  

t2 t
P[|x T Mx − trace(M)| > t] ≤ 2 exp −c min ,

IMI2 
F IMI2 

Let Si and Sj be disjoint. Set N = (AT A)SS
i

j 
and 

10 N 
M = 2 ,1 NT 0

2 

and let y be the vector which is the concatenation of xi restricted to Si and xj 
restricted to Sj . Then yT My = bi, bj and we can appeal to the above lemma to 
bound the deviation of bi, bj from its expectation. In particular, trace(M) = 0 and 
IMI2 

F ≤ µ2k2 which implies IMI2 ≤ µk. 

Hence if k ≤ 1 then with high probability we have that |� bi, bj �| ≤ 1 . An 
µ log n 3 

identical argument works when Si and Sj intersect (where instead we zero out the 
entries in N that correspond to the same column in A). So if we make use of the 
randomness in the signs of X the intersection graph (for τ = 

2
1 ) satisfies our desired 

properties provided that k is a log n factor smaller than what we would need to solve 
sparse recovery even if we knew A. 

Community Finding 

Consider the communities Cj = {bi|Si � j}. Then for each pair b1, b2 ∈ Cj there is 
an edge (b1, b2) with probability at least 1

2 , and moreover our intersection graph can 
be covered by m dense communities {Cj }j . We will introduce the basic approach 
through the following thought experiment: 

Suppose we find b1, b2 and b3 that are a triangle in G. We know that 
S1 ∩ S2, S1 ∩ S3 and S2 ∩ S3 are each non-empty but how do we decide 
if S1 ∩ S2 ∩ S3 is non-empty too? 

Alternatively, given three nodes where each pair belong to the same community, 
how do we know whether or not all three belong to one community? The intuition 
is that if b1, b2 and b3 all belong to a common community then it is more likely that 
a random new node b4 is connected to all of them than if they don’t! 

What we need is a lower bound on the probability that b4 connects to each 
of b1, b2 and b3 in the case where S1 ∩ S2 ∩ S3 is non-empty, and we need an upper 
bound when the intersection is empty. It is easy to see that: 

( ( ))
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Claim 5.3.4 If S1 ∩S2 ∩S3 = ∅ then (b4, bi) is an edge for i = 1, 2, 3 with probability 
at least Ω(k/m) 

This claim is true because if i ∈ S1 ∩ S2 ∩ S3, then the probability that S4 
contains i is k/m. Next we prove the upper bound. Let a = |S1 ∩ S2|, b = |S1 ∩ S3|
and c = |S2 ∩ S3|. Then: 

Lemma 5.3.5 If S1 ∩S2 ∩S3 = ∅ the probability that (b4, bi) is an edge for i = 1, 2, 3 
is at most 

k6 k3(a + b + c)
O + 

3 2m m

Proof: We know that if (b4, bi) is an edge for i = 1, 2, 3 then S4 ∩ Si must be 
non-empty for i = 1, 2, 3. We can break up this event into subcases: 

(a) Either S4 intersects S1, S2 and S3 disjointly (i.e. it does not contain any index 
that is in more than one of he other sets) 

(b) Or there is some pair	 i = j ∈ {1, 2, 3} so that Si ∩ Sj intersects S4 and S4 
intersects the remaining set in another index 

The probability of (a) is at most the probability that |S4 ∩ (S1 ∪ S2 ∪ S3)| ≥ 3 which 
is at most (3k)3 k3 

Similarly the probability of (b) for (say) i = 1, j = 2 is at most 3 . m
ak3 

This implies the lemma. •2 . m

We need the lower bound in Claim 5.3.4 to be asymptotically smaller than the 
upper bound in Lemma 5.3.5. It is easy to see that with high probability for any 
i, j, |Si ∩ Sj | = O(1) and hence we want (roughly) 

k k6 k3 
>> + 

3 2m m m

which is true if k < m2/5 . When this holds, for every triple b1, b2, b3 we will be able 
to determine whether or not S1 ∩ S2 ∩ S3 is empty with high probability by counting 
how many other nodes b4 have an edge to all of them. 

Now we are ready to give an algorithm for finding the communities. 

6=

( )

6=



 

 

� �

81 5.3. OVERCOMPLETE DICTIONARIES 

CommunityFinding [15] 
Input: intersection graph G 
Output: communities {Cj } 

For each edge (b1, b2) 
Set C1,2 = {b3|S1 ∩ S2 ∩ S3 = ∅} ∪ {b1, b2}

End 
Remove sets C1,2 that strictly contain another set Ci,j 

Definition 5.3.6 If S1 ∩ S2 = {j} we will call the pair (b1, b2) an identifying pair 
for community j 

It is easy to see that with high probability each community will have an identifying 
pair if the number of samples p is large enough. Then consider 

C1,2 = {b3|S1 ∩ S2 ∩ S3 = ∅} ∪ {b1, b2} 

If (b1, b2) is an identifying pair for community j then the above set C1,2 is exactly Cj 
(and we can compute this set by using the above test for deciding whether or not 
S1 ∩ S2 ∩ S3 is empty). 

Moreover if (b1, b2) is not an identifying pair but rather S1 ∩ S2 has more than 
one element we would have instead C1,2 = ∪j∈S1∩S2 Cj in which case the set C1,2 will 
be deleted in the last step. This algorithm outputs the correct communities with √ 
high probability if k ≤ c min( n/µ log n, m2/5). In [15] the authors give a higher­

1/2−ηorder algorithm for community finding that works when k ≤ m for any η > 0, 
however the running time is a polynomial whose exponent depends on η. 

All that remains to recover the true dictionary is to partition the community 
Cj into those where the jth coordinate is +1 and those where it is −1. In fact if 
S1 ∩ S2 = {j} then the sign of b1, b2 tells us whether or not their jth coordinate 
has the same sign or a different sign. It is not hard to show that there are enough 
such pairs in a typical community that we can successfully partition Cj into two sets 
where all the examples in one have their jth coordinate equal to +1 and all those 
in the other are −1 (of course we do not know which is which). This in turn allows 
us to compute X up to a permutation or flipping the signs of its rows, and again we 
can set A = BX+ and compute the true dictionary exactly. 

6=
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Chapter 6 

Gaussian Mixture Models 

In this chapter we will study Gaussian mixture models and clustering. The basic 
problem is, given random samples from a mixture of k Gaussians, we would like 
to give an efficient algorithm to learn its parameters using few samples. If these 
parameters are accurate, we can then cluster the samples and our error will be 
nearly as accurate as the Bayes optimal classifier. 

6.1 History 

The problem of learning the parameters of a mixture of Gaussians dates back to the 
famous statistician Karl Pearson (1894) who was interested in biology and evolution. 
In fact, there was a particular species of crab called the Naples crab that inhabited 
the region around him. He took thousands of samples from this population and 
measured some physical characteristic of each sample. He plotted the frequency 
of occurrence, but the resulting density function surprised him. He expected that 
it would be Gaussian, but in fact it was not even symmetric around its maximum 
value. See Figure 6.1. He hypothesized that maybe the Naples crab was not one 
species but rather two, and that the density function he observed could be explained 
as a mixture of Gaussians. 

In this remarkable study Pearson introduced the method of moments. His basic 
idea was to compute empirical moments from his samples, and use each of these 
empirical moments to set up a system of polynomial equations on the parameters 
of the mixture. He solved this system by hand! In fact, we will return to his basic 
approach later in this unit. 
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Basics 

Here we formally describe the problem of learning mixtures of Gaussians. Recall 
that for a univariate Gaussian we have that its density function is given by:   

1 −(x − µ)2 
N (µ, σ2) = √ exp

2σ22πσ2 

The density of a multidimensional Gaussian in Rn is given by:   
1 −(x − µ)�Σ−1(x − µ)N (µ, Σ) = exp

(2π)n/2det(Σ)1/2 2

Here Σ is the covariance matrix. If Σ = In and µ = 00 then the distribution is just: 
N (0, 1) ×N (0, 1) × ... ×N (0, 1). 

A mixture of two Gaussians is a distribution whose density function is: 

F (x) = w1F1(x) + (1 − w1)F2(x) 

where F1 and F2 are Gaussians. We can generate a random sample as follows: with 
probability w1 we output a random sample from F1, and otherwise we output a 
random sample from F2. Our basic problem is to learn the parameters that describe 
the mixture given random samples from F . We note that we will measure how good 
an algorithm is by both its sample complexity and its running time. 

Method of Moments 

Pearson used the method of moments to fit a mixture of two Gaussians to his data. 
The moments of a mixture of Gaussians are themselves a polynomial in the unknown 
parameters, which we will denote by Mr. 

E [x r] = Mr(µ, σ2) 
x←F1(x) 

Then we can write 

E [x r] = w1Mr(µ1, σ1
2) + (1 − w1)Mr(µ2, σ2

2) = Pr(w1, µ1, σ1, µ2
2 , σ2

2) 
x←F (x) 

And hence the rth raw moment of a mixture of two Gaussians is itself a degree r +1 
polynomial (Pr) in the unknown parameters. 
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Figure 6.1: A fit of a mixture of two univariate Gaussians to the Pearson’s data on 

W

Naples crabs, created by Peter Macdonald using R 

Pearson’s Sixth Moment Test: We can estimate Ex←F [x
r] from random sam­

ples: Let S be our set of samples. Then we can compute: 

Mr 

Mr 

1 r  
r = x 

|S| 
x∈S 

And given a polynomial number of samples (for any r = O(1)), will be additively  
close to Ex←F (x) [x

r]. Pearson’s approach was: 

•	 Set up a system of polynomial equations  W 
MrPr(w1, µ1, σ1, µ 2

2, σ2
2) = , r = 1, 2, ...5  

W

•	 Solve this system. Each solution is a setting of all five parameters that explains 
the first five empirical moments. 

Pearson solved the above system of polynomial equations by hand, and he 
found a number of candidate solutions. Each solution corresponds to a simultaneous 
setting of the parameters so that the moments of the mixture would match the 
empirical moments. But how can we choose among these candidate solutions? Some 
of the solutions were clearly not right; some had negative values for the variance, 
or a value for the mixing weight not in the range [0, 1]. But even after eliminating 
these solutions, Pearson was still left with more than one candidate. His approach 
was to choose the root whose prediction is closest to the empirical sixth moment 
M6. This is called the sixth moment test.  

Image courtesy of Peter D. M. Macdonald. Used with permission.
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Expectation-Maximization 

Much of modern statistics instead focuses on the maximum likelihood estimator, 
which would choose to set the parameters to as to maximize the probability that 
the mixture would generate the observed samples. Unfortunately, this estimator 
is NP -hard to compute [18]. The popular alternative is known as expectation-
maximization and was introduced in a deeply influential paper of Dempster, Laird, 
Rubin [50]. The basic approach is to repeat the following steps until convergence: 

• For each x ∈ S, calculate the posterior probability: 

w1F1(x) 
w1(x) = 

w1F1(x) + (1 − w1)F2(x) 

• Update the mixing weights: 

w1(x) 
w1 ← x∈S 

|S| 

• Re-estimate the parameters: 

µi ← x∈S wi(x)x 

x∈S wi(x) 
, Σi ← x∈S wi(x)(x − µi)(x − µi) 

x∈S wi(x) 

This approach gets stuck in local optima, and is in general quite sensitive to how it 
is initialized (see e.g. [105]). 

6.2 Clustering-Based Algorithms 

Our basic goal will be to give algorithms that provably compute the true parame­
ters of a mixture of Gaussians, given a polynomial number of random samples. This 
question was introduced in the seminal paper of Dasgupta [45], and the first gener­
ation of algorithms focused on the case where the components of the mixture have 
essentially no “overlap”. The next generation algorithms are based on algebraic 
ideas, and avoid clustering altogether. 

Before we proceed, we will discuss some of the counter-intuitive properties of 
high-dimensional Gaussians. To simplify the discussion, we will focus on spherical 
Gaussians N (µ, σ2I) in Rn . 

Fact 6.2.1 The maximum value of the density function is at x = µ. 

∑

∑∑ ∑ >∑
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Fact 6.2.2 Almost all of the weight of the density function has Ix − µI2 = σ2n ±√ 2 
σ2 n log n 

These facts seem to be inconsistent, but the explanation is that the surface area 
increases faster as the radius R increases than the value of the density function 
decreases, until we reach R2 ≈ σ2n. Hence we should think about a high-dimensional √ 
spherical Gaussian as being a ball of radius σ n with a thin shell. 

√ADasgupta [45] – Ω( n) Separation 

Dasgupta gave the first provable algorithms for learning mixtures of Gaussians, and 
required that Iµi − µj I2 ≥ A √ 

nσmax is the maximum variance of any Ω( ) where σmax 
Gaussian in any direction (e.g. if the components are not spherical). Note that the 
constant in the separation depends on wmin, and we assume we know this parameter 
(or a lower bound on it). 

The basic idea behind the algorithm is to project the mixture onto log k di­
mensions uniformly at random. This projection will preserve distances between each 
pair of centers µi and µj with high probability, but will contract distances between 
samples from the same component and make each component closer to spherical, 
thus making it easier to cluster. We can then cluster all of the samples into which 
component generated them, and then for each cluster we can choose the empirical 
mean and empirical covariance which will with high probability be a good estimate 
of µi and Σi. Additionally we can estimate wi by how large each cluster is. 

Informally, we can think of this separation condition as: if we think of each 
Gaussian as a spherical ball, then if the components are far enough apart then these 
balls will be disjoint. 

Arora and Kannan [18], Dasgupta and Schulman [53] – A 1/4) SeparationΩ(n

√ 
We will describe the approach in [18] in detail. The basic question is, if n separa­
tion is the threshold when we can think of the components as disjoint, then how can 
we learn when the components are much closer? In fact, even if the components are 
only A 1/4) separated then it is still true that every pair of samples from the same Ω(n
component is closer than every pair of samples from different components. How can 
this be? The explanation is that even though the balls representing each component 
are no longer disjoint, we are still very unlikely to sample from their overlap region. 

Consider x, x ' ← F1 and y ← F2. 



 

 

�
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Claim 6.2.3 All of the vectors x − µ1, x ' − µ1, µ1 − µ2, y − µ2 are nearly orthogonal 
(whp) 

This claim is immediate since the vectors x − µ1, x ' − µ1, y − µ2 are uniform from a 
sphere, and µ1 − µ2 is the only fixed vector. In fact, any set of vectors in which all 
but one is uniformly random from a sphere are nearly orthogonal. 

Now we can compute: 
' I2Ix − x ' I2 ≈ Ix − µ1I2 + Iµ1 − x 

≈ 2nσ2 ± 2σ2 n log n 

And similarly: 

Ix − yI2 ≈ Ix − µ1I2 + Iµ1 − µ2I2 + Iµ2 − yI2 

≈ 2nσ2 + Iµ1 − µ2I2 ± 2σ2 n log n AHence if Iµ1 −µ2I = Ω(n1/4, σ) then Iµ1 −µ2I2 is larger than the error term and each 
pair of samples from the same component will be closer than each pair from different 
components. Indeed we can find the right threshold τ and correctly cluster all of 
the samples. Again, we can output the empirical mean, empirical covariance and 
relative size of each cluster and these will be good estimates of the true parameters. 

AVempala and Wang [117] – Ω(k1/4) Separation 

Vempala and Wang [117] removed the dependence on n, and replaced it with a 
separation condition that depends on k – the number of components. The idea is 
that if we could project the mixture into the subspace T spanned by {µ1, . . . , µk}, 
we would preserve the separation between each pair of components but reduce the 
ambient dimension. 

So how can we find T , the subspace spanned by the means? We will restrict 
our discussion to a mixture of spherical Gaussians with a common variance σ2I. Let 
x ∼ F be a random sample from the mixture, then we can write x = c + z where 
z ∼ N(0, σ2In) and c is a random vector that takes the value µi with probability wi 
for each i ∈ [k]. So: 

kr 
E[xx T ] = E[cc T ] + E[zz T ] = wiµiµi + σ2In 

i=1 

Hence the top left singular vectors of E[xxT ] whose singular value is strictly larger 
than σ2 exactly span T . We can then estimate E[xxT ] from sufficiently many random 
samples, compute its singular value decomposition and project the mixture onto T 
and invoke the algorithm of [18]. 

√

√

>
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Brubaker and Vempala [32] – Separating Hyperplane 

What if the largest variance of any component is much larger than the separation 
between the components? Brubaker and Vempala [32] observed that none of the 
existing algorithms succeed for the parallel pancakes example, depicted in Figure ?? 
even though there is a hyperplane that separates the mixture so that almost all 
of one component is on one side, and almost all of the other component is on the 
other side. [32] gave an algorithm that succeeds, provided there is such a separating 
hyperplane, however the conditions are more complex to state for mixtures of more 
than two Gaussians. Note that not all mixtures that we could hope to learn have 
such a separating hyperplane. See e.g. Figure ??. 

6.3 Discussion of Density Estimation 

The algorithms we have discussed so far [45], [53], [18], [117], [1], [32] have focused 
on clustering; can we give efficient learning algorithms even when clustering is im­
possible? Consider a mixture of two Gaussians F = w1F1 + w2F2. The separation 
conditions we have considered so far each imply that dTV (F1, F2) = 1 − o(1). In 
particular, the components have negligible overlap. However if dTV (F1, F2) = 1/2 
we cannot hope to learn which component generated each sample. 

More precisely, the total variation distance between two distributions F and 
G measures how well we can couple them: 

Definition 6.3.1 A coupling between F and G is a distribution on pairs (x, y) so 
that the marginal distribution on x is F and the marginal distribution on y is G. 
The error is the probability that x = y. 

Claim 6.3.2 There is a coupling with error ε between F and G if and only if 
dTV (F, G) ≤ ε. 

Returning to the problem of clustering the samples from a mixture of two Gaussians, 
we have that if dTV (F1, F2) = 1/2 then there is a coupling between F1 and F2 
that agrees with probability 1/2. Hence instead of thinking about sampling from a 
mixture of two Gaussians in the usual way (choose which component, then choose 
a random sample from it) we can alternatively sample as follows: 

(a) Choose (x, y) from the best coupling between F1 and F2 

(b) If x = y, output x 

6=
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(c) Else output x with probability w1, and otherwise output y 

This procedure generates a random sample from F , but for half of the samples we 
did not need to decide which component generated it at all! Hence even if we knew 
the mixture there is no clustering procedure that can correctly classify a polynomial 
number of samples into which component generated them! So in the setting where 
dTV (F1, F2) is not 1 − o(1), the fundamental approach we have discussed so far does 
not work! Nevertheless we will be able to give algorithms to learn the parameters 
of F even when dTV (F1, F2) = o(1) and the components almost entirely overlap. 

Next we will discuss some of the basic types of goals for learning algorithms: 

(a) Improper Density Estimation 

Throughout we will assume that F ∈ C where C is some class of distributions (e.g. 
mixtures of two Gaussians). Our goal in improper density estimation is to find 
any distribution FA so that dTV (F, FA) ≤ ε. This is the weakest goal for a learning 
algorithm. A popular approach (especially in low dimension) is to construct a kernel 
density estimate; suppose we take many samples from F and construct a point-mass 
distribution G that represents our samples. Then we can set FA = G ∗N (0, σ2), and 
if F is smooth enough and we take enough samples, dTV (F, FA) ≤ ε. However FA
works without learning anything about the components of F ; it works just because 
F is smooth. We remark that such an approach fails badly in high dimensions where 
even if F is smooth, we would need to take an exponential number of samples in 
order to guarantee that FA = G ∗ N (0, σ2I) is close to F . 

(b) Proper Density Estimation 

Here, our goal is to find a distribution FA ∈ C where dTV (F, FA) ≤ ε. Note that if 
C is the set of mixtures of two Gaussians, then a kernel density estimate is not a 
valid hypothesis since it will in general be a mixture of many Gaussians (as many 
samples as we take). Proper density estimation is in general much harder to do than 
improper density estimation. In fact, we will focus on an even stronger goal: 

(b) Parameter Learning 

Here we require not only that dTV (F, FA) ≤ ε and that FA ∈ C, but we want FA to be 
a good estimate for F on a component-by-component basis. For example, our goal 
specialized to the case of mixtures of two Gaussians is: 
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Definition 6.3.3 We will say that a mixture F = w1F1 + w2F2 is ε-close (on a 
component-by-component basis) to F if there is a permutation π : {1, 2} → {1, 2} so 
that for all i ∈ {1, 2}: 

A A A A A
  ∣∣∣∣ wi − wAπ(i) 

∣∣∣ ∣  , dTV (Fi, FAπ(i)) ≤ ε 

Note that F and F must necessarily be close as mixtures too: dTV (F, F ) ≤ 4ε. 
However we can have mixtures F and F that are both mixtures of k Gaussians, 
are close as distributions

A
 but are not close on a component-by-component

AA
 basis. It 

is better to learn F on a component-by-component basis than to do only proper 
density estimation, if we can. Note that if FA is ε-close to F , then even when we 
cannot cluster samples we will still be able to approximately compute the posterior 
[79] and this is one of the main advantages of parameter learning over some of the 
weaker learning goals. 

But one should keep in mind that lower bounds for parameter learning do not 
imply lower bounds for proper density estimation. We will give optimal algorithms 
for parameter learning for mixtures of k Gaussians, which run in polynomial time 
for any k = O(1). Moreover there are pairs of mixtures of k Gaussians F and F 
that are   not close on a component-by-component basis, but have dTV (F, F ) ≤ 2−k
[95]. Hence there is no algorithm for parameter learning that takes poly(

A
n, k, 1/ε

A
) 

samples – because we need to take at least 2k samples to distinguish F and F . But 
in the context of proper density estimation, we do not need to distinguish these two 
mixtures. 

A

Open Question 2 Is there a poly(n, k, 1/ε) time algorithm for proper density es­
timation for mixtures of k Gaussians in n dimensions? 

6.4 Clustering-Free Algorithms 

Recall, our goal is to learn FA that is ε-close to F . In fact, the same definition can 
be generalized to mixtures of k Gaussians: 

6.4.1  Definition We will say that a mixture F = k
i=1 wiFi is ε-close (on a 

component-by-component basis) to F if there is 
{1, 2, ..., k} so that for all i ∈ {1, 2, ..., k}: 

A
a permutation

∑ A A
 π : {1, 2, ..., k} → 

∣∣ ∣   ∣∣∣ wi − wAπ(i) 
∣∣∣∣  , dTV (Fi, FAπ(i)) ≤ ε 
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When can we hope to learn an ε close estimate in poly(n, 1/ε) samples? In 
fact, there are two trivial cases where we cannot do this, but these will be the only 
things that go wrong: 

(a) If wi = 0, we can never learn FAi that is close to Fi because we never get any 
samples from Fi. 

In fact, we need a quantitative lower bound on each wi, say wi ≥ ε so that if we 
take a reasonable number of samples we will get at least one sample from each 
component. 

(b) If	 dTV (Fi, Fj ) = 0 we can never learn wi or wj because Fi and Fj entirely 
overlap. 

Again, we need a quantitive lower bound on dTV (Fi, Fj ), say dTV (Fi, Fj ) ≥ ε for 
each i = j so that if we take a reasonable number of samples we will get at least 
one sample from the non-overlap region between various pairs of components. 

Theorem 6.4.2 [79], [95] If wi ≥ ε for each i and dTV (Fi, Fj ) ≥ ε for each i = j, Athen there is an efficient algorithm that learns an ε-close estimate F to F whose 
running time and sample complexity are poly(n, 1/ε, log 1/δ) and succeeds with prob­
ability 1 − δ. 

Note that the degree of the polynomial depends polynomially on k. Kalai, Moitra 
and Valiant [79] gave the first algorithm for learning mixtures of two Gaussians with 
no separation conditions. Subsequently Moitra and Valiant [95] gave an algorithm 
for mixtures of k Gaussians, again with no separation conditions. 

In independent and concurrent work, Belkin and Sinha [23] gave a polynomial 
time algorithm for mixtures of k Gaussians too, however there is no explicit bound 
given on the running time as a function of k (since their work depends on the basis 
theorem, which is provably ineffective). Also, the goal in [79] and [95] is to learn AF so that its components are close in total variation distance to those of F , which 
is in general a stronger goal than requiring that the parameters be additively close 
which is the goal in [23]. The benefit is that the algorithm in [23] works for more 
general learning problems in the one-dimensional setting, and we will describe this 
algorithm in detail at the end of this chapter. 

Throughout this section, we will focus on the k = 2 case since this algorithm 
is conceptually much simpler. In fact, we will focus on a weaker learning goal: We 
will say that FA is additively ε-close to F if |wi − wAπ(i)|, Iµi − µAπ(i)I, IΣi − ΣAπ(i)IF ≤ ε 
for all i. We will further assume that F is normalized appropriately: 

6=

6=



93 6.4. CLUSTERING-FREE ALGORITHMS 

Definition 6.4.3 A distribution F is in isotropic position if 

(a) Ex←F [x] = 0 

(b) Ex←F [xx
T ] = I 

Alternatively, we require that the mean of the distribution is zero and that its 
variance in every direction is one. In fact this condition is not quite so strong as it 
sounds: 

Claim 6.4.4 If Ex←F [xx
T ] is full-rank, then there is an affine transformation that 

places F in isotropic position 

Proof: Let µ = Ex←F [x] and let Ex←F [(x − µ)(x − µ)T ] = M . It is easy to see 
that M is positive semi-definite, and in fact is full rank by assumption. Hence we 
can write M = BBT where B is invertible (this is often referred to as the Cholesky 
decomposition [74]). Then set y = B−1(x − µ), and it is easy to see that E[y] = 0 
and E[yyT ] = B−1M(B−1)T = I. • 

Our goal is to learn an additive ε approximation to F , and we will assume that F 
has been pre-processed so that it is in isotropic position. 

Outline 

We can now describe the basic outline of the algorithm, although there will be many 
details to fill: 

(a) Consider a series of projections down to one dimension 

(b) Run a univariate learning algorithm 

(c) Set up a system of linear equations on the high-dimensional parameters, and 
back solve 

Isotropic Projection Lemma 

We will need to overcome a number of obstacles to realize this plan, but let us work 
through the details of this outline: 

Claim 6.4.5 projr[N (µ, Σ)] = N (rT µ, rT Σr) 
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Alternatively, the projection of a high-dimensional Gaussian is a one-dimensional 
Gaussian, and its mean and variance are rT µ and rT Σr respectively. This implies 
that if we knew the parameters of the projection of a single Gaussian component 
onto a (known) direction r, then we could use these parameters to set up a linear 
constraint for µ and Σ. If we follow this plan, we would need to consider about n2 

projections to get enough linear constraints, since there are Θ(n2) variances in Σ 
that we need to solve for. Now we will encounter the first problem in the outline. 
Let us define some notation: 

Definition 6.4.6 dp(N (µ1, σ
2), N (µ2, σ

2)) = |µ1 − µ2| + |σ2 − σ22|1 2 1 

We will refer to this as the parameter distance. Ultimately, we will give a univariate 
algorithm for learning mixtures of Gaussians and we would like to run it on projr[F ]. 

Problem 4 But what if dp(projr[F1], projr[F2]) is exponentially small? 

This would be a problem since we would need to run our univariate algorithm with 
exponentially fine precision just to see that there are two components and not one! 
How can we get around this issue? In fact, this almost surely never happens provided 
that F is in isotropic position. For intuition, consider two cases: 

(a) Suppose Iµ1 − µ2I ≥ poly(1/n, ε). 

If the difference between the means of F1 and F2 is at least any fixed inverse poly­
nomial, then with high probability IrT µ1 − rT µ2I is at least poly(1/n, ε) too. Hence 
projr[F1] and projr[F2] will have different parameters due to a difference in their 
means. 

(b) Suppose Iµ1 − µ2I ≤ poly(1/n, ε). 

The key observation is that if dTV (F1, F2) ≥ ε and their means are almost identical, 
then their covariances Σ1 and Σ2 must be noticeably different when projected on a 
random direction r. In this case, projr[F1] and projr[F2] will have different parame­
ters due to a difference in their variances. This is the intuition behind the following 
lemma: 

Lemma 6.4.7 If F is in isotropic position and wi ≥ ε and dTV (F1, F2) ≥ ε, then 
with high probability for a random r 

dp(proj [F1], proj [F2]) ≥ 2ε3 = poly(1/n, ε)r r
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Note that this lemma is note true when F is not in isotropic position (e.g. consider 
the parallel pancakes example), and moreover when generalizing to mixtures of k > 2 
Gaussians this is the key step that fails since even if F is in isotropic position, it 
could be that for almost all choices of r the projection onto r results in a mixtures 
that is exponentially closet to a mixture of < k Gaussians! (The approach in [95] 
is to learn a mixture of < k Gaussians as a proxy for the true mixture, and later 
on find a direction that can be used to cluster the mixture into sub mixtures and 
recurse). 

Pairing Lemma 

Next we will encounter the second problem: Suppose we project onto direction r 
F r 1 FAr 1 FAr F s 1 FAs 1 FAsand s and learn A = 1 + 2 and A = 1 + 2 respectively. Then the mean 

2 2 2 2 Aand variance of F1 
r yield a linear constraint on one of the two high-dimensional 

Gaussians, and similarly for FA1 
s . 

Problem 5 How do we know that they yield constraints on the same high-dimensional 
component? 

Ultimately we want to set up a system of linear constraints to solve for the 
parameters of F1, but when we project F onto different directions (say, r and s) 
we need to pair up the components from these two directions. The key observation 
is that as we vary r to s the parameters of the mixture vary continuously. See 
Figure ??. Hence when we project onto r, we know from the isotropic projection 
lemma that the two components will either have noticeably different means or vari­
ances. Suppose their means are different by ε3; then if r and s are close (compared 
to ε1) the parameters of each component in the mixture do not change much and 
the component in projr[F ] with larger mean will correspond to the same component 
as the one in projs[F ] with larger mean. A similar statement applies when it is the 
variances that are at least ε3 apart. 

Lemma 6.4.8 If Ir − sI ≤ ε2 = poly(1/n, ε3) then 

(a) If |rT µ1 − rT µ2| ≥ ε3 then the components in projr[F ] and projs[F ] with the 
larger mean correspond to the same high-dimensional component 

(b) Else if |rT Σ1r −rT Σ2r| ≥ ε3 then the components in proj [F ] and proj [F ] withr s

the larger variance correspond to the same high-dimensional component 

Hence if we choose r randomly and only search over directions s with Ir − sI ≤ ε2, 
we will be able to pair up the components correctly in the different one-dimensional 
mixtures. 



96 CHAPTER 6. GAUSSIAN MIXTURE MODELS 

Condition Number Lemma 

Now we encounter the final problem in the high-dimensional case: Suppose we choose 
r randomly and for s1, s2, ...., sp we learn the parameters of the projection of F onto 
these directions and pair up the components correctly. We can only hope to learn the 
parameters on these projection up to some additive accuracy ε1 (and our univariate 
learning algorithm will have running time and sample complexity poly(1/ε1)). 

Problem 6 How do these errors in our univariate estimates translate to errors in 
our high dimensional estimates for µ1, Σ1, µ2, Σ2? 

Recall that the condition number controls this. The final lemma we need in the 
high-dimensional case is: 

Lemma 6.4.9 The condition number of the linear system to solve for µ1, Σ1 is 
poly(1/ε2, n) where all pairs of directions are ε2 apart. 

Intuitively, as r and s1, s2, ...., sp are closer together then the condition number of 
the system will be worse (because the linear constraints are closer to redundant), 
but the key fact is that the condition number is bounded by a fixed polynomial 
in 1/ε2 and n, and hence if we choose ε1 = poly(ε2, n)ε then our estimates to the 
high-dimensional parameters will be within an additive ε. Note that each parameter 
ε, ε3, ε2, ε1 is a fixed polynomial in the earlier parameters (and 1/n) and hence we 
need only run our univariate learning algorithm with inverse polynomial precision 
on a polynomial number of mixtures to learn an ε-close estimate FA! 

But we still need to design a univariate algorithm, and next we return to 
Pearson’s original problem! 

6.5 A Univariate Algorithm 

Here we will give a univariate algorithm to learning the parameters of a mixture of 
two Gaussians up to additive accuracy ε whose running time and sample complexity 
is poly(1/ε). Note that the mixture F = w1F1 + w2F2 is in isotropic position (since 
the projection of a distribution in isotropic position is itself in isotropic position), 
and as before we assume w1, w2 ≥ ε and dTV (F1, F2) ≥ ε. Our first observation is 
that all of the parameters are bounded: 

√ √ 
Claim 6.5.1 (a) µ1, µ2 ∈ [−1/ ε, 1/ ε] 
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(b) σ12, σ22 ∈ [0, 1/ε] 

This claim is immediate, since if any of the above conditions are violated it would 
imply that the mixture has variance strictly larger than one (because w1, w2 ≥ ε 
and the mean of the mixture is zero). 

Hence we could try to learn the parameters using a grid search: 

Grid Search 
Input: samples from F (Θ)  
Output: parameters Θ = ( A wA1, µA1, σA1

2 , µA2, σA2
2)  

For all valid AΘ where the parameters are multiples of εC 

Test A ΘΘ using the samples, if it passes output A
End 

For example, we could test out AΘ by computing the first six moments of F (Θ) from 
enough random examples, and output AΘ if its first six moments are each within an 
additive τ of the observed moments. (This is a slight variant on Pearson’s sixth 
moment test). 

It is easy to see that if we take enough samples and set τ appropriately, then 
if we round the true parameters Θ to any valid grid point whose parameters are 
multiples of εC , then the resulting AΘ will with high probability pass our test. This 
is called the completeness. The much more challenging part is establishing the 
soundness; after all why is there no other set of parameters AΘ except for ones close 
to Θ that pass our test? 

Alternatively, we want to prove that any two mixtures F and FA whose param­
eters do not match within an additive ε must have one of their first six moments 
noticeably different. The main lemma is: 

(AMr(Θ) − Mr Θ) 

Lemma 6.5.2 For any F and AF that are not ε-close in parameters, there is an 
r ∈ {1, 2, ..., 6} where 

≥ εO(1) 

where Θ and ΘA are the parameters of F and FA respectively, and Mr is the rth raw 
moment. 

Let W be the empirical moments. Then Mr 

Mr(A Mr(A Mr MrΘ) − Mr(Θ) ≤ W Θ) − W + W − Mr(Θ) ≤ 2τ 

≤τ ≤τ 

∣∣∣ ∣∣∣

∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣︸ ︷︷ ︸
∣∣∣ ∣∣∣︸ ︷︷ ︸
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1

p(x)

f(x) = F(x) − F(x)^

F (x)

F (x)

F (x)

F (x)

^
^

2

1

2

Figure 6.2: If f(x) has at most six zero crossings, we can find at most degree six 
polynomial that agrees with its sign 

where the first term is at most τ because the test passes and the second term is 
small because we can take enough samples (but still poly(1/τ)) so that the empirical 
moments and the true moments are close. Hence we can apply the above lemma in 
the contrapositive, and conclude that if the grid search outputs A ΘΘ then Θ and A
must be ε-close in parameters, which gives us an efficient univariate algorithm! ASo our main goal is to prove that if F and F that are not ε-close, then one 
of their first six moments is noticeably different. In fact, even the case of ε = 0 is 
challenging: If F and FA are different mixtures of two Gaussians, why is one of their 
first six moments necessarily different? Our main goal is to prove this statement, 
using the heat equation. 

In fact, let us consider the following thought experiment. Let f(x) = F (x) − A AF (x) be the point-wise difference between the density functions F and F . Then, 
the heart of the problem is: Can we prove that f(x) crosses the x-axis at most six 
times? See Figure 6.2. 

Lemma 6.5.3 If f(x) crosses the x-axis at most six times, then one of the first six 
moments of F and FA are different 
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Proof: In fact, we can construct a (non-zero) degree at most six polynomial p(x) 
that agrees with the sign of f(x) – i.e. p(x)f(x) ≥ 0 for all x. Then   6r 

0 < p(x)f(x)dx = prx rf(x)dx 
x x r=1 

6r 
≤ 

r=1 

|pr| Mr(Θ) − Mr(AΘ) 

And if the first six moments of F and FA match exactly, the right hand side is zero 
which is a contradiction. • 

So all we need to prove is that F (x) − FA(x) has at most six zero crossings. Let 
us prove a stronger lemma by induction: 

Lemma 6.5.4 Let f(x) = i
k 
=1 αiN (µi, σi 

2, x) be a linear combination of k Gaus­
sians (αi can be negative). Then if f(x) is not identically zero, f(x) has at most 
2k − 2 zero crossings. 

We will rely on the following tools: 

Theorem 6.5.5 Given f(x) : R → R, that is analytic and has n zero crossings, then 
for any σ2 > 0, the function g(x) = f(x) ∗ N (0, σ2) has at most n zero crossings. 

This theorem has a physical interpretation. If we think of f(x) as the heat profile 
of an infinite one-dimensional rod, then what does the heat profile look like at some 
later time? In fact it is precisely g(x) = f(x) ∗N (0, σ2) for an appropriately chosen 
σ2 . Alternatively, the Gaussian is the Green’s function of the heat equation. And 
hence many of our physical intuitions for diffusion have consequences for convolution 
– convolving a function by a Gaussian has the effect of smoothing it, and it cannot 
create a new local maxima (and relatedly it cannot create new zero crossings). 

Finally we recall the elementary fact: 

Fact 6.5.6 N (0, σ12) ∗ N (0, σ22) = N (0, σ12 + σ22) 

Now we are ready to prove the above lemma and conclude that if we knew the 
first six moments of a mixture of two Gaussians exactly, then we would know its 
parameters exactly too. Let us prove the above lemma by induction, and assume 
that for any linear combination of k = 3 Gaussians, the number of zero crossings is 

∣∣ ∣∣∣ ∣∣∣ ∣
∣∣ ∣

∑

∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣
| |
∣∣∣ ∣∣∣
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(a)	
   (b)	
  

(d)	
   (c)	
  

Figure 6.3: (a) linear combination of four Gaussians (b) subtracting σ2 from each 
variance (c) adding back in the delta function (d) convolving by N (0, σ2) to recover 
the original linear combination 



  

101 6.6. A VIEW FROM ALGEBRAIC GEOMETRY 

at most four. Now consider an arbitrary linear combination of four Gaussians, and 
let σ2 be the smallest variance of any component. See Figure 6.3(a). We can consider 
a related mixture where we subtract σ2 from the variance of each component. See 
Figure 6.3(b). 

Now if we ignore the delta function, we have a linear combination of three 
Gaussians and by induction we know that it has at most four zero crossings. But 
how many zero crossings can we add when we add back in the delta function? We 
can add at most two, one on the way up and one on the way down (here we are 
ignoring some real analysis complications of working with delta functions for ease of 
presentation). See Figure 6.3(c). And now we can convolve the function by N (0, σ2) 
to recover the original linear combination of four Gaussians, but this last step does 
not increase the number of zero crossings! See Figure 6.3(d). 

This proves that 

Mr(A (Θ) r = 1, 2, ..., 6Θ) = Mr , 

has only two solutions (the true parameters and we can also interchange which is 
component is which). In fact, this system of polynomial equations is also stable and 
there is an analogue of condition numbers for systems of polynomial equations that 
implies a quantitative version of what we have just proved: if F and FA that are not 
ε-close, then one of their first six moments is noticeably different. This gives us our 
univariate algorithm. 

6.6 A View from Algebraic Geometry 

Here we will present an alternative univariate learning algorithm of Belkin and Sinha 
[23] that also makes use of the method of moments, but gives a much more general 
analysis using tools from algebraic geometry. 

Polynomial Families 

We will analyze the method of moments for the following class of distributions: 

Definition 6.6.1 A class of distributions F (Θ) is called a polynomial family if 

∀r, EX∈F (Θ) [X
r] = Mr(Θ) 

where Mr(Θ) is a polynomial in Θ = (θ1, θ2, ...., θk). 

{ }
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This definition captures a broad class of distributions such as mixtures models whose 
components are uniform, exponential, Poisson, Gaussian or gamma functions. We 
will need another (tame) condition on the distribution which guarantees that it is 
characterized by all of its moments. 

Fact 6.6.2 If the moment generating function (mgf) of X defined as E [Xn] t
n

n 

! 
converges in a neighborhood of zero, it uniquely determines the probability distribu­
tion, i.e. 

∀r, Mr(Θ) = Mr Θ) ⇒ F (Θ) = F (Θ)A .(A =

Our goal is to show that for any polynomial family, a finite number of its moments 
suffice. First we introduce the relevant definitions: 

Definition 6.6.3 Given a ring R, an ideal I generated by g1, g2, · · · , gn ∈ R denoted 
by I = g1, g2, · · · , gn is defined as 

r 
I = rigi where ri ∈ R . 

i 

Definition 6.6.4 A Noetherian ring is a ring such that for any sequence of ideals 

I1 ⊆ I2 ⊆ I3 ⊆ · · · , 

there is N such that IN = IN+1 = IN+2 = · · · . 

Theorem 6.6.5 (Hilbert’s Basis Theorem) If R is a Noetherian ring, then R[X] 
is also a Noetherian ring. 

It is easy to see that R is a Noetherian ring, and hence we know that R[x] is also 
Noetherian. Now we can prove that for any polynomial family, a finite number of 
moments suffice to uniquely identify any distribution in the family: 

Theorem 6.6.6 Let F (Θ) be a polynomial family. If the moment generating func­
tion converges in a neighborhood of zero, there exists N such that 

(AF (Θ) = F (Θ)A if and only if Mr(Θ) = Mr Θ) ∀r ∈ 1, 2, · · · , N 

A (AProof: Let Qr(Θ, Θ) = Mr(Θ) − Mr Θ). Let I1 = Q1 , I2 = Q1, Q2 , · · · . AThis is our ascending chain of ideals in R[Θ, Θ]. We can invoke Hilbert’s basis 

∑

〈 〉 {

〈 〉 〈 〉
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theorem and conclude that R[X] is a Noetherian ring and hence, there is N such 
that IN = IN+1 = · · · . So for all N + j, we have 

Nr A A AQN+j (Θ, Θ) = pij (Θ, Θ)Qi(Θ, Θ) 
i=1 Afor some polynomial pij ∈ R[Θ, Θ]. Thus, if Mr (A · ·(Θ) = Mr Θ) for all r ∈ 1, 2, · , N , 

then Mr(Θ) = Mr Θ) for all r and from Fact 6.6.2 we conclude that F (Θ) = F (A(A Θ). 

The other side of the theorem is obvious. • 

The theorem above does not give any finite bound on N , since the basis theorem 
does not either. This is because the basis theorem is proved by contradiction, but 
more fundamentally it is not possible to give a bound on N that depends only on 
the choice of the ring. Consider the following example   
Example 1 Consider the Noetherian ring R[x]. Let Ii = xN−i for i = 0, · · · , N . 
It is a strictly ascending chain of ideals for i = 0, · · · , N . Therefore, even if the ring 
R[x] is fixed, there is no universal bound on N . 

Bounds such as those in Theorem 6.6.6 are often referred to as ineffective. Consider 
an application of the above result to mixtures of Gaussians: from the above theorem, 
we have that any two mixtures F and FA of k Gaussians are identical if and only if 
these mixtures agree on their first N moments. Here N is a function of k, and N is 
finite but we cannot write down any explicit bound on N as a function of k using the 
above tools. Nevertheless, these tools apply much more broadly than the specialized 
ones based on the heat equation that we used to prove that 4k − 2 moments suffice 
for mixtures of k Gaussians in the previous section. 

Systems of Polynomial Inequalities 

In general, we do not have exact access to the moments of a distribution but only 
noisy approximations. Our main goal is to prove a quantitive version of the previous 
result which shows that any two distributions F and FA that are close on their first 
N moments are close in their parameters too. The key fact is that we can bound 
the condition number of systems of polynomial inequalities; there are a number of 
ways to do this but we will use quantifier elimination. Recall: 

Definition 6.6.7 A set S is semi-algebraic if there exist multivariate polynomials 
p1, ..., pn such that 

S = {x1, ..., xr|pi(x1, ..., xr) ≥ 0} 
or if S is a finite union or intersection of such sets. 
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Theorem 6.6.8 (Tarski) The projection of a semi-algebraic set is semi-algebraic. 

We define the following helper set: 

AH(ε, δ) = ∀(Θ, Θ) : (Θ) − Mr Θ)| ≤ δ for r = 1, 2, ...N ⇒ IΘ − A .|Mr (A = ΘI ≤ ε 

Let ε(δ) be the smallest ε as a function of δ: 

Theorem 6.6.9 There are fixed constants C1, C2, s such that if δ < 1/C1 then 
ε(δ) < C2δ

1/s. 

Proof: It is easy to see that we can define H(ε, δ) as the projection of a semi-
algebraic set, and hence using Tarski’s theorem we conclude that H(ε, δ) is also 
semi-algebraic. The crucial observation is that because H(ε, δ) is semi-algebraic, 
the smallest that we can choose ε to be as a function of δ is itself a polynomial 
function of δ. There are some caveats here, because we need to prove that for a 
fixed δ we can choose ε to be strictly greater than zero and moreover the polynomial 
relationship between ε and δ only holds if δ is sufficiently small. However these 
technical issues can be resolved without much more work, see [23] and the main 
result is the following. • 

Corollary 6.6.10 If |Mr(Θ) − Mr Θ)| ≤ ε Θ| ≤ ε.(A s 
then |Θ − A

C2 

Hence there is a polynomial time algorithm to learn the parameters of any uni­
variate polynomial family (whose mgf converges in a neighborhood of zero) within 
an additive accuracy of ε whose running time and sample complexity is poly(1/ε); 
we can take enough samples to estimate the first N moments within εs and search 
over a grid of the parameters, and any set of parameters that matches each of the 
moments is necessarily close in parameter distance to the true parameters. 

{ }

( )



Chapter 7 

Matrix Completion 

Here we will give algorithms for the matrix completion problem, where we observe 
uniformly random entries of a low-rank, incoherent matrix M and we would like 
design efficient algorithms that exactly recover M . 

7.1 Background 

The usual motivation for studying the matrix completion problem comes from rec­
ommendation systems. To be concrete, consider the Netflix problem where we are 
given ratings Mi,j that represent how user i rated movie j. We would like to use 
these ratings to make good recommendations to users, and a standard approach is 
to try to use our knowledge of some of the entries of M to fill in the rest of M . 

Let us be more precise: There is an unknown matrix M ∈ Rn×m whose rows 
represent users and whose columns represent movies in the example above. For each 
(i, j) ∈ Ω ⊆ [n] × [m] we are given the value Mi,j . Our goal is to recover M exactly. 
Ideally, we would like to find the minimum rank matrix X that agrees with M on 
the observed entries {Mi,j }(i,j)∈Ω however this problem is NP -hard. There are some 
now standard assumptions under which we will be able to give efficient algorithms 
for recovering M exactly: 

(a) Ω is uniformly random 

(b) The singular vectors of	 M are uncorrelated with the standard basis (such a 
matrix is called incoherent and we define this later) 

In fact, we will see that there are efficient algorithms for recovering M exactly if 
m ≈ mr log m where m ≥ n and rank(M) ≤ r. This is similar to compressed 
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sensing, where we were able to recover a k-sparse signal x from O(k log n/k) linear 
measurements, which is much smaller than the dimension of x. Here too we can 
recover a low-rank matrix M from a number of observations that is much smaller 
than the dimension of M . 

Let us examine the assumptions above. The assumption that should give us 
pause is that Ω is uniformly random. This is somewhat unnatural since it would 
be more believable if the probability we observe Mi,j depends on the value itself. 
Alternatively, a user should be more likely to rate a movie if he actually liked it. 

In order to understand the second assumption, suppose Ω is indeed uniformly 
random. Consider 

M = Π Ir 
0 

0 
0 ΠT 

where Π is a uniformly random permutation matrix. M is low-rank, but unless we 
observe all of the ones along the diagonal, we will not be able to recover M uniquely. 
Indeed, the singular vectors of M contain some of the standard basis vectors; but 
if we were to assume that the singular vectors of M are incoherent with respect to 
the standard basis, we could avoid the above problem. 

Definition 7.1.1 The coherence µ of a subspace U ⊆ Rn of dimension dim(u) = r 
is 

n 
max IPU eiI2 , 

r i 

where PU denotes the orthogonal projection onto U , and ei is the standard basis 
element. 

It is easy to see that if we choose U uniformly at random, then µ(U) = OA(1). Also 
we have that 1 ≤ µ(U) ≤ n/r and the upper bound is attained if U contains any ei. 
We can now see that if we set U to be the top singular vectors of the above example, 
then U has high coherence. We will need the following conditions on M : 

(a) Let M = UΣV T , then µ(U), µ(V ) ≤ µ0. 
√ 

(b) IUV T I∞ ≤ µ1 r , where || · ||∞ denotes the maximum absolute value of any 
n 

entry. 

The main result of this chapter is: 

Theorem 7.1.2 Suppose Ω is chosen uniformly at random. Then there is a poly­
nomial time algorithm to recover M exactly that succeeds with high probability if 

m ≥ max(µ1
2 , µ0)r(n + m) log2(n + m) 

[ ]
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The algorithm in the theorem above is based on a convex relaxation for the rank 
of a matrix called the nuclear norm. We will introduce this in the next section, 
and establish some of its properties but one can think of it as an analogue to the 
f1 minimization approach that we used in compressed sensing. This approach was 
first introduced in Fazel’s thesis [58], and Recht, Fazel and Parrilo [104] proved that 
this approach exactly recovers M in the setting of matrix sensing, which is related 
to the problem we consider here. 

In a landmark paper, Candes and Recht [33] proved that the relaxation based 
on nuclear norm also succeeds for matrix completion and introduced the assumptions 
above in order to prove that their algorithm works. There has since been a long line 
of work improving the requirements on m, and the theorem above and our exposition 
will follow a recent paper of Recht [103] that greatly simplifies the analysis by making 
use of matrix analogues of the Bernstein bound and using these in a procedure now 
called quantum golfing that was first introduced by Gross [67]. 

Remark 7.1.3 We will restrict to M ∈ Rn×n and assume µ0, µ1 = OA(1) in our 
analysis, which will reduce the number of parameters we need to keep track of. Also 
let m = n. 

7.2 Nuclear Norm 

Here we introduce the nuclear norm, which will be the basis for our algorithms for 
matrix completion. We will follow a parallel outline to that of compressed sensing. 
In particular, a natural starting point is the optimization problem: 

(P 0) min rank(X) s.t. Xi,j = Mi,j for all (i, j) ∈ Ω 

This optimization problem is NP -hard. If σ(X) is the vector of singular values of 
X then we can think of the rank of X equivalently as the sparsity of σ(X). Recall, 
in compressed sensing we faced a similar obstacle: finding the sparsest solution 
to a system of linear equations is also NP -hard, but we instead considered the 
f1 relaxation and proved that under various conditions this optimization problem 
recovers the sparsest solution. Similarly it is natural to consider the f1-norm of σ(X) 
which is called the nuclear norm: 

Definition 7.2.1 The nuclear norm of X denoted by IXI∗ is Iσ(X)I1. 

We will instead solve the convex program: 

(P 1) min IXI∗ s.t. Xi,j = Mi,j for all (i, j) ∈ Ω 
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and our goal is to prove conditions under which the solution to (P 1) is exactly M . 
Note that this is a convex program because IXI∗ is a norm, and there are a variety 
of efficient algorithms to solve the above program. 

In fact, for our purposes a crucial notion is that of a dual norm. We will not 
need this concept in full-generality, so we state it for the specific case of the nuclear 
norm. This concept gives us a method to lower bound the nuclear norm of a matrix: 

Definition 7.2.2 Let X, B = i,j Xi,j Bi,j = trace(XT B) denote the matrix inner-
product. 

Lemma 7.2.3 IXI∗ = max B �≤1 X, B . 

To get a feel for this, consider the special case where we restrict X and B to be 
diagonal. Moreover let X = diag(x) and B = diag(b). Then IXI∗ = IxI1 and 
the constraint IBI ≤ 1 (the spectral norm of B is at most one) is equivalent to 
IbI∞ ≤ 1. So we can recover a more familiar characterization of vector norms in 
the special case of diagonal matrices: 

bTIxI1 = max x 
b ∞≤1 

Proof: We will only prove one direction of the above lemma. What B should we 
use to certify the nuclear norm of X. Let X = UX ΣX VX

T , then we will choose 
B = UX VX

T . Then 

X, B = trace(BT X) = trace(VX U
T UX ΣX V T ) = trace(VX ΣX V T ) = trace(ΣX ) = IXI∗X X X 

where we have used the basic fact that trace(ABC) = trace(BCA). Hence this 
proves IXI∗ ≤ max B �≤1 X, B , and the other direction is not much more difficult 
(see e.g. [74]). • 

How can we show that the solution to (P 1) is M? Our basic approach will 
be a proof by contradiction. Suppose not, then the solution is M + Z for some Z 
that is supported in Ω. Our goal will be to construct a matrix B of spectral norm 
at most one for which 

IM + ZI∗ ≥ M + Z,B > IMI∗ 

Hence M + Z would not be the optimal solution to (P 1). This strategy is similar to 
the one in compressed sensing, where we hypothesized some other solution w that 
differs from x by a vector y in the kernel of the sensing matrix A. We used geometric 
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properties of ker(A) to prove that w has strictly larger f1 norm than x. However the 
proof here will be more involved since our strategy is to construct B above based 
on Z (rather than relying on some geometry property of A that holds regardless of 
what y is). 

Let us introduce some basic projection operators that will be crucial in our 
proof. Recall, M = UΣV T , let u1, . . . , ur be columns of U and let v1, . . . , vr be 
columns of V . Choose ur+1, . . . , un so that u1, . . . , un form an orthonormal basis 
for all of Rn – i.e. ur+1, . . . , un is an arbitrary orthonormal basis of U⊥ . Similarly 
choose vr+1, . . . , vn so that v1, . . . , vn form an orthonormal basis for all of Rn . We 
will be interested in the following linear spaces over matrices: 

Definition 7.2.4 T = span{uivT | 1 ≤ i ≤ r or 1 ≤ j ≤ r or both}.j 

Then T ⊥ = span{uivT s.t. r +1 ≤ i, j ≤ n}.. We have dim(T ) = r2 + 2(n − r)r andj 
dim(T ⊥) = (n − r)2 . Moreover we can define the linear operators that project into 
T and T ⊥ respectively: 

nr 
PT ⊥ [Z] = Z, uiv T · Uiv T = PU⊥ ZPV ⊥ .j j 

i,j=r+1 

And similarly r 
PT [Z] = Z, uiv T · uiv T = PU Z + ZPV − PU ZPV .j j  

(i,j)∈[n]×[n]−[r+1,n]×[r+1,n]  

We are now ready to describe the outline of the proof of Theorem 7.1.2. The 
proof will be based on: 

(a) We will assume that a certain helper matrix Y exists, and show that this is 
enough to imply IM + ZI∗ > IMI∗ for any Z supported in Ω 

(b) We will construct such a Y using quantum golfing [67]. 

Part (a) 

Here we will state the conditions we need on the helper matrix Y and prove that if 
such a Y exists, then M is the solution to (P 1). We require that Y is supported in 
Ω and 

(a) IPT (Y ) − UV T IF ≤ r/8n 

〈 〉

〈 〉
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(b) IPT ⊥ (Y )I ≤ 1/2. 

We want to prove that for any Z supported in Ω, IM + ZI∗ > IMI∗. Recall, 
we want to find a matrix B of spectral norm at most one so that M +Z,B > IMI∗. 
Let U⊥ and V⊥ be singular vectors of PT ⊥ [Z]. Then consider 

V T 
B = U	 U⊥ · = UV T + U⊥V⊥ 

T . 
V T 
⊥ 

Claim 7.2.5 IBI ≤ 1 

Proof: By construction UT U⊥ = 0 and V T V⊥ = 0 and hence the above expression 
for B is its singular value decomposition, and the claim now follows. • 

Hence we can plug in our choice for B and simplify: 

IM + ZI∗	 ≥ M + Z, B 
= M + Z, UV T + U⊥V⊥ 

T 

= M, UV T + Z, UV T + U⊥V⊥ 
T 

M ∗ 

where in the last line we used the fact that M is orthogonal to U⊥V⊥ 
T . Now using 

the fact that Y and Z have disjoint supports we can conclude: 

IM + ZI∗ ≥ IMI∗ + Z, UV T + U⊥V⊥ 
T − Y 

Therefore in order to prove the main result in this section it suffices to prove that 
Z, UV T + U⊥V T − Y > 0. We can expand this quantity in terms of its projection 
onto T and T ⊥

⊥ 
and simplify as follows: 

IM + ZI∗ − IMI∗ ≥ PT (Z), PT (UV T + U⊥V⊥ 
T − Y ) + PT ⊥ (Z), PT ⊥ (UV T + U⊥V⊥ 

T − Y ) 
≥ PT (Z), UV T − PT (Y ) + PT ⊥ (Z), U⊥V⊥ 

T − PT ⊥ (Y ) 
≥ PT (Z), UV T − PT (Y ) + IPT ⊥ (Z)I∗ − PT ⊥ (Z), PT ⊥ (Y ) 

where in the last line we used the fact that U⊥ and V⊥ are the singular vectors of 
PT ⊥ [Z] and hence U⊥V⊥ 

T , PT ⊥ [Z] = IPT ⊥ [Z]I∗. 
Now we can invoke the properties of Y that we have assumed in this section, 

to prove a lower bound on the right hand side. By property (a) of Y , we have that 
rIPT (Y ) − UV T IF ≤ 
2n . Therefore, we know that the first term PT (Z), UV T − 

PT (Y ) ≥ − 
8
r
n IPT (Z)IF . By property (b) of Y , we know the operator norm 

〈 〉
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of PT 
⊥(Y ) is at most 1/2. Therefore the third term PT ⊥ (Z), PT ⊥ (Y ) is at most 

1 IPT ⊥ (Z)I∗. Hence2 

r 1 ? 
IM + ZI∗ − IMI∗ ≥ − IPT (Z)IF + IPT ⊥ (Z)I∗ > 0 

8n 2 

We will show that with high probability over the choice of Ω that the inequality 
does indeed hold. We defer the proof of this last fact, since it and the construction 
of the helper matrix Y will both make use of the matrix Bernstein inequality which 
we present in the next section. 

7.3 Quantum Golfing 

What remains is to construct a helper matrix Y and prove that with high probability 
over Ω, for any matrix Z supported in Ω that IPT ⊥ (Z)I∗ > 

2
r
n IPT (Z)IF to 

complete the proof we started in the previous section. We will make use of an 
approach introduced by Gross [67] and we will follow the proof of Recht in [103] 
where the strategy is to construct Y iteratively. In each phase, we will invoke 

r 

concentration results for matrix valued random variables to prove that the error 
part of Y decreases geometrically and we make rapid progress in constructing a 
good helper matrix. 

First we will introduce the key concentration result that we will apply in several 
settings. The following matrix valued Bernstein inequality first appeared in the work 
of Ahlswede and Winter related to quantum information theory [6]. 

Theorem 7.3.1 (Non-commutative Bernstein Inequality) Let X1 . . . Xl be in­
dependent mean 0 matrices of size d × d. Let ρ2 = max{I E[XkX

T ]I, I E[XT Xk]I}k k k 
and suppose IXkI ≤ M almost surely. Then for τ > 0, 

l −τ 2/2 ≤ 2d expPr  Xk > τ  
k ρk 

2 + Mτ/3 
k=1 

If d = 1 this is the standard Bernstein inequality. If d > 1 and the matrices Xk are 
diagonal then this inequality can be obtained from the union bound and the standard 
Bernstein inequality again. However to build intuition, consider the following toy 
problem. Let uk be a random unit vector in Rd and let Xk = ukukT . Then it is easy 
to see that ρ2 = 1/d. How many trials do we need so that is close to the k k Xk 
identity (after scaling)? We should expect to need Θ(d log d) trials; this is even true 
if uk is drawn uniformly at random from the standard basis vectors {e1 . . . ed} due to 

〈 〉
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the coupon collector problem. Indeed, the above bound corroborates our intuition 
that Θ(d log d) is necessary and sufficient. 

Now we will apply the above inequality to build up the tools we will need to 
finish the proof. 

Definition 7.3.2 Let RΩ be the operator that zeros out all the entries of a matrix 
except those in Ω. 

Lemma 7.3.3 If Ω is chosen uniformly at random and m ≥ nr log n then with high 
probability 

n2 ∥  �∥  
m

Remark 7.3.4 Here we are inter

���∥∥∥∥ m
2

∥ 1
PT RΩPT − PT ∥�� < 

∥∥  
n 2 

  ested in bounding the operator norm of a linear 
operator on matrices. Let T be such an operator, then IT I is defined as 

max IT (Z)
≤

IF 
�‖Z ‖�F 1 

We will explain how this bound fits into the framework of the matrix Bernstein 
inequality, but for a full proof see [103]. Note that E[PT RΩPT ] = PT E[RΩ]PT = 
m 
2 PT and so we just need to show that PTn  RΩPT does not deviate too far from its 

expectation. Let e1, e2, . . . , ed be the standard basis vectors. Then we can expand: 

 
r 

PT (Z) = �〈P T
T (Z), eaeb  〉�eaeTb  

=
ra,b 

 
 �〈P (Z), e eT a  T

T b eaeb  
a,b 

〉�

 
= 

r
�〈  T T Z, PT (eaeb ) eaeb

a,b 

〉�

 T T Hence RΩPT (Z) = 
 ∑

(a,b)∈Ω Z, PT (eaeb ) eaeb and finally we conclude that 

 
P T T
T R T 

〈 
(Z) = 

〉
ΩP

 
r

Z, PT (eaeb  ) PT (eaeb  ) 
(a,b)∈Ω 

〈 〉 
〈W e can think of PT RΩPT as the sum of random operators of the form τa,b : Z → 
Z, P T P T

T (eaeb ) T (eaeb ), and the lemma follows by applying the matrix Bernstein 
inequality to 

〉 
the random operator 

∑ 
(a,b) τ . ∈Ω a,b

We can now complete the deferred proof of part (a): 
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Lemma 7.3.5 If Ω is chosen uniformly at random and m ≥ nr log n then with high 
probability for any Z supported in Ω we have 

r IPT ⊥ (Z)I∗ > IPT (Z)IF
2n 

Proof: Using Lemma 7.3.3 and the definition of the operator norm (see the remark) 
we have 

m m 
Z, PT RΩPT Z − PT Z ≥ − IZIF 

2 
2 2n 2n

Furthermore we can upper bound the left hand side as: 

Z, PT RΩPT Z = Z, PT R
2 PT Z = IRΩ(Z − PT ⊥ (Z))I2 
Ω F 

= IRΩ(PT ⊥ (Z))I2 
F ≤ IPT ⊥ (Z)IF 

2 

where in the last line we used that Z is supported in Ω and so RΩ(Z) = 0. Hence 
we have that 

m m IPT ⊥ (Z)I2 ≥ IPT (Z)I2 − IZI2 
F F F2 2n 2n

We can use the fact that IZI2 = IPT ⊥ (Z)IF 
2 +IPT (Z)I2 and conclude IPT ⊥ (Z)I2 ≥F F F  

m  
4n
IPT (Z)I2 We can now complete the proof of the lemma 2 F . 

m IPT ⊥ (Z)I∗ 2 ≥ IPT ⊥ (Z)IF 
2 ≥ IPT (Z)IF 

2 
24n

r 
> IPT (Z)I2 

F2n 
• 

All that remains is to prove that the helper matrix Y that we made use of 
actually does exists (with high probability). Recall that we require that Y is sup­
ported in Ω and IPT (Y ) − UV T IF ≤ r/8n and IPT ⊥ (Y )I ≤ 1/2. The basic idea 
is to break up Ω into disjoint sets Ω1, Ω2, . . . Ωp, where p = log n and use each set 
of observations to make progress on the remained PT (Y ) − UV T . More precisely, 
initialize Y0 = 0 in which case the remainder is W0 = UV T . Then set 

2n
Yi+1 = Yi + RΩi+1 (Wi) 

m 

and update Wi+1 = UV T − PT (Yi+1). It is easy to see that E[n
m 
2 
RΩi+1 ] = I. Intu­

itively this means that at each step Yi+1 − Yi is an unbiased estimator for Wi and so 
we should expect the remainder to decrease quickly (here we will rely on the concen­
tration bounds we derived from the non-commutative Bernstein inequality). Now 

√
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we can explain the nomenclature quantum golfing; at each step, we hit our golf ball 
in of the hole  the direction but here our target is to approximate the matrix UV T
which for various reasons is the t ∑ype of question that arises in quantum mechanics. 

It is easy to see that Y = i Yi is supported in Ω and that PT (Wi) = Wi for
all i. Hence we can compute 

I  PT (Yi) − UV TIF = 
∥∥∥��∥∥∥� n2�Wi 1 − P− T RΩi Wi−1 

��∥∥ ��∥∥�∥ = 
��∥∥∥ n2∥ �∥∥∥PT Wi−1 − PT RΩ

F m  PT Wi
m i −1 

n2 m 1 

∥∥��∥
 PT RΩPT  PT Wi−1 F2

�∥∥�
m

− ≤

last

∥ F 

≤
n

where

�
2 

 the

�∥ ∥
I I

  inequality 

∥�∥
follows from Lemma

∥�∥
 7.3.3. Therefore the Frobenius norm 

of

�
 the remainder

∥
  decreases

∥
 geometrically and

∥�
 it is easy to guarantee that Y satisfies 

condition (a). 

The more technically involved part is showing that Y also satisfies condition 
(b). However the intuition is that IP  ⊥ T (Y1)I is itself not too large, and since the 
norm of the remainder Wi decreases geometrically we should expect that IPT ⊥ (Yi)I 
does too and so most of the contribution to 

I  ⊥ T (Y )I ≤ 
r 

P IP  T ⊥(Yi)
i 

I 

comes from the first term. For the full details see [103]. This completes the proof 
that computing the solution to the convex program indeed finds M exactly, provided 
that M is incoherent and |Ω| ≥ max(µ2

1, µ0)r(n + m) log2(n + m). 
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